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This paper investigates the observer-based controller design problem for a class of nonlinear networked control systems with
random time-delays. The nonlinearity is assumed to satisfy a global Lipschitz condition and two dependent Markov chains are
employed to describe the time-delay from sensor to controller (S-C delay) and the time-delay from controller to actuator (C-A
delay), respectively. The transition probabilities of S-C delay and C-A delay are both assumed to be partly inaccessible. Sufficient
conditions on the stochastic stability for the closed-loop systems are obtained by constructing proper Lyapunov functional. The
methods of calculating the controller and the observer gain matrix are also given. Two numerical examples are used to illustrate
the effectiveness of the proposed method.

1. Introduction

Networked control systems (NCSs) are spatially distributed
systems where the communication between sensor, con-
troller, and actuator is carried out by a shared band limited
digital network [1, 2]. NCSs are used in a wide range of areas
such as robots, industrial manufacturing plants, and remote
surgery due to their advantages in practical applications, for
example, flexible architectures, the reduced weight, simple
installation, and maintenance as well as high flexibility and
reliability [3, 4]. However, the communication networks also
present some constraints such as time-delays and packet
dropouts result from the limited bandwidth. It is generally
known that the time-delay maybe degrades the performance
or even causes instability [5, 6].

The Markov chain which is a discrete-time stochastic
process with the Markov property can be effectively used to
model the time-delay in NCSs. The random time-delays in
NCSs modeled as Markov chains have been researched in the
past several years, and many results have been reported [7–
17]. In [7], the time-delay of NCSs was modeled as a Markov

chain, and further a LQG optimal controller design method
was proposed. In [8], the NCSs were molded as Markov
jump linear systems (MJLSs) where the S-C delaywasmolded
as a finite state Markov chain, and a V-K iteration method
was proposed to get a stabilizing controller. In [9], a buffer
was added ahead of the actuator, and the time-delays from
sensor to actuator were lumped together which was molded
as a Markov chain, and then the mean-square stability of
the closed-loop system was derived. In [10–12], for the NCSs
with S-C delay, the problem of 𝐻∞ control was investigated
using the BoundedReal Lemma and theMarkov jump theory.
In [13, 14], the S-C delay and C-A delay were modeled as
two independent Markov chains. The resulting closed-loop
systems were transformed to control systems which contain
two Markov chains. The sufficient and necessary conditions
for the stochastic stability of the resulting closed-loop systems
were established, and themode-dependent state feedback and
output feedback controller were designed, respectively.

The transition probabilities of time-delays in [7–14] were
assumed to be completely accessible. However, in practical
applications, this assumption is too ideal and hence will limit
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Figure 1: Diagram of the NCSs.

the application of the derived results due to the difficulty in
obtaining all the transition probabilities of time-delay pre-
cisely. Some results have been obtained when the transition
probabilities of the time-delays (data packet dropout) are
partly inaccessible. In [15], the 𝐻∞ control problem was
investigated for the NCSs with random data packet dropouts.
The closed-loop systems were modeled as MJLSs with four
modes and partly inaccessible transition probabilities. In [16,
17], the closed-loop systems were modeled as MJLSs with
partly inaccessible transition probabilities of the S-C delay,
and the stabilization controller was designed though the
linear matrix inequality (LMI) method. In [18], the transition
probabilities of the time-delay were assumed to be partly
inaccessible, and the fault-tolerant controller for the discrete-
time NCSs was designed. Unfortunately, in [16–18], only the
S-C delay was considered and an improved controller should
take both S-C delay and C-A delay into consideration.

It is well known that nonlinearities usually exist in
practical systems. Hence, research about nonlinear NCSs is
important in both application and theory. To the best of the
authors’ knowledge, up to now, involving both S-C delay and
C-A delay to design the controller for nonlinear NCSs when
transition probabilities of S-C delay and C-A delay are both
partly inaccessible has not been investigated, whichmotivates
our investigation.

In this paper, we propose two controller design methods
for a kind of nonlinear NCSs with both S-C delay and C-A
delay based on observer. Compared to the previous relevant
works, the main contribution of this paper is that the pro-
posed methods can deal with the situations of both complete
accessible transition probabilities and partly inaccessible
transition probabilities. The rest of this paper is organized as
follows.The closed-loop systemmodel with Markov delays is
obtained in Section 2. The main results and proofs are given
in Section 3. Section 4 presents the simulation results, and the
conclusions are provided in Section 5.

2. Problem Formulation

The configuration of the NCSs considering time-delays is
depicted in Figure 1 where 𝜏𝑘 and 𝑑𝑘 denote the S-C delay
and C-A delay, respectively.

In this paper, 𝜏𝑘 and 𝑑𝑘 are modeled as two homogeneous
Markov chains which take value in the set Ω = {𝜏𝑚, . . . , 𝜏𝑀}
and Γ = {𝑑𝑚, . . . , 𝑑𝑀}, and their transition probability

matrices are Ξ = [𝜆𝑖𝑗] and Π = [𝜋𝑟𝑠], respectively. That is,𝜏𝑘 and 𝑑𝑘 jump frommode 𝑖 to 𝑗 and from 𝑟 to 𝑠, respectively,
with probabilities 𝜆𝑖𝑗 and 𝜋𝑟𝑠, which are defined by 𝜆𝑖𝑗 =
Pr(𝜏𝑘+1 = 𝑗 | 𝜏𝑘 = 𝑖), 𝜋𝑟𝑠 = Pr(𝑑𝑘+1 = 𝑠 | 𝑑𝑘 = 𝑟), where𝜆𝑖𝑗 ≥ 0, 𝜋𝑟𝑠 ≥ 0, and ∑𝜏𝑀𝑗=𝜏𝑚 𝜆𝑖𝑗 = 1, ∑𝑑𝑀

𝑠=𝑑𝑚
𝜋𝑟𝑠 = 1, for all𝑖, 𝑗 ∈ Ω and 𝑟, 𝑠 ∈ Γ.

In this paper, the transition probabilities of 𝜏𝑘 and 𝑑𝑘 are
both considered to be partly accessible; that is, some elements
in matrix Ξ and Π are unknown. For notational clarity, ∀𝑖 ∈Ω, we denote Ω = Ω𝑖𝑘 + Ω𝑖𝑢𝑘 with Ω𝑖𝑘 = {𝑗 : 𝜆𝑖𝑗 is known},Ω𝑖𝑢𝑘 = {𝑗 : 𝜆𝑖𝑗 is unknown}. Moreover, if Ω𝑖𝑘 ̸= ⌀, it is
further described as Ω𝑖𝑘 = {Ω𝑘𝑖1 , Ω𝑘𝑖2 , . . . , Ω𝑘𝑖𝜇} (1 ≤ 𝜇 ≤ 𝑒),
and Ω𝑖𝑢𝑘 is described as Ω𝑖𝑢𝑘 = {Ω

𝑘
𝑖

1

, Ω
𝑘
𝑖

2

, . . . , Ω
𝑘
𝑖

𝑒−𝜇

}, where 𝑒
is the number of elements in the set Ω.

Similarly, ∀𝑟 ∈ Γ, we denote Γ = Γ𝑟𝑘 + Γ𝑟𝑢𝑘 with Γ𝑟𝑘 = {𝑠 :𝜋𝑟𝑠 is known}, Γ𝑟𝑢𝑘 = {𝑠 : 𝜋𝑟𝑠 is unknown}. If Γ𝑟𝑘 ̸= ⌀, it is
further described as Γ𝑟𝑘 = {Γ𝑘𝑟1 , Γ𝑘𝑟2 , . . . , Γ𝑘𝑟𝜃} (1 ≤ 𝜃 ≤ 𝜙) andΓ𝑟𝑢𝑘 is described as Γ𝑟𝑢𝑘 = {Γ
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}, where 𝜙 is the

number of elements in the set Γ.
Considering the following controlled plant after sam-

pling, 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑓 (𝑘, 𝑥𝑘) + 𝐵�̃�𝑘,𝑦𝑘 = 𝐶𝑥𝑘, (1)

where 𝑥𝑘 ∈ 𝑅𝑛 is the state vector, �̃�𝑘 ∈ 𝑅𝑚 is the control input,
and 𝑦𝑘 ∈ 𝑅𝑝 is the measured output. 𝐴, 𝐵, and 𝐶 are known
real constant matrices with appropriate dimensions. 𝑓(𝑘, 𝑥𝑘)
is a nonlinear vector function which satisfies the following
global Lipschitz conditions:𝑓 (𝑘, 𝑥𝑘) ≤ 𝑔𝑥𝑘 ,𝑓 (𝑘, 𝑥𝑘) − 𝑓 (𝑘, 𝑧𝑘) ≤ 𝑔 (𝑥𝑘 − 𝑧𝑘) , (2)

where 𝑔 is a known real scalar.
The dynamic observer-based control scheme is given by

Observer:
{{{
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑓 (𝑘, 𝑥𝑘) + 𝐵𝑢𝑘 + 𝐿 (𝑦𝑘−𝜏𝑘 − 𝑦𝑘−𝜏𝑘) ,𝑦𝑘 = 𝐶𝑥𝑘, (3)

Controller:
{{{
𝑢𝑘 = 𝐾𝑥𝑘,�̃�𝑘 = 𝑢𝑘−𝑑𝑘 , (4)

where 𝑥𝑘 ∈ 𝑅𝑛, 𝑢𝑘 ∈ 𝑅𝑚, and 𝑦𝑘 ∈ 𝑅𝑝 are the state vector,
control input, and output vector of the observer, respectively.𝐾 ∈ 𝑅𝑚×𝑛 is the controller gain and 𝐿 ∈ 𝑅𝑛×𝑝 is the observer
gain.

