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A PI hydroturbine governing system with saturation and double delays is generated in small perturbation. The nonlinear dynamic
behavior of the system is investigated. More precisely, at first, we analyze the stability and Hopf bifurcation of the PI hydroturbine
governing systemwith double delays under the four different cases. Corresponding stability theorem andHopf bifurcation theorem
of the system are obtained at equilibriumpoints. And then the stability of periodic solution and the direction of theHopf bifurcation
are illustrated by using the normal form method and center manifold theorem. We find out that the stability and direction of the
Hopf bifurcation are determined by three parameters. The results have great realistic significance to guarantee the power system
frequency stability and improve the stability of the hydropower system. At last, some numerical examples are given to verify the
correctness of the theoretical results.

1. Introduction

It is well known that the hydroturbine system is the nonmini-
mum phase system and is operated in a complex condition,
constituted by controller and governor. The parameters of
the hydroturbine system would change significantly under
different operating conditions. According to specific goals,
controlled system is researched within a given range. There
exist two regulators: PID regulator (Proportion Integration
Differentiation regulator) and the soft type feedback regulator
(proportional-integral regulator), respectively [1]. Although
the characteristics of the PID regulator are simple structure
and adaptable and easily adjusting parameters, the regulation
law of PID is not efficient. PI regulator is a closed-loop
system with phase lag, which can reach steady state by using
parameter setting. The PI regulator possesses the properties
of the optimal regulator and good robustness. Furthermore,
the PI regulator is easy to use in the field, similar to the
parameter setting method of the PID regulator. At present,
the PI regulator plays a vital role in maintaining the stability

of electrical systems and is widely used in China [2, 3]. On
account of lacking systematic management, it is a challenge
to maintain the stability of a large hydroelectric station
[4–6]. Many efforts are focused on constructing different
mathematical models of the hydroturbine governing system
and analyzing the stability and the bifurcation phenomena
[7–16]; for example, Ling and Tao [13] analyzed the stability
and the bifurcation phenomena of a proportional-integral-
(PI-) (controller) type speed hydroturbine governing system
with saturation.

Over the past one decade, many researchers have paid
great attention to analyzing dynamic characteristic when the
parameters of the hydroturbine systems are changed. For
instance, using PI controller, Silva et al. [17] have revealed the
problem of stabilizing of a first-order plant with time delay
and obtained the stabilizing PI gain values. Shu and Pi [18]
introduced a PID neural network (PIDNN) with control time
delay and gave examples of analysis. Strah et al. [19] designed
a speed and active power controller of hydroturbine units;
some controller parameters were obtained. Li and Zhou [20]
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developed a gravitational search algorithm (GSA), which was
applied to parameter identification of the hydraulic turbine
governing system (HTGS), and analyzed the stability of the
power system. Jiang et al. [5] proposed a deterministic chaotic
mutation evolutionary programming (DCMEP) method to
efficiently optimize the PID parameters of the hydroturbine
governing systems. Utilizing a maximum peak resonance
specification method, a new PID controller for automatic
generation control (AGC) of hydroturbine power systems
was presented by Khodabakhshian and Hooshmand [21].
On the basis of necessary and sufficient condition, Liu et
al. [22] proposed a new method to analyze the stability of
automatic generation control (AGC) systems with commen-
surate delays. Zhang et al. [23] analyzed a PID-type load
frequency control (LFC) scheme by using delay-dependent
robust method. Based on state space equations, Chen et al.
[24] studied the nonlinear dynamical behaviors of a novel
hydroturbine mode with the effect of the surge tank. Xu et al.
[25] proposed a Hamiltonianmodel of the hydroturbine gov-
erning system, which included fractional item and time-lag,
and explored the effect of the fractional item and the time-
lag on the dynamic variables of the hydroturbine governing
system. Wang et al. [26] studied a novel fractional-order
Francis hydroturbine governing system with time delay and
verified the effects of the fractional item and time delay on the
system by the principle of statistical physics, respectively.The
stability and Hopf bifurcation of a Goodwin model with four
different delays were investigated by Zhang et al. [27]. Zhang
et al. [28] analyzed a hydroturbine governing system in the
process of load rejection transient and got the stable regions
of the hydroturbine governing system by means of numerical
simulations.

However, the existence of a Hopf bifurcation is rarely
reported in proportional-integral (PI) type hydroturbine
generating systemwith time delay. In the paper, we generate a
PI hydroturbine governing systemwith saturation and double
delays. The nonlinear dynamic behavior of the system is
analyzed. The scope of some parameter values is obtained to
maintain the stability of the system, which has great realistic
significance in a small hydropower station.

The basic structure of the rest paper is as follows. In
Section 2, we present a new PI hydroturbine governing
system, which is affected by the speed control delay of the
generator and the displacement-control delay of the servo-
motor. In Section 3, the stability of equilibrium points and
Hopf bifurcation for PI hydroturbine governing system are
investigated in the four different delay cases, respectively.The
stability and direction of the Hopf bifurcation are illustrated
in Section 4. Numerical simulations are given to support
our theory by Matlab software in Section 5. Finally, a brief
discussion is given in Section 6.

2. Model Description

We study a PI type hydroturbine governing system with
saturation and time delay. The structure of the hydroturbine
governing system is shown in Figure 1.

The transfer function of soft feedback regulator is

𝐺PI (𝑠) = 𝐾𝑃 + 𝐾𝐼𝑠 . (1)

We use an approximate linearization approach for the
hydroturbine governing system, which is a first-order mathe-
matical model. Moreover the system is set in small perturba-
tion. Therefore, we have

𝐺𝑡 (𝑠) = 𝑒𝑦 1 − (𝑒𝑞𝑦𝑒ℎ/𝑒𝑦 − 𝑒𝑞ℎ) 𝑇𝜔𝑠1 + 𝑒𝑞ℎ𝑇𝜔𝑠 ,
𝐺𝑠 (𝑠) = 1𝑇𝑎𝑠 + 𝑒𝑔 − 𝑒𝑥 ,

(2)

where 𝐺𝑡(𝑠) is used in a nonelastic water column model
[29, 30]. 𝐺𝑠(𝑠) is the transfer function from the hydroturbine
moment to the speed of the generator. 𝑒𝑞𝑦 is servomotor
stroke transfer coefficient of the flow rate. 𝑒𝑦 is servomotor
stroke transfer coefficient of the turbine torque. 𝑒ℎ is the
transfer coefficient of the torque on the water head of a
turbine. 𝑒𝑞ℎ is the transfer coefficient of the flow rate on the
water head of a turbine. 𝑇𝜔 is the water inertia time constant
of a pressure guide-water system. 𝑠 is the strength of the elastic
water hammer effect. 𝑇𝑎 is the sum of the machine starting
time and load time constants. 𝑒𝑔 is the load self-regulation
factor. 𝑒𝑥 is the transfer coefficient of a speed on the turbine
torque. 𝑒 is equal to 𝑒𝑞𝑦𝑒ℎ/𝑒𝑦 − 𝑒𝑞ℎ.

If we neglect the load perturbations, then we obtain the
state space equations as

𝑥̇1 = 𝑥2 + − 𝑒𝑦𝑒𝑒𝑞ℎ𝑇𝑎𝑦
𝑥̇2 = − 𝑒𝑛𝑒𝑞ℎ𝑇𝜔𝑇𝑎 𝑥1 −

𝑇𝑎 + 𝑒𝑛𝑒𝑞ℎ𝑇𝜔𝑒𝑞ℎ𝑇𝜔𝑇𝑎 𝑥2

+ (− 𝑒𝑦𝑒𝑞ℎ𝑇𝜔𝑇𝑎 +
(𝑇𝑎 + 𝑒𝑛𝑒𝑞ℎ𝑇𝜔) 𝑒𝑦𝑒𝑒2𝑞ℎ𝑇𝜔𝑇2𝑎 )𝑦,

(3)

where 𝑒𝑛 is equal to 𝑒𝑔 − 𝑒𝑥.
When the nonlinear part can be shown by the nonlinear

function 𝑦 = 𝑁(𝑥3 −𝐾𝑃𝑥1), then we have the nonlinear state
equation, which is a closed-loop system; we define 𝑥3 as a
state variable,

𝑥̇3 = 𝐾𝑃𝐶̇ + 𝐾𝐼 (𝐶 − 𝑥1) , (4)

where 𝐾𝑃 is the proportional component; 𝐾𝐼 is the integral
component.