Remark 1. It should be pointed out that the control input �̃�𝑘
of the controlled plant (1) is different from the control input𝑢𝑘 of the observer (3) due to the existence of the C-A delay𝑑𝑘, while, in the most of the observer-based controller design
problem, �̃�𝑘 and 𝑢𝑘 were assumed to be identical.

Define the state estimate errors as𝑒𝑘 = 𝑥𝑘 − 𝑥𝑘. (5)
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Substituting (3) and (4) into (1) and (5), the closed-loop
system can be obtained as follows:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑓 (𝑘, 𝑥𝑘) + 𝐵𝐾 (𝑥𝑘−𝜏𝑘 − 𝑒𝑘−𝜏𝑘) ,𝑒𝑘+1 = (𝐴 + 𝐵𝐾) 𝑒𝑘 + 𝐹𝑘 − 𝐵𝐾𝑥𝑘 + 𝐵𝐾 (𝑥𝑘−𝑑𝑘 − 𝑒𝑘−𝑑𝑘)− 𝐿𝐶𝑒𝑘−𝜏𝑘 ,
(6)

where 𝐹𝑘 = 𝑓(𝑘, 𝑥𝑘) − 𝑓(𝑘, 𝑥𝑘).
By defining 𝜂𝑇𝑘 = [𝑥𝑇𝑘 𝑒𝑇𝑘 ]𝑇, the closed-loop system (6)

can be written in a compact form as follows:

𝜂𝑘+1 = (𝐴 − 𝐵1𝐾𝐼1) 𝜂𝑘 + 𝐵2𝐾𝐼1𝜂𝑘−𝑑𝑘 − 𝐼2𝐿𝐶𝜂𝑘−𝜏𝑘+ 𝐹𝑘, (7)

where

𝐴 = [𝐴 00 𝐴] ,
𝐵1 = [0𝐵] ,
𝐵2 = [𝐵𝐵] ,
𝐼1 = [𝐼 −𝐼] ,
𝐼2 = [0𝐼] ,
𝐶 = [0 𝐶] ,
𝐹 = [𝑓 (𝑘, 𝑥𝑘)𝐹𝑘 ] .

(8)

Definition 2 (see [13]). System (7) is stochastically stable if,
for every finite 𝜂0 and 𝜏0 ∈ Ω, 𝑑0 ∈ Γ, there exists a finite
matrix 𝑅 > 0 such that

𝐸{∞∑
𝑘=0

𝜂𝑘2 | 𝜂0, 𝜏0, 𝑑0} < 𝜂𝑇0𝑅𝜂0. (9)

In this paper, our objective is to design the dynamic observer-
based control scheme (3) and (4), such that the closed-
loop system (7) is stochastically stable on condition that
the transition probabilities of 𝜏𝑘 and 𝑑𝑘 are both partly
inaccessible.

3. Main Results and Proofs

In this section, we will present the main results. To proceed,
we will need the following three lemmas.

Lemma 3 (see [19]). For any positive-definite matrix 𝑊,
scalars 𝛿, 𝛿0 satisfying 𝛿 ≥ 𝛿0 ≥ 1 and vector function 𝜐𝑙, one
has (∑𝛿𝑙=𝛿0 𝜐𝑙)𝑇𝑊∑𝛿𝑙=𝛿0 𝜐𝑙 ≤ (𝛿 − 𝛿0 + 1)∑𝛿𝑙=𝛿0 𝜐𝑇𝑙 𝑊𝜐𝑙.

Lemma 4 (see [20], S-procedure). Let 𝑇𝑙 ∈ 𝑅𝑛×𝑛 (𝑙 = 0, 1,. . . , 𝑧) be symmetric matrices. The conditions on 𝜉𝑇𝑇0𝜉 < 0,∀𝜉 ̸= 0 s.t. 𝜉𝑇𝑇𝑠𝜉 ≤ 0, (𝑙 = 0, 1, . . . , 𝑧) hold if there exist scalars𝜀𝑙 ≥ 0 (𝑙 = 0, 1, . . . , 𝑧) such that 𝑇0 − ∑𝑧𝑙=1 𝜀𝑙𝑇𝑙 < 0.
Lemma 5 (see [21]). For given scalars 𝜆𝑖 ≥ 0 (𝑖 = 1, . . . , 𝑁1),𝜋𝑟 ≥ 0 (𝑟 = 1, . . . , 𝑁2) and matrix 𝑃𝑖,𝑟 ≥ 0, the following
inequality always holds:

𝑁1∑
𝑖=1

𝑁2∑
𝑟=1

𝜆𝑖𝜋𝑟𝑃𝑖,𝑟 ≤ 𝑁1∑
𝑖=1

𝑁2∑
𝑟=1

𝜆𝑖𝜋𝑟 𝑁1∑
𝑖=1

𝑁2∑
𝑟=1

𝑃𝑖,𝑟. (10)

In the following, a sufficient condition such that the
closed-loop system (7) is stochastically stable will be derived.

Theorem 6. Taking the controller gain matrix𝐾 and observer
gain matrix 𝐿, if there exist positive-definite matrices 𝑃𝑖,𝑟 > 0,𝑃𝑗,𝑠 > 0, 𝑄1 > 0, 𝑄2 > 0, 𝑄3 > 0, 𝑄4 > 0, 𝑄5 > 0, 𝑄6 > 0,𝑍1 > 0, 𝑍2 > 0, 𝑍3 > 0, 𝑍4 > 0 and scalar 𝜀1 ≥ 0, 𝜀2 ≥ 0 such
that the following inequality

Φ ≜
[[[[[[[[[[[[[[[[[[

Φ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗Φ21 Φ22 ∗ ∗ ∗ ∗ ∗ ∗Φ31 Φ32 Φ33 ∗ ∗ ∗ ∗ ∗Φ41 Φ42 Φ43 Φ44 ∗ ∗ ∗ ∗𝑍2 𝑍1 0 0 Φ55 ∗ ∗ ∗0 𝑍1 0 0 0 Φ66 ∗ ∗𝑍4 0 𝑍3 0 0 0 Φ77 ∗0 0 𝑍3 0 0 0 0 Φ88

]]]]]]]]]]]]]]]]]]

< 0, (11)

whereΦ11 = (𝑑𝑀 − 𝑑𝑚 + 1)𝑄1 + (𝜏𝑀 − 𝜏𝑚 + 1)𝑄2 + 𝑄3
+ 𝑄4 + 𝑄5 + 𝑄6 + (𝑑𝑀 − 𝑑𝑚)2 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)𝑇
⋅ 𝑍1 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) + 𝑑2𝑚 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)𝑇
⋅ 𝑍2 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) + (𝜏𝑀 − 𝜏𝑚)2
⋅ (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)𝑇𝑍3 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)
+ 𝜏2𝑚 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)𝑇𝑍4 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)
+ (𝐴 − 𝐵1𝐾𝐼1)𝑇 𝑃𝑗,𝑠 (𝐴 − 𝐵1𝐾𝐼1) − 𝑃𝑖,𝑟 + 𝜀1𝑔2𝐼𝑇3 𝐼3+ 𝜀2𝑔2𝐼𝑇4 𝐼4,Φ21 = (𝑑𝑀 − 𝑑𝑚)2 (𝐵2𝐾𝐼1)𝑇𝑍1 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)
+ 𝑑2𝑚 (𝐵2𝐾𝐼1)𝑇𝑍2 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) + (𝜏𝑀 − 𝜏𝑚)2
⋅ (𝐵2𝐾𝐼1)𝑇𝑍3 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) + 𝜏2𝑚 (𝐵2𝐾𝐼1)𝑇
⋅ 𝑍4 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) + (𝐵2𝐾𝐼1)𝑇
⋅ 𝑃𝑗,𝑠 (𝐴 − 𝐵1𝐾𝐼1) ,
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Φ22 = (𝑑𝑀 − 𝑑𝑚)2 (𝐵2𝐾𝐼1)𝑇𝑍1 (𝐵2𝐾𝐼1)
+ 𝑑2𝑚 (𝐵2𝐾𝐼1)𝑇𝑍2 (𝐵2𝐾𝐼1) + (𝜏𝑀 − 𝜏𝑚)2 (𝐵2𝐾𝐼1)𝑇⋅ 𝑍3 (𝐵2𝐾𝐼1) + 𝜏2𝑚 (𝐵2𝐾𝐼1)𝑇𝑍4 (𝐵2𝐾𝐼1)+ (𝐵2𝐾𝐼1)𝑇 𝑃𝑗,𝑠 (𝐵2𝐾𝐼1) − 𝑄1 − 2𝑍1,

Φ31 = − (𝑑𝑀 − 𝑑𝑚)2 (𝐼2𝐿𝐶)𝑇𝑍1 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)
− 𝑑2𝑚 (𝐼2𝐿𝐶)𝑇𝑍2 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) − (𝜏𝑀 − 𝜏𝑚)2
⋅ (𝐼2𝐿𝐶)𝑇𝑍3 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) − 𝜏2𝑚 (𝐼2𝐿𝐶)𝑇
⋅ 𝑍4 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) − (𝐼2𝐿𝐶)𝑇 𝑃𝑗,𝑠 (𝐴 − 𝐵1𝐾𝐼1) ,

Φ32 = − (𝑑𝑀 − 𝑑𝑚)2 (𝐼2𝐿𝐶)𝑇𝑍1 (𝐵2𝐾𝐼1)
− 𝑑2𝑚 (𝐼2𝐿𝐶)𝑇𝑍2 (𝐵2𝐾𝐼1) − (𝜏𝑀 − 𝜏𝑚)2 (𝐼2𝐿𝐶)𝑇
⋅ 𝑍3 (𝐵2𝐾𝐼1) − 𝜏2𝑚 (𝐼2𝐿𝐶)𝑇𝑍4 (𝐵2𝐾𝐼1) − (𝐼2𝐿𝐶)𝑇⋅ 𝑃𝑗,𝑠 (𝐵2𝐾𝐼) ,

Φ33 = (𝑑𝑀 − 𝑑𝑚)2 (𝐼2𝐿𝐶)𝑇𝑍1 (𝐼2𝐿𝐶) + 𝑑2𝑚 (𝐼2𝐿𝐶)𝑇
⋅ 𝑍2 (𝐼2𝐿𝐶) + (𝜏𝑀 − 𝜏𝑚)2 (𝐼2𝐿𝐶)𝑇𝑍3 (𝐼2𝐿𝐶)
+ 𝜏2𝑚 (𝐼2𝐿𝐶)𝑇𝑍4 (𝐼2𝐿𝐶) + (𝐼2𝐿𝐶)𝑇 𝑃𝑗,𝑠 (𝐼2𝐿𝐶)− 𝑄2 − 2𝑍3,

Φ41 = (𝑑𝑀 − 𝑑𝑚)2 𝑍1 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)
+ 𝑑2𝑚𝑍2 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) + (𝜏𝑀 − 𝜏𝑚)2
⋅ 𝑍3 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) + 𝜏2𝑚𝑍4 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)
+ 𝑃𝑗,𝑠 (𝐴 − 𝐵1𝐾𝐼1) ,

Φ42 = (𝑑𝑀 − 𝑑𝑚)2 𝑍1 (𝐵2𝐾𝐼1) + 𝑑2𝑚𝑍2 (𝐵2𝐾𝐼1)+ (𝜏𝑀 − 𝜏𝑚)2 𝑍3 (𝐵2𝐾𝐼1) + 𝜏2𝑚𝑍4 (𝐵2𝐾𝐼1)+ 𝑃𝑗,𝑠 (𝐵2𝐾𝐼1) ,
Φ43 = − (𝑑𝑀 − 𝑑𝑚)2 𝑍1 (𝐼2𝐿𝐶) − 𝑑2𝑚𝑍2 (𝐼2𝐿𝐶)

− (𝜏𝑀 − 𝜏𝑚)2 𝑍3 (𝐼2𝐿𝐶) − 𝜏2𝑚𝑍4 (𝐼2𝐿𝐶)
− 𝑃𝑗,𝑠 (𝐼2𝐿𝐶) ,

Φ44 = (𝑑𝑀 − 𝑑𝑚)2 𝑍1 + 𝑑2𝑚𝑍2 + (𝜏𝑀 − 𝜏𝑚)2 𝑍3+ 𝜏2𝑚𝑍4 + 𝑃𝑗,𝑠 − 𝜀1𝐼𝑇3 𝐼3 − 𝜀2𝐼𝑇4 𝐼4,Φ55 = −𝑄3 − 𝑍2 − 𝑍1,

Φ66 = −𝑄4 − 𝑍1,Φ77 = −𝑄5 − 𝑍4 − 𝑍3,Φ88 = −𝑄6 − 𝑍3,𝐼3 = [𝐼 0] ,
𝐼4 = [0 𝐼] ,
𝑃𝑗,𝑠 = 𝜏𝑀∑

𝑗=𝜏𝑚

𝑑𝑀∑
𝑠=𝑑𝑚

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠,
(12)

holds for all 𝑖, 𝑗 ∈ Ω and 𝑟, 𝑠 ∈ Γ, the closed-loop system (7) is
stochastically stable.

Proof. Choose the Lyapunov function candidate as𝑉(𝜂𝑘, 𝜏𝑘, 𝑑𝑘) = ∑5𝜌=1 𝑉𝜌(𝜂𝑘, 𝜏𝑘, 𝑑𝑘), where𝑉1 (𝜂𝑘, 𝜏𝑘, 𝑑𝑘) = 𝜂𝑇𝑘𝑃𝜏𝑘,𝑑𝑘𝜂𝑘,
𝑉2 (𝜂𝑘, 𝑑𝑘, 𝜏𝑘) = 𝑘−1∑

𝑙=𝑘−𝑑𝑘

𝜂𝑇𝑙 𝑄1𝜂𝑙 + 𝑘−1∑
𝑙=𝑘−𝜏𝑘

𝜂𝑇𝑙 𝑄2𝜂𝑙,
𝑉3 (𝜂𝑘, 𝑑𝑘, 𝜏𝑘) = 𝑘−1∑

𝑙=𝑘−𝑑𝑚

𝜂𝑇𝑙 𝑄3𝜂𝑙 + 𝑘−1∑
𝑙=𝑘−𝑑𝑀

𝜂𝑇𝑙 𝑄4𝜂𝑙
+ 𝑘−1∑
𝑙=𝑘−𝜏𝑚

𝜂𝑇𝑙 𝑄5𝜂𝑙 + 𝑘−1∑
𝑙=𝑘−𝜏𝑀

𝜂𝑇𝑙 𝑄6𝜂𝑙,
𝑉4 (𝜂𝑘, 𝑑𝑘, 𝜏𝑘) = −𝑑𝑚∑

𝑛=−𝑑𝑀+1

𝑘−1∑
𝑙=𝑘+𝑛

𝜂𝑇𝑙 𝑄1𝜂𝑙
+ −𝜏𝑚∑
𝑛=−𝜏𝑀+1

𝑘−1∑
𝑙=𝑘+𝑛

𝜂𝑇𝑙 𝑄2𝜂𝑙,
𝑉5 (𝜂𝑘, 𝑑𝑘, 𝜏𝑘) = −𝑑𝑚∑

𝑛=−𝑑𝑀+1

𝑘−1∑
𝑙=𝑘+𝑛

(𝑑𝑀 − 𝑑𝑚) 𝜁𝑇𝑙 𝑍1𝜁𝑙
+ −1∑
𝑛=−𝑑𝑚

𝑘−1∑
𝑙=𝑘+𝑛

𝑑𝑚𝜁𝑇𝑙 𝑍2𝜁𝑙
+ −𝜏𝑚∑
𝑛=−𝜏𝑀+1

𝑘−1∑
𝑙=𝑘+𝑛

(𝜏𝑀 − 𝜏𝑚) 𝜁𝑇𝑙 𝑍3𝜁𝑙
+ −1∑
𝑛=−𝜏𝑚

𝑘−1∑
𝑙=𝑘+𝑛

𝜏𝑚𝜁𝑇𝑙 𝑍4𝜁𝑙,
𝜁𝑙 = 𝜂𝑙+1 − 𝜂𝑙.