Next, when 𝐶 = 0, by combining (3) and (4), we have the
state space equations of the PI hydroturbine governing system
with saturation as

𝑥̇1 (𝑡) = 𝑥2 (𝑡) + 𝑏1𝑁(𝑥3 (𝑡) − 𝐾𝑃𝑥1 (𝑡))
𝑥̇2 (𝑡) = −𝑎0𝑥1 (𝑡) − 𝑎1𝑥2 (𝑡)

+ (𝑏0 − 𝑎1𝑏1)𝑁 (𝑥3 (𝑡) − 𝐾𝑃𝑥1 (𝑡))
𝑥̇3 (𝑡) = −𝐾𝐼𝑥1 (𝑡) ,

(5)
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Figure 1: Structure of the hydroturbine governing system.

where 𝑎1 = (𝑇𝑎 + 𝑒𝑛𝑒𝑞ℎ𝑇𝜔)/𝑒𝑞ℎ𝑇𝜔𝑇𝑎, 𝑎0 = 𝑒𝑛/𝑒𝑞ℎ𝑇𝜔𝑇𝑎,𝑏1 = −𝑒𝑦𝑒/𝑒𝑞ℎ𝑇𝑎, 𝑏0 = −𝑒𝑦/𝑒𝑞ℎ𝑇𝜔𝑇𝑎, 𝑒 = 𝑒𝑞𝑦𝑒ℎ/𝑒𝑦 −𝑒𝑞ℎ, and 𝑁 is the constant of nonlinear part and equal to
1.

Although Ling and Tao [13] have investigated the exis-
tence and direction of the Hopf bifurcation, for the PI
hydroturbine governing system, speed control delays and the
displacement delays of the servomotor are never considered
in the previous studies. In the paper, we consider the dynam-
ics of the system (5) with two different delays. Therefore, we
have the following PI hydroturbine governing system as

𝑥̇1 (𝑡) = 𝑥2 (𝑡) + 𝑏1𝑁(𝑥3 (𝑡) − 𝐾𝑃𝑥1 (𝑡 − 𝜏1))
𝑥̇2 (𝑡) = −𝑎0𝑥1 (𝑡) − 𝑎1𝑥2 (𝑡)

+ (𝑏0 − 𝑎1𝑏1)𝑁 (𝑥3 (𝑡 − 𝜏2) − 𝐾𝑃𝑥1 (𝑡))
𝑥̇3 (𝑡) = −𝐾𝐼𝑥1 (𝑡) ,

(6)

where 𝜏1 is the speed control delay of the generator. 𝜏2 is the
displacement-control delay of the servomotor.

3. Stability Analysis and Hopf Bifurcation

Usually, it is not easy to find out its accurate solutions. It is
sufficient to research the stability of 𝐸∗ = (𝑥∗1 , 𝑥∗2 , 𝑥∗3 ); we
only consider 𝐸0 = (0, 0, 0). At equilibrium point 𝐸0, the
Jacobi matrix of the system (6) is

[[[
[

−𝑏1𝑁 ⋅ 𝐾𝑃 ⋅ 𝑒−𝜆𝜏1 1 𝑏1𝑁
(𝑎1𝑏1 − 𝑏0)𝑁 ⋅ 𝐾𝑃 − 𝑎0 −𝑎1 (𝑏0 − 𝑎1𝑏1)𝑁 ⋅ 𝑒−𝜆𝜏2

−𝐾𝐼 0 0
]]]
]
, (7)

Then the associated characteristic equation is

𝜆3 + 𝐴1𝜆2 + 𝐴2𝜆 + 𝐴3 + (𝐴4𝜆2 + 𝐴5𝜆) 𝑒−𝜆𝜏1
+ 𝐴6𝑒−𝜆𝜏2 = 0, (8)

where

𝐴1 = 𝑎1,
𝐴2 = 𝑁𝐾𝑃𝑏0 + 𝑁𝐾𝐼𝑏1 + 𝑎0 − 𝑁𝐾𝑃𝑎1𝑏1
𝐴3 = 𝑁𝐾𝐼𝑎1𝑏1,
𝐴4 = 𝑁𝐾𝑃𝑏1,
𝐴5 = 𝑁𝐾𝑃𝑎1𝑏1,
𝐴6 = −𝑁𝐾𝐼𝑎1𝑏1 + 𝑁𝐾𝐼𝑏0.

(9)

Next, we investigate the distribution of the roots of (8)
with different delay values for 𝜏1 and 𝜏2.

It is apparent that (8) assumes the following form when𝜏1 = 0, 𝜏2 = 0.
𝜆3 + 𝜆2 (𝐴1 + 𝐴4) + 𝜆 (𝐴2 + 𝐴5) + 𝐴3 + 𝐴6 = 0. (10)

Furthermore, we propose the Routh-Hurwitz stability crite-
rion; a corresponding certificate shall be found [31].

Lemma 1 (see [32]). The polynomial 𝐿(𝜆) = 𝜆3 + 𝑝1𝜆2 +𝑝2𝜆 + 𝑝3 with real coefficients has all roots with negative real
parts if and only if the numbers 𝑝1, 𝑝2, 𝑝3 are positive and the
inequality 𝑝1𝑝2 > 𝑝3 is satisfied.