(13)

In the following, we denote 𝑃𝑑𝑘,𝜏𝑘 as 𝑃𝑟,𝑖 when 𝑑𝑘 = 𝑟 and𝜏𝑘 = 𝑖. Then along the solution of system (7), we have𝐸 {Δ𝑉1} = 𝐸 {𝜂𝑇𝑘+1𝑃𝜏𝑘+1,𝑑𝑘+1𝜂𝑘+1 | 𝜏𝑘 = 𝑖, 𝑑𝑘 = 𝑟}− 𝜂𝑇𝑘𝑃𝑖,𝑟𝜂𝑘 = ((𝐴 − 𝐵1𝐾𝐼1) 𝜂𝑘 + 𝐵2𝐾𝐼1𝜂𝑘−𝑑𝑘
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− 𝐼2𝐿𝐶𝜂𝑘−𝜏𝑘 + 𝐹𝑘)𝑇 𝜏𝑀∑
𝑗=𝜏𝑚

𝑑𝑀∑
𝑠=𝑑𝑚

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠
⋅ ((𝐴 − 𝐵1𝐾𝐼1) 𝜂𝑘 + 𝐵2𝐾𝐼1𝜂𝑘−𝑑𝑘 − 𝐼2𝐿𝐶𝜂𝑘−𝜏𝑘 + 𝐹𝑘)− 𝜂𝑇𝑘𝑃𝑖,𝑟𝜂𝑘,

𝐸 {Δ𝑉2} = 𝜂𝑇𝑘𝑄1𝜂𝑘 − 𝜂𝑇𝑘−𝑟𝑄1𝜂𝑘−𝑟 + 𝑘−1∑
𝑙=𝑘+1−𝑑𝑘+1

𝜂𝑇𝑙 𝑄1𝜂𝑙
− 𝑘−1∑
𝑙=𝑘+1−𝑑𝑘

𝜂𝑇𝑙 𝑄1𝜂𝑙 + 𝜂𝑇𝑘𝑄2𝜂𝑘 − 𝜂𝑇𝑘−𝑖𝑄2𝜂𝑘−𝑖
+ 𝑘−1∑
𝑙=𝑘+1−𝜏𝑘+1

𝜂𝑇𝑙 𝑄2𝜂𝑙 − 𝑘−1∑
𝑙=𝑘+1−𝜏𝑘

𝜂𝑇𝑙 𝑄2𝜂𝑙.
(14)

It is noticed that
𝑘−1∑

𝑙=𝑘+1−𝑑𝑘+1

𝜂𝑇𝑙 𝑄1𝜂𝑙 = 𝑘−1∑
𝑙=𝑘+1−𝑑𝑚

𝜂𝑇𝑙 𝑄1𝜂𝑙 + 𝑘−𝑑𝑚∑
𝑙=𝑘+1−𝑑𝑘+1

𝜂𝑇𝑙 𝑄1𝜂𝑙
≤ 𝑘−1∑
𝑙=𝑘+1−𝑑𝑘

𝜂𝑇𝑙 𝑄1𝜂𝑙 + 𝑘−𝑑𝑚∑
𝑙=𝑘+1−𝑑𝑀

𝜂𝑇𝑙 𝑄1𝜂𝑙,
𝑘−1∑
𝑙=𝑘+1−𝜏𝑘+1

𝜂𝑇𝑙 𝑄2𝜂𝑙 = 𝑘−1∑
𝑙=𝑘+1−𝜏𝑚

𝜂𝑇𝑙 𝑄2𝜂𝑙 + 𝑘−𝜏𝑚∑
𝑙=𝑘+1−𝜏𝑘+1

𝜂𝑇𝑙 𝑄2𝜂𝑙
≤ 𝑘−1∑
𝑙=𝑘+1−𝜏𝑘

𝜂𝑇𝑙 𝑄2𝜂𝑙 + 𝑘−𝜏𝑚∑
𝑙=𝑘+1−𝜏𝑀

𝜂𝑇𝑙 𝑄2𝜂𝑙.

(15)

Therefore, we obtain

𝐸 {Δ𝑉2} ≤ 𝜂𝑇𝑘𝑄1𝜂𝑘 − 𝜂𝑇𝑘−𝑟𝑄1𝜂𝑘−𝑟 + 𝑘−𝑑𝑚∑
𝑙=𝑘+1−𝑑𝑀

𝜂𝑇𝑙 𝑄1𝜂𝑙
+ 𝜂𝑇𝑘𝑄2𝜂𝑘 − 𝜂𝑇𝑘−𝑖𝑄2𝜂𝑘−𝑖
+ 𝑘−𝜏𝑚∑
𝑙=𝑘+1−𝜏𝑀

𝜂𝑇𝑙 𝑄2𝜂𝑙,
𝐸 {Δ𝑉3} = 𝜂𝑇𝑘𝑄3𝜂𝑘 − 𝜂𝑇𝑘−𝑑𝑚𝑄3𝜂𝑘−𝑑𝑚 + 𝜂𝑇𝑘𝑄4𝜂𝑘− 𝜂𝑇𝑘−𝑑𝑀𝑄4𝜂𝑘−𝑑𝑀 + 𝜂𝑇𝑘𝑄5𝜂𝑘− 𝜂𝑇𝑘−𝜏𝑚𝑄5𝜂𝑘−𝜏𝑚 + 𝜂𝑇𝑘𝑄6𝜂𝑘− 𝜂𝑇𝑘−𝜏𝑀𝑄6𝜂𝑘−𝜏𝑀 ,
𝐸 {Δ𝑉4} = (𝑑𝑀 − 𝑑𝑚) 𝜂𝑇𝑘𝑄1𝜂𝑘 − 𝑘−𝑑𝑚∑

𝑙=𝑘+1−𝑑𝑀

𝜂𝑇𝑙 𝑄1𝜂𝑙
+ (𝜏𝑀 − 𝜏𝑚) 𝜂𝑇𝑘𝑄2𝜂𝑘 − 𝑘−𝜏𝑚∑

𝑙=𝑘+1−𝜏𝑀

𝜂𝑇𝑙 𝑄2𝜂𝑙,

𝐸 {Δ𝑉5} = (𝑑𝑀 − 𝑑𝑚)2 𝜁𝑇𝑘𝑍1𝜁𝑘
− 𝑘−𝑑𝑚−1∑
𝑙=𝑘−𝑑𝑀

(𝑑𝑀 − 𝑑𝑚) 𝜁𝑇𝑙 𝑍1𝜁𝑙
+ 𝑑2𝑚𝜁𝑇𝑘𝑍2𝜁𝑘 − 𝑑𝑚 𝑘−1∑

𝑙=𝑘−𝑑𝑚

𝜁𝑇𝑙 𝑍2𝜁𝑙
+ (𝜏𝑀 − 𝜏𝑚)2 𝜁𝑇𝑘𝑍3𝜁𝑘
− 𝑘−𝜏𝑚−1∑
𝑙=𝑘−𝜏𝑀

(𝜏𝑀 − 𝜏𝑚) 𝜁𝑇𝑙 𝑍3𝜁𝑙 + 𝜏2𝑚𝜁𝑇𝑘𝑍4𝜁𝑘
− 𝜏𝑚 𝑘−1∑
𝑙=𝑘−𝜏𝑚

𝜁𝑇𝑙 𝑍4𝜁𝑙.
(16)

Note that

− 𝑑𝑚 𝑘−1∑
𝑙=𝑘−𝑑𝑚

𝜁𝑇𝑙 𝑍2𝜁𝑙 − 𝑘−𝑑𝑚−1∑
𝑙=𝑘−𝑑𝑀

(𝑑𝑀 − 𝑑𝑚) 𝜁𝑇𝑙 𝑍1𝜁𝑙
= −𝑑𝑚 𝑘−1∑

𝑙=𝑘−𝑑𝑚

𝜁𝑇𝑙 𝑍2𝜁𝑙 − 𝑘−𝑑𝑚−1∑
𝑙=𝑘−𝑟

(𝑑𝑀 − 𝑑𝑚) 𝜁𝑇𝑙 𝑍1𝜁𝑙
− 𝑘−𝑟−1∑
𝑙=𝑘−𝑑𝑀

(𝑑𝑀 − 𝑑𝑚) 𝜁𝑇𝑙 𝑍1𝜁𝑙
≤ −𝑑𝑚 𝑘−1∑

𝑙=𝑘−𝑑𝑚

𝜁𝑇𝑙 𝑍2𝜁𝑙 − 𝑘−𝑑𝑚−1∑
𝑙=𝑘−𝑟

(𝑟 − 𝑑𝑚) 𝜁𝑇𝑙 𝑍1𝜁𝑙
− 𝑘−𝑟−1∑
𝑙=𝑘−𝑑𝑀

(𝑑𝑀 − 𝑟) 𝜁𝑇𝑙 𝑍1𝜁𝑙.

(17)

We can obtain the following inequality by Lemma 3:

− 𝑑𝑚 𝑘−1∑
𝑙=𝑘−𝑑𝑚

𝜁𝑇𝑙 𝑍2𝜁𝑙 − 𝑘−𝑑𝑚−1∑
𝑙=𝑘−𝑑𝑀

(𝑑𝑀 − 𝑑𝑚) 𝜁𝑇𝑙 𝑍1𝜁𝑙
≤ − [𝜂𝑘 − 𝜂𝑘−𝑑𝑚]𝑇𝑍2 [𝜂𝑘 − 𝜂𝑘−𝑑𝑚]− [𝜂𝑘−𝑑𝑚 − 𝜂𝑘−𝑟]𝑇𝑍1 [𝜂𝑘−𝑑𝑚 − 𝜂𝑘−𝑟]− [𝜂𝑘−𝑟 − 𝜂𝑘−𝑑𝑀]𝑇𝑍1 [𝜂𝑘−𝑟 − 𝜂𝑘−𝑑𝑀] .

(18)

Similarly, we have

− 𝜏𝑚 𝑘−1∑
𝑙=𝑘−𝜏𝑚

𝜁𝑇𝑙 𝑍4𝜁𝑙 − 𝑘−𝜏𝑚−1∑
𝑙=𝑘−𝜏𝑀

(𝜏𝑀 − 𝜏𝑚) 𝜁𝑇𝑙 𝑍3𝜁𝑙
≤ − [𝜂𝑘 − 𝜂𝑘−𝜏𝑚]𝑇𝑍4 [𝜂𝑘 − 𝜂𝑘−𝜏𝑚]
− [𝜂𝑘−𝜏𝑚 − 𝜂𝑘−𝑖]𝑇𝑍3 [𝜂𝑘−𝜏𝑚 − 𝜂𝑘−𝑖]
− [𝜂𝑘−𝑖 − 𝜂𝑘−𝜏𝑀]𝑇𝑍3 [𝜂𝑘−𝑖 − 𝜂𝑘−𝜏𝑀] .

(19)
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From (14)–(19), we have

𝐸 {Δ𝑉 (𝜂𝑘, 𝑑𝑘, 𝜏𝑘) | 𝜏𝑘 = 𝑖, 𝑑𝑘 = 𝑟} ≤ 𝜉𝑇𝑘Φ𝜉𝑘, (20)

where

Φ =
[[[[[[[[[[[[[[[[[[

Φ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗Φ21 Φ22 ∗ ∗ ∗ ∗ ∗ ∗Φ31 Φ32 Φ33 ∗ ∗ ∗ ∗ ∗Φ41 Φ42 Φ43 Φ44 ∗ ∗ ∗ ∗𝑍2 𝑍1 0 0 Φ55 ∗ ∗ ∗0 𝑍1 0 0 0 Φ66 ∗ ∗𝑍4 0 𝑍3 0 0 0 Φ77 ∗0 0 𝑍3 0 0 0 0 Φ88

]]]]]]]]]]]]]]]]]]

,

Φ11 = (𝑑𝑀 − 𝑑𝑚 + 1)𝑄1 + (𝜏𝑀 − 𝜏𝑚 + 1)𝑄2 + 𝑄3
+ 𝑄4 + 𝑄5 + 𝑄6 + (𝑑𝑀 − 𝑑𝑚)2 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)𝑇
⋅ 𝑍1 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) + 𝑑2𝑚 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)𝑇
⋅ 𝑍2 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼) + (𝜏𝑀 − 𝜏𝑚)2
⋅ (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)𝑇𝑍3 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)
+ 𝜏2𝑚 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)𝑇𝑍4 (𝐴 − 𝐵1𝐾𝐼1 − 𝐼)
+ (𝐴 − 𝐵1𝐾𝐼1)𝑇 𝑃𝑗,𝑠 (𝐴 − 𝐵1𝐾𝐼1) − 𝑃𝑖,𝑟,

Φ44 = (𝑑𝑀 − 𝑑𝑚)2 𝑍1 + 𝑑2𝑚𝑍2 + (𝜏𝑀 − 𝜏𝑚)2 𝑍3+ 𝜏2𝑚𝑍4 + 𝑃𝑗,𝑠,𝜉𝑇𝑘 = [𝜂𝑇𝑘 𝜂𝑇𝑘−𝑟 𝜂𝑇𝑘−𝑖 𝐹𝑘 𝜂𝑇𝑘−𝑑𝑚 𝜂𝑇𝑘−𝑑𝑀 𝜂𝑇𝑘−𝜏𝑚 𝜂𝑇𝑘−𝜏𝑀] .

(21)

It follows from (2) that

𝑓𝑇𝑘,𝑥𝑘𝑓𝑘,𝑥𝑘 ≤ 𝑔2𝑥𝑇𝑘𝑥𝑘,𝐹𝑇𝑘 𝐹𝑘 ≤ 𝑔2𝑒𝑇𝑘 𝑒𝑘, (22)

which imply that

𝑓𝑇𝑘,𝑥𝑘𝑓𝑘,𝑥𝑘 − 𝑔2𝑥𝑇𝑘𝑥𝑘 = 𝐹𝑇𝑘 𝐼𝑇3 𝐼3𝐹𝑘 − 𝑔2𝜂𝑇𝑘 𝐼𝑇3 𝐼3𝜂𝑘

= 𝜉𝑇𝑘

[[[[[[[[[[[[[[[[[[

−𝑔2𝐼𝑇3 𝐼3 ∗ ∗ ∗ ∗ ∗ ∗ ∗0 0 ∗ ∗ ∗ ∗ ∗ ∗0 0 0 ∗ ∗ ∗ ∗ ∗0 0 0 𝐼𝑇3 𝐼3 ∗ ∗ ∗ ∗0 0 0 0 0 ∗ ∗ ∗0 0 0 0 0 0 ∗ ∗0 0 0 0 0 0 0 ∗0 0 0 0 0 0 0 0

]]]]]]]]]]]]]]]]]]

𝜉𝑘

≜ 𝜉𝑇𝑘Λ 1𝜉𝑘 ≤ 0,𝐹𝑇𝑘 𝐹𝑘 − 𝑔2𝑒𝑇𝑘 𝑒𝑘 = 𝐹𝑇𝑘 𝐼𝑇4 𝐼4𝐹𝑘 − 𝑔2𝜂𝑇𝑘 𝐼𝑇4 𝐼4𝜂𝑘

= 𝜉𝑇𝑘

[[[[[[[[[[[[[[[[[[

−𝑔2𝐼𝑇4 𝐼4 ∗ ∗ ∗ ∗ ∗ ∗ ∗0 0 ∗ ∗ ∗ ∗ ∗ ∗0 0 0 ∗ ∗ ∗ ∗ ∗0 0 0 𝐼𝑇4 𝐼4 ∗ ∗ ∗ ∗0 0 0 0 0 ∗ ∗ ∗0 0 0 0 0 0 ∗ ∗0 0 0 0 0 0 0 ∗0 0 0 0 0 0 0 0

]]]]]]]]]]]]]]]]]]

𝜉𝑘

≜ 𝜉𝑇𝑘Λ 2𝜉𝑘 ≤ 0.
(23)

By the well-known S-procedure, that is, Lemma 4, we can get𝐸{Δ𝑉(𝜂𝑘, 𝑑𝑘, 𝜏𝑘)} ≤ 𝜉𝑇𝑘Φ𝜉𝑘 < 0 with constraints (23) holding
if there exist nonnegative real scalars 𝜀1 ≥ 0, 𝜀2 ≥ 0 such thatΦ − 𝜀1Λ 1 − 𝜀2Λ 2 = Φ < 0. (24)
From (24), we have𝐸 {Δ𝑉 (𝜂𝑘, 𝑑𝑘, 𝜏𝑘) | 𝜏𝑘 = 𝑖, 𝑑𝑘 = 𝑟} ≤ −𝜆min (−Φ)⋅ 𝜉𝑇𝑘 𝜉𝑘 = −𝜆min (−Φ) (𝜂𝑇𝑘 𝜂𝑘 + 𝜂𝑇𝑘−𝑟𝜂𝑘−𝑟 + 𝜂𝑇𝑘−𝑖𝜂𝑘−𝑖+ 𝐹𝑇𝑘𝐹𝑘 + 𝜂𝑇𝑘−𝑑𝑚𝜂𝑘−𝑑𝑚 + 𝜂𝑇𝑘−𝑑𝑀𝜂𝑘−𝑑𝑀 + 𝜂𝑇𝑘−𝜏𝑚𝜂𝑘−𝜏𝑚+ 𝜂𝑇𝑘−𝜏𝑀𝜂𝑘−𝜏𝑀) ≤ −𝛼 𝜂𝑘2 ,

(25)

where 𝛼 = inf{−𝜆min(−Φ)} > 0.
From (25), we can see that, for any 𝑇 ≥ 1,
𝐸{∞∑
𝑘=0

𝜂𝑘2} ≤ 1𝛼𝐸 {𝑉 (𝜂0, 𝑑0, 𝜏0)}
− 1𝛼𝐸 {𝑉 (𝜂𝑇+1, 𝑑𝑇+1, 𝜏𝑇+1)}

≤ 1𝛼𝐸 {𝑉 (𝜂0, 𝑑0, 𝜏0)} .
(26)

According to Definition 2, the closed-loop system (7) is
stochastically stable, which completes the proof.