According to Lemma 1, all roots of (10) have negative real
parts if and only if

(H1) 𝐴1 + 𝐴4 > 0, 𝐴2 + 𝐴5 > 0, 𝐴3 + 𝐴6 > 0 and (𝐴1 +𝐴4)(𝐴2 + 𝐴5) > 𝐴3 + 𝐴6.
So 𝐸∗ = (𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) is locally asymptotically stable when(H1) holds.
Case 1 (𝜏 = 𝜏1 = 𝜏2 ̸= 0). We rewrite (8) as follows:

𝜆3 + 𝐴1𝜆2 + 𝐴2𝜆 + 𝐴3 + (𝐴4𝜆2 + 𝐴5𝜆 + 𝐴6) 𝑒−𝜆𝜏
= 0. (11)

If 𝜆 = 𝑖𝜔 is a root of (11), then we have

𝜔10 + 𝜔8𝐶1 + 𝜔6𝐶2 + 𝜔4𝐶3 + 𝜔2𝐶4 + 𝐶5 = 0, (12)
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where

𝐶1 = (2𝐵1𝐵2 + 𝐵26 − 𝐵41)𝐵21 ,

𝐶2 = (2𝐵1𝐵3 − 2𝐵21𝐵4 + 𝐵22 + 2𝐵6𝐵7)𝐵21 ,

𝐶4 = (𝐵23 − 2𝐵4𝐵5 + 2𝐵7𝐵8)𝐵21 ,

𝐶3 = (2𝐵2𝐵3 − 2𝐵21𝐵5 − 𝐵24 + 2𝐵6𝐵8 + 𝐵27)𝐵21 ,

𝐶5 = (−𝐵25 + 𝐵28)𝐵21 .

(13)

Let 𝑧 = 𝜔2, we define

ℎ (𝑧) = 𝑧5 + 𝑧4𝐶1 + 𝑧3𝐶2 + 𝑧2𝐶3 + 𝑧𝐶4 + 𝐶5. (14)

From the definition of ℎ(𝑧), we can obtain ℎ(+∞) = +∞;
thus we can get that (14) has at least one positive root if ℎ(0) =𝐶5 < 0 holds.

We assume that (14) has five positive roots, which are
defined by 𝑧1, 𝑧2, 𝑧3, 𝑧4, and 𝑧5. Then, (12) has five positive
roots 𝜔𝑘 = √𝑧𝑘, 𝑘 = 1, 2, 3, 4, 5.

If we denote

𝜏(𝑖)𝑘 = 1𝜔𝑘 {arccos(
𝜔4𝐵6 + 𝜔2𝐵7 + 𝐵8𝜔4𝐵21 + 𝜔2𝐵4 + 𝐵5) + 2𝑖𝜋} ,

𝑖 = 0, 1, 2, . . . , 𝑘 = 1, 2, 3, 4, 5,
(15)

then ±𝑖𝜔𝑘 is a pair of purely imaginary roots of (8) with 𝜏 =𝜏(𝑖)𝑘 .
Lemma 2. Define 𝜏0 = 𝜏(0)𝑘 = min𝑘∈{1,2,3}{𝜏(0)𝑘 } and 𝜔0 = 𝜔𝑘0 .
Let 𝜆(𝜏) = 𝜉(𝜏)+ 𝑖𝜔(𝜏) be the root of (8) near 𝜏 = 𝜏0, satisfying𝜉(𝜏0) = 0, 𝜔(𝜏0) = 𝜔0; the following transversality condition
holds: (𝑑Re 𝜆(𝜏)/𝑑𝜏)𝜏=𝜏(𝑖)

𝑘

̸= 0.
By applying Lemma 2 to (11), we can obtain the following

theorem.