Theorem 7. Taking the controller gain matrix𝐾 and observer
gain matrix 𝐿, the closed-loop system (7) is stochastically stable
if there exist positive-definite matrices 𝑃𝑖,𝑟 > 0, 𝑃𝑗,𝑠 > 0, 𝐹𝑗,𝑠 >0, 𝑄1 > 0, 𝑄2 > 0, 𝑄3 > 0, 𝑄4 > 0, 𝑄5 > 0, 𝑄6 > 0, 𝑍1 > 0,𝑍2 > 0, 𝑍3 > 0, 𝑍4 > 0, 𝑌1 > 0, 𝑌2 > 0, 𝑌3 > 0, 𝑌4 > 0 and
scalar 𝜀1 ≥ 0, 𝜀2 ≥ 0 such that

[[[[[[

Λ 11 ∗ ∗ ∗Λ 21 Λ 22 ∗ ∗Λ 31 0 Λ 33 ∗Λ 41 0 0 Λ 44
]]]]]]
< 0, (27)

𝑃𝑗,𝑠𝐹𝑗,𝑠 = 𝐼,𝑌𝑙𝑍𝑙 = 𝐼, 𝑙 ∈ {1, 2, 3, 4} , (28)
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where

Λ 11 = [[[[[[
Λ11 ∗ ∗ ∗0 −𝑄1 − 2𝑍1 ∗ ∗0 0 −𝑄2 − 2𝑍3 ∗0 0 0 −𝜏1𝐼𝑇3 𝐼3 − 𝜏2𝐼𝑇4 𝐼4

]]]]]]
,

Λ 21 = [[[[[
𝑍2 𝑍1 0 00 𝑍1 0 0𝑍4 0 𝑍3 00 0 𝑍3 0

]]]]]
,

Λ 22 = [[[[[
−𝑄3 − 𝑍2 − 𝑍1 ∗ ∗ ∗0 −𝑄4 − 𝑍1 ∗ ∗0 0 −𝑄5 − 𝑍4 − 𝑍3 ∗0 0 0 −𝑄6 − 𝑍3

]]]]]
,

Λ 31 = [[[[[[
(𝑑𝑀 − 𝑑𝑚) Υ (𝑑𝑀 − 𝑑𝑚) 𝐵2𝐾𝐼1 − (𝑑𝑀 − 𝑑𝑚) 𝐼2𝐿𝐶 (𝑑𝑀 − 𝑑𝑚) 𝐼𝑑𝑚Υ 𝑑𝑚𝐵2𝐾𝐼1 −𝑑𝑚𝐼2𝐿𝐶 −𝑑𝑚𝐼(𝜏𝑀 − 𝜏𝑚) Υ (𝜏𝑀 − 𝜏𝑚) 𝐵2𝐾𝐼1 − (𝜏𝑀 − 𝜏𝑚) 𝐼2𝐿𝐶 (𝜏𝑀 − 𝜏𝑚) 𝐼𝜏𝑚Υ 𝜏𝑚𝐵2𝐾𝐼1 −𝜏𝑚𝐼2𝐿𝐶 −𝜏𝑚𝐼

]]]]]]
,

Λ 33 = [[[[[
−𝑌1 ∗ ∗ ∗0 −𝑌2 ∗ ∗0 0 −𝑌3 ∗0 0 0 −𝑌4

]]]]]
,

Λ 41 =

[[[[[[[[[[[[[[[[[[[[[[[[

√𝜆𝑖Ω
𝑘𝑖
1

𝜋𝑟Γ𝑘𝑟
1

(𝐴 − 𝐵1𝐾𝐼1)𝑇 ⋅ ⋅ ⋅ √(1 − ∑
𝑙∈Ω𝑖
𝑘

𝜆𝑖𝑙)(1 − ∑
𝑙∈Γ𝑟
𝑘

𝜋𝑟𝑙)(𝐴 − 𝐵1𝐾𝐼1)𝑇
√𝜆𝑖Ω

𝑘𝑖
1

𝜋𝑟Γ𝑘𝑟
1

(𝐵2𝐾𝐼1)𝑇 ⋅ ⋅ ⋅ √(1 − ∑
𝑙∈Ω𝑖
𝑘

𝜆𝑖𝑙)(1 − ∑
𝑙∈Γ𝑟
𝑘

𝜋𝑟𝑙)(𝐵2𝐾𝐼1)𝑇
−√𝜆𝑖Ω

𝑘𝑖
1

𝜋𝑟Γ𝑘𝑟
1

(𝐼2𝐿𝐶)𝑇 ⋅ ⋅ ⋅ −√(1 − ∑
𝑙∈Ω𝑖
𝑘

𝜆𝑖𝑙)(1 − ∑
𝑙∈Γ𝑟
𝑘

𝜋𝑟𝑙)(𝐼2𝐿𝐶)𝑇
√𝜆𝑖Ω

𝑘𝑖
1

𝜋𝑟Γ𝑘𝑟
1

𝐼 ⋅ ⋅ ⋅ √(1 − ∑
𝑙∈Ω𝑖
𝑘

𝜆𝑖𝑙)(1 − ∑
𝑙∈Γ𝑟
𝑘

𝜋𝑟𝑙)𝐼

]]]]]]]]]]]]]]]]]]]]]]]]

𝑇

,

Λ 44 = [[[[
−𝐹Ω

𝑘𝑖
1
,Γ𝑘𝑟
1

∗ ∗0 d ∗0 0 −𝐹Ω
𝑘
𝑖
𝑒−𝜇
,Γ
𝑘
𝑟
𝜙−𝜃

]]]]
,

Λ11 = (𝑑𝑀 − 𝑑𝑚 + 1)𝑄1 + (𝜏𝑀 − 𝜏𝑚 + 1)𝑄2 + 𝑄3 + 𝑄4 + 𝑄5 + 𝑄6 − 𝑍2 − 𝑍4 + 𝜀1𝑔2𝐼𝑇3 𝐼3 + 𝜀2𝑔2𝐼𝑇4 𝐼4 − 𝑃𝑖,𝑟,Υ = 𝐴 − 𝐵1𝐾𝐼1 − 𝐼

(29)

hold for all 𝑖, 𝑗 ∈ Ω and 𝑟, 𝑠 ∈ Γ.
Proof. Making use of Lemma 5, we have

∑
𝑗∈Ω𝑖
𝑢𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠
≤ (1 − ∑

𝑙∈Ω𝑖
𝑘

𝜆𝑖𝑙) ∑
𝑠∈Γ𝑟
𝑘

𝜋𝑟𝑠 ∑
𝑗∈Ω𝑖
𝑢𝑘

∑
𝑠∈Γ𝑟
𝑘

𝑃𝑗,𝑠, (30)

∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑢𝑘

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠 ≤ (1 − ∑
𝑙∈Γ𝑟
𝑘

𝜋𝑟𝑙) ∑
𝑗∈Ω𝑖
𝑘

𝜆𝑖𝑗 ∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑢𝑘

𝑃𝑗,𝑠, (31)

∑
𝑗∈Ω𝑖
𝑢𝑘

∑
𝑠∈Γ𝑟
𝑢𝑘

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠
≤ (1 − ∑

𝑙∈Γ𝑟
𝑘

𝜋𝑟𝑙)(1 − ∑
𝑙∈Ω𝑖
𝑘

𝜆𝑖𝑙) ∑
𝑗∈Ω𝑖
𝑢𝑘

∑
𝑠∈Γ𝑟
𝑢𝑘

𝑃𝑗,𝑠. (32)
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Letting 𝑃−1𝑗,𝑠 = 𝐹𝑗,𝑠, 𝑗 ∈ Ω, 𝑠 ∈ Γ, 𝑍−1𝑙 = 𝑌𝑙, 𝑙 ∈ {1, 2, 3, 4} and
by Schur complement Lemma, (27) can be obtained from (11)
and (30)–(32), which complete the proof.

In Theorem 7, in order to get a desired controller (3)-
(4) for the closed-loop NCS (7) with partly inaccessible
transition probabilities, Lemma 5 is used to separate 𝜆𝑖𝑗𝜋𝑟𝑠
from 𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠. However, this could lead to conservativeness
to some extents as shown in the Numerical Example. In
the following, a less conservative result will be given in the
following theorem.

Theorem 8. There exists dynamic observer-based control
scheme (3)-(4) such that the resulting closed-loop system (7) is
stochastically stable if, for all 𝑖, 𝑗 ∈ Ω and 𝑟, 𝑠 ∈ Γ, there exist
matrices 𝑃𝑖,𝑟 > 0, 𝑃𝑗,𝑠 > 0, 𝐹𝑗,𝑠 > 0, 𝑄1 > 0, 𝑄2 > 0, 𝑄3 > 0,𝑄4 > 0, 𝑄5 > 0, 𝑄6 > 0, 𝑍1 > 0, 𝑍2 > 0, 𝑍3 > 0, 𝑍4 > 0, 𝑌1 >0, 𝑌2 > 0, 𝑌3 > 0, 𝑌4 > 0 and scalar 𝜀1 ≥ 0, 𝜀2 ≥ 0 such that
[[
∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠Λ ∗
ΘΩ𝑖
𝑘
,Γ𝑟
𝑘

−ΔΩ𝑖
𝑘
,Γ𝑟
𝑘

]] < 0, (33)

[[
∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠Λ ∗
ΘΩ𝑖
𝑢𝑘
,Γ𝑟
𝑘

−ΔΩ𝑖
𝑢𝑘
,Γ𝑟
𝑘

]] < 0, ∀𝑗 ∈ Ω𝑖𝑢𝑘, (34)

[[
∑
𝑗∈Ω𝑖
𝑘

𝜆𝑖𝑗Λ ∗
ΘΩ𝑖
𝑘
,Γ𝑟
𝑢𝑘

−ΔΩ𝑖
𝑘
,Γ𝑟
𝑢𝑘

]] < 0, ∀𝑠 ∈ Γ𝑟𝑢𝑘, (35)

[[
Λ ∗ΘΩ𝑖
𝑢𝑘
,Γ𝑟
𝑢𝑘

−ΔΩ𝑖
𝑢𝑘
,Γ𝑟
𝑢𝑘

]] < 0,
∀𝑗 ∈ Ω𝑖𝑢𝑘, ∀𝑠 ∈ Γ𝑟𝑢𝑘,

(36)

𝐹𝑗,𝑠𝑃𝑗,𝑠 = 𝐼,
𝑌𝑙𝑍𝑙 = 𝐼, 𝑙 ∈ {1, 2, 3, 4} , (37)

where

Λ = [[[
Λ 11 ∗ ∗Λ 21 Λ 22 ∗Λ 31 0 Λ 33

]]] ,

Λ 11 = [[[[[[[

Λ11 ∗ ∗ ∗0 −𝑄1 − 2𝑍1 ∗ ∗0 0 −𝑄2 − 2𝑍3 ∗0 0 0 −𝜏1𝐼𝑇3 𝐼3 − 𝜏2𝐼𝑇4 𝐼4
]]]]]]]
,

Λ 21 = [[[[[[

𝑍2 𝑍1 0 00 𝑍1 0 0𝑍4 0 𝑍3 00 0 𝑍3 0
]]]]]]
,

Λ 22 = [[[[[[

−𝑄3 − 𝑍2 − 𝑍1 ∗ ∗ ∗0 −𝑄4 − 𝑍1 ∗ ∗0 0 −𝑄5 − 𝑍4 − 𝑍3 ∗0 0 0 −𝑄6 − 𝑍3
]]]]]]
,

Λ 31 = [[[[[[[

(𝑑𝑀 − 𝑑𝑚) Υ (𝑑𝑀 − 𝑑𝑚) 𝐵2𝐾𝐼1 − (𝑑𝑀 − 𝑑𝑚) 𝐼2𝐿𝐶 (𝑑𝑀 − 𝑑𝑚) 𝐼𝑑𝑚Υ 𝑑𝑚𝐵2𝐾𝐼1 −𝑑𝑚𝐼2𝐿𝐶 −𝑑𝑚𝐼(𝜏𝑀 − 𝜏𝑚) Υ (𝜏𝑀 − 𝜏𝑚) 𝐵2𝐾𝐼1 − (𝜏𝑀 − 𝜏𝑚) 𝐼2𝐿𝐶 (𝜏𝑀 − 𝜏𝑚) 𝐼𝜏𝑚Υ 𝜏𝑚𝐵2𝐾𝐼1 −𝜏𝑚𝐼2𝐿𝐶 −𝜏𝑚𝐼
]]]]]]]
,

Λ 33 = [[[[[[

−𝑌1 ∗ ∗ ∗0 −𝑌2 ∗ ∗0 0 −𝑌3 ∗0 0 0 −𝑌4
]]]]]]
,
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Λ11 = (𝑑𝑀 − 𝑑𝑚 + 1)𝑄1 + (𝜏𝑀 − 𝜏𝑚 + 1)𝑄2 + 𝑄3 + 𝑄4 + 𝑄5 + 𝑄6 − 𝑍2 − 𝑍4 + 𝜀1𝑔2𝐼𝑇3 𝐼3 + 𝜀2𝑔2𝐼𝑇4 𝐼4 − 𝑃𝑖,𝑟,
Θ𝑇Ω𝑖
𝑘
,Γ𝑟
𝑘
= [√𝜆𝑖Ω

𝑘𝑖
1

𝜋𝑟Γ𝑘𝑟
1

Ψ̃𝑇 ⋅ ⋅ ⋅ √𝜆𝑖Ω
𝑘𝑖𝜇

𝜋𝑟Γ𝑘𝑟
𝜃

Ψ̃𝑇] ,
ΔΩ𝑖
𝑘
,Γ𝑟
𝑘
= diag {−𝐹Ω

𝑘𝑖
1
Γ𝑘𝑟
1

, . . . , −𝐹Ω
𝑘𝑖𝜇
Γ𝑘𝑟
𝜃

} ,
Θ𝑇Ω𝑖
𝑢𝑘
,Γ𝑟
𝑘
= [√𝜋𝑟Γ𝑘𝑟

1

Ψ̃𝑇 ⋅ ⋅ ⋅ √𝜋𝑟Γ𝑘𝑟
𝜃

Ψ̃𝑇] ,
ΔΩ𝑖
𝑢𝑘
,Γ𝑟
𝑘
= diag {−𝐹𝑗,Γ𝑘𝑟

1

, . . . , −𝐹𝑗,Γ𝑘𝑟
𝜃

} ,
Θ𝑇Ω𝑖
𝑘
,Γ𝑟
𝑢𝑘
= [√𝜆𝑖Ω

𝑘𝑖
1

Ψ̃𝑇 ⋅ ⋅ ⋅ √𝜆𝑖Ω
𝑘𝑖𝜇

Ψ̃𝑇] ,
ΔΩ𝑖
𝑘
,Γ𝑟
𝑢𝑘
= diag {−𝐹Ω

𝑘𝑖
1
,𝑠, . . . , −𝐹Ω

𝑘𝑖𝜇
,𝑠} ,

Θ𝑇Ω𝑖
𝑢𝑘
,Γ𝑟
𝑢𝑘
= [Ψ̃𝑇 ⋅ ⋅ ⋅ Ψ̃𝑇] ,

ΔΩ𝑖
𝑢𝑘
,Γ𝑟
𝑢𝑘
= diag {−𝐹𝑗,𝑠, . . . , −𝐹𝑗,𝑠} ,

Ψ̃ = [Ψ 0 0] ,
Ψ = [𝐴 − 𝐵1𝐾𝐼1 𝐵2𝐾𝐼1 −𝐼2𝐿𝐶 𝐼] ,
Υ = 𝐴 − 𝐵1𝐾𝐼1 − 𝐼.

(38)

Proof. Equation (11) is equivalent to

Λ + Ψ̃𝑇 𝜏𝑀∑
𝑗=𝜏𝑚

𝑑𝑀∑
𝑠=𝑑𝑚

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠Ψ̃ < 0, (39)

that is

( ∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠 + ∑
𝑗∈Ω𝑖
𝑢𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠 + ∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑢𝑘

𝜆𝑖𝑗𝜋𝑟𝑠
+ ∑
𝑗∈Ω𝑖
𝑢𝑘

∑
𝑠∈Γ𝑟
𝑢𝑘

𝜆𝑖𝑗𝜋𝑟𝑠)Λ + Ψ̃𝑇( ∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠
+ ∑
𝑗∈Ω𝑖
𝑢𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠 + ∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑢𝑘

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠
+ ∑
𝑗∈Ω𝑖
𝑢𝑘

∑
𝑠∈Γ𝑟
𝑢𝑘

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠)Ψ < 0.

(40)

The above inequality can be written as

∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠Λ + Ψ̃𝑇 ∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠𝑃𝑗,𝑠Ψ
+ ∑
𝑗∈Ω𝑖
𝑢𝑘

𝜆𝑖𝑗(∑
𝑠∈Γ𝑟
𝑘

𝜋𝑟𝑠Λ + Ψ̃𝑇∑
𝑠∈Γ𝑟
𝑘

𝜋𝑟𝑠𝑃𝑗,𝑠Ψ)

+ ∑
𝑠∈Γ𝑟
𝑢𝑘

𝜋𝑟𝑠(∑
𝑗∈Ω𝑖
𝑘

𝜆𝑖𝑗Λ + Ψ̃𝑇∑
𝑗∈Ω𝑖
𝑘

𝜋𝑟𝑠𝑃𝑗,𝑠Ψ)
+ ∑
𝑗∈Ω𝑖
𝑢𝑘

∑
𝑠∈Γ𝑟
𝑢𝑘

𝜆𝑖𝑗𝜋𝑟𝑠 (Λ + Ψ̃𝑇𝑃𝑗,𝑠Ψ) < 0.
(41)

By Schur complement Lemma,

∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠Λ + ∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠Ψ̃𝑇𝑃𝑗,𝑠Ψ < 0, (42)

is equivalent to the following inequality

[[[
∑
𝑗∈Ω𝑖
𝑘

∑
𝑠∈Γ𝑟
𝑘

𝜆𝑖𝑗𝜋𝑟𝑠Λ ∗
ΘΩ𝑖
𝑘
,Γ𝑟
𝑘

−Δ̃Ω𝑖
𝑘
,Γ𝑟
𝑘

]]] < 0, (43)

where Δ̃Ω𝑖
𝑘
Γ𝑟
𝑘
= diag{−𝑃−1Ω

𝑘𝑖
1
Γ𝑘𝑟
1

, . . . , −𝑃−1Ω
𝑘𝑖𝜇
Γ𝑘𝑟
𝜃

}. Let 𝑃−1𝑗,𝑠 =𝐹𝑗,𝑠, 𝑗 ∈ Ω, 𝑠 ∈ Γ, and 𝑍−1𝑙 = 𝑌𝑙, 𝑙 ∈ {1, 2, 3, 4}; we can obtain
(33) and (37). Hence, (42) holds if (33) holds. Because 𝜆𝑖𝑗 ≥ 0,𝜋𝑟𝑠 ≥ 0, it can be concluded that if (33)–(36) holds, (39) holds,
which completes the proof.

The conditions in Theorem 7 are in fact a set of linear
matrix inequalities (LMIs) with some inversion constraints.
Though they are nonconvex which brings difficulties in
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solving them using the existing convex optimization tool,
we can use the cone complementarity linearization (CCL)
algorithm [22] to transform this problem into the nonlinear
minimization problem with LMIs constraints as follows:

min tr( 4∑
𝑙=1

𝑍𝑙𝑌𝑙 + 𝜏𝑀∑
𝑗=𝜏𝑚

𝑑𝑀∑
𝑠=𝑑𝑚

𝑃𝑗,𝑠𝐹𝑗,𝑠)
s.t. (27) , (45) , and (46)

(44)

[𝑍𝑙 𝐼𝐼 𝑌𝑙] > 0, 𝑙 ∈ {1, 2, 3, 4} , (45)

[𝑃𝑗,𝑠 𝐼𝐼 𝐹𝑗,𝑠] > 0, 𝑗 ∈ Ω, 𝑠 ∈ Γ. (46)

Furthermore, the iterative algorithm which can be used to
calculate the controller gain matrix 𝐾 and observer gain
matrix 𝐿 is given as follows.

Algorithm 9.
Step 1. Find a feasible solution satisfying (27), (45), and (46)
and set as (𝑍01, 𝑍02, 𝑍03, 𝑍04, 𝑌01 , 𝑌02 , 𝑌03 , 𝑌04 , 𝑃0𝑗,𝑠, 𝐹0𝑗,𝑠, 𝐾0, 𝐿0); Let𝑘 = 0.
Step 2. Solve the following LMI optimization problem
for variables (𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑃𝑗,𝑠, 𝐹𝑗,𝑠, 𝐾, 𝐿).
min tr(∑4𝑙=1(𝑍𝑘𝑙 𝑌𝑙 + 𝑅𝑙𝑌𝑘𝑙 ) + ∑𝜏𝑀𝑗=𝜏𝑚 ∑𝑑𝑀𝑠=𝑑𝑚(𝑃𝑘𝑗,𝑠𝐹𝑗,𝑠 + 𝑃𝑗,𝑠𝐹𝑘𝑗,𝑠)),
subject to (27), (45), and (46); set (𝑍𝑘1 = 𝑍1, 𝑌𝑘1 = 𝑌1,𝑍𝑘2 = 𝑍2, 𝑌𝑘2 = 𝑌2, 𝑍𝑘3 = 𝑍3, 𝑌𝑘3 = 𝑌3, 𝑍𝑘4 = 𝑍4, 𝑌𝑘4 = 𝑌4,𝑃𝑘𝑗,𝑠 = 𝑃𝑗,𝑠, 𝐹𝑘𝑗,𝑠 = 𝐹𝑗,𝑠, 𝐾𝑘 = 𝐾, 𝐿𝑘 = 𝐿).
Step 3. If (27) and (28) are satisfied, then exit the iteration.
Otherwise, let 𝑘 = 𝑘 + 1, and return to Step 2.

The conditions inTheorem 8 can be solved by the similar
procedures.

Remark 10. Making use of Matlab LMI tool box, a feasible
solution satisfying (27), (45), and (46) can be obtained by the
functions feasp() and dec2mat(). Once the feasible solution(𝑍01, 𝑍02, 𝑍03, 𝑍04, 𝑌01 , 𝑌02 , 𝑌03 , 𝑌04 , 𝑃0𝑗,𝑠, 𝐹0𝑗,𝑠, 𝐾0, 𝐿0) is obtained,
then the LMI optimization problem min tr(∑4𝑙=1(𝑍𝑘𝑙 𝑌𝑙 +𝑍𝑙𝑌𝑘𝑙 ) + ∑𝜏𝑀𝑗=𝜏𝑚 ∑𝑑𝑀𝑠=𝑑𝑚(𝑃𝑘𝑗,𝑠𝐹𝑗,𝑠 + 𝑃𝑗,𝑠𝐹𝑘𝑗,𝑠)), subject to (27), (45),
and (46), can be solved by the functions defcx() and mincx().

4. Numerical Example

In this section, we present two examples to illustrate the
effectiveness of the proposed method.

Example 1. Consider the nonlinear controlled plant with the
following parameter:

𝐴 = [0.52 −0.690 0.19 ] ,

𝐵 = [0.30.2] ,
𝐶 = [1.5 0.70.2 0.3] ,
𝑔 = 0.1,

𝑓 (𝑘, 𝑥𝑘) = 0.1 sin𝑥𝑘.
(47)

We can see that the linear part of the control plant is
stable itself. The random S-C delay 𝜏𝑘 ∈ {0, 1} and C-A
delay 𝑑𝑘 ∈ {0, 1}. Their transition probability matrices are as
follows, respectively:

Ξ = [0.7 0.3? ? ] ,
Π = [ ? ?0.2 0.8] .

(48)

ByTheorem 7, we can obtain the controller gainmatrix𝐾 and
observer gain matrix 𝐿 as follows:

𝐾 = [−0.0424 0.1725] ,
𝐿 = [0.5519 −2.63830.1065 −0.6730] . (49)

The initial value 𝑥0 = [−1 1]𝑇, 𝑥0 = [−0.9 −1.1]𝑇, 𝜏0 = 𝑑0 =0. The trajectories of the closed-loop system’s states and the
corresponding estimated value are shown in Figures 2 and 3
which indicate that the closed-loop system is stochastically
stable.

ByTheorem 8, the controller gain matrix𝐾 and observer
gain matrix 𝐿 can also be obtained as follows:

𝐾 = [−0.0802 0.2425] ,
𝐿 = [0.2968 −1.70360.1569 −1.0017] . (50)

The trajectories of the closed-loop system’s states and the
corresponding estimated value are omitted.

Example 2. Consider the classical angular positioning system
shown in Figure 4, which consists of a rotating antenna at the
origin of the plane driven by a motor [23].

Assume that the angular position of the antenna 𝜑, the
angular position of the moving object 𝜑𝑟, and the angular
velocity of the antenna �̇� are measurable. The state variables
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Figure 2: State 𝑥1 and its estimated value 𝑥1.
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Figure 3: State 𝑥2 and its estimated value 𝑥2.
are chosen as [𝜑 �̇�]𝑇; then state equation of the angular posi-
tioning system can be obtained with the following parameter,
where 𝑓(𝑘, 𝑥𝑘) can be treated as the external disturbance:

𝐴 = [1 0.09950 0.99 ] ,
𝐵 = [0.00390.0783] ,
𝐶 = [ 1.4 0.8−0.2 0.4] ,
𝑔 = 0.2,

𝑓 (𝑘, 𝑥𝑘) = 0.2 sin 𝑥𝑘𝑘 .

(51)

Obviously, it can be seen that the linear part of the control
plant is unstable. The random S-C delay 𝜏𝑘 ∈ {0, 1} and C-A

Motor

Target
object

Antenna

�휑�휑r

Figure 4: The angular positioning system.
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Figure 5: State 𝑥1 and its estimated value 𝑥1.
delay 𝑑𝑘 ∈ {0, 1}. Their transition probability matrices are as
follows, respectively:

Ξ = [ ? ?0.6 0.4] ,
Π = [0.2 0.8? ? ] .

(52)

For this unstable plant, we cannot get the controller gain
matrix 𝐾 and observer gain matrix 𝐿 by Theorem 7 due to
its conservativeness. However, by Theorem 8, we can obtain𝐾 and 𝐿 as follows:𝐾 = [−1.1957 −1.1143] ,

𝐿 = [0.1943 −0.27150.1130 0.6251 ] . (53)

The initial value 𝑥0 = [−1.6 1.7]𝑇, 𝑥0 = [−1.7 1.6]𝑇, 𝜏0 =𝑑0 = 0. The trajectories of the closed-loop system’s states and
the corresponding estimated value are shown in Figures 5 and
6 which indicate that the closed-loop system is stochastically
stable.

Remark 11. The results in this paper only require a part of
transition probabilities while the results in [13, 14] need the
full information of the transition probabilities. In view of
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Figure 6: State 𝑥2 and its estimated value 𝑥2.
these, the proposed controller designmethod is more general
than that of [13, 14].

5. Conclusion

The observer-based controller design problem for a class
of nonlinear networked control systems with random time-
delays is investigated in this paper. Two dependent Markov
chains are employed to describe S-C delay and C-A delay,
respectively. The transition probabilities of S-C delay and C-
A delay are both assumed to be partly accessible. Sufficient
conditions on the stochastic stability for the closed-loop
systems are obtained by the Lyapunov stability theory. The
CCL algorithm is employed to calculate the controller and
observer gain matrices. Finally, two examples are used to
illustrate the effectiveness of the proposed method.
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