Theorem 3. Suppose 𝐻2 = 𝑃𝑅𝑄𝑅 + 𝑃1𝑄1 ̸= 0 holds; with
the increasement of delay variable 𝜏 from zero, there is a value
of 𝜏0, such that the positive equilibrium point 𝐸∗ is locally
asymptotically stable for 𝜏 ∈ [0, 𝜏0) and unstable for 𝜏 > 𝜏0.
Moreover, system (6) occurs with aHopf bifurcation at𝐸∗ when𝜏 = 𝜏0.
Case 2 (𝜏1 ̸= 0, 𝜏2 = 0). We rewrite (8) as follows:

𝜆3 + 𝐴1𝜆2 + 𝐴2𝜆 + 𝐴3 + 𝐴6 + (𝐴4𝜆2 + 𝐴5𝜆) 𝑒−𝜆𝜏1
= 0. (16)

Let 𝜆 = 𝑖𝜔 be a root of (16), then we have

𝑧4 + 𝑧3𝐷1 + 𝑧2𝐷2 + 𝑧𝐷3 + 𝐷4 = 0, (17)

where

𝐷1 = (𝐴21𝐴24 + 𝐴25 − 𝐴44 − 2𝐴2𝐴24)𝐴24 ,

𝐷2 = (−2𝐴24𝐴25 + 𝐴21𝐴25 + 𝐴22𝐴24 − 2𝐴2𝐴25 − 2𝐴1𝐴3𝐴24 − 2𝐴1𝐴24𝐴6)𝐴24 ,

𝐷3 = (−𝐴45 + 𝐴23𝐴24 + 𝐴24𝐴26 + 𝐴22𝐴25 + 2𝐴3𝐴24𝐴6 − 2𝐴1𝐴3𝐴25 − 2𝐴1𝐴25𝐴6)𝐴24 ,

𝐷4 = (𝐴3𝐴5 + 𝐴5𝐴6)2𝐴24 .

(18)

If we denote

𝜏(𝑖)𝑘 = 1𝜔𝑘 {arccos(
𝜔3 (𝐴5 − 𝐴1𝐴4) + 𝜔 (𝐴3𝐴4 − 𝐴2𝐴5 + 𝐴4𝐴6)𝜔3𝐴24 + 𝜔𝐴25 ) + 2𝑖𝜋} , 𝑖 = 0, 1, 2, . . . , 𝑘 = 1, 2, 3, 4, (19)
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then ±𝑖𝜔𝑘 is a pair of purely imaginary roots of (8) with 𝜏1 =𝜏(𝑖)𝑘 .
Lemma 4. Define 𝜏10 = 𝜏(0)𝑘 = min𝑘∈{1,2,3}{𝜏(0)𝑘 } and 𝜔0 =𝜔𝑘0 . Let 𝜆(𝜏) = 𝜉(𝜏) + 𝑖𝜔(𝜏) be the root of (16) near 𝜏1 = 𝜏10,
satisfying 𝜉(𝜏10) = 0, 𝜔(𝜏10) = 𝜔0, 𝑧𝑘 = 𝜔2𝑘 and ℎ󸀠(𝑧𝑘) ̸= 0;
then (𝑑Re 𝜆(𝜏10)/𝑑𝜏1)𝜏1=𝜏(𝑖)𝑘 ̸= 0, (𝑑Re 𝜆(𝜏10)/𝑑𝜏1), and ℎ󸀠(𝑧𝑘)
have the same sign.

Next, we have to look for the conditions required for (17)
to have at least one positive root.

We denote

ℎ (𝑧) = 𝑧4 + 𝑧3𝐷1 + 𝑧2𝐷2 + 𝑧𝐷3 + 𝐷4. (20)

By applying Lemma 1 to (17), we obtain the following
theorem.

Theorem 5. For (20), the following result holds.

(i) If 𝐷4 > 0 and Δ = 𝐷1𝐷2𝐷3 − 𝐷4𝐷21 − 𝐷23 ≤ 0, then
the zero solution of system (6) is asymptotically stable
for 𝜏1 > 0.

(ii) If 𝐷4 < 0 and Δ = 𝐷1𝐷2𝐷3 − 𝐷4𝐷21 − 𝐷23 > 0, then𝐸∗ = (𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) of system (6) is asymptotically stable
for 𝜏1 ∈ [0, 𝜏10), and it is unstable when 𝜏 > 𝜏10.

(iii) If all the conditions stated in (ii) and ℎ󸀠(𝑧) ̸= 0 are
satisfied, system (6) occurs with a Hopf bifurcation at𝐸∗ = (𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) when 𝜏1 = 𝜏(𝑖)𝑘 (𝑖 = 0, 1, 2, . . .).

Case 3 (𝜏1 = 0, 𝜏2 ̸= 0). We rewrite (8) as follows:

𝜆3 + 𝐴1𝜆2 + 𝐴2𝜆 + 𝐴3 + 𝐴6𝑒−𝜆𝜏2 = 0. (21)

By letting 𝜆 = 𝑖𝜔 be the root of (21), we have

𝑧3 + 𝐸1𝑧2 + 𝐸2𝑧 + 𝐸3 = 0. (22)

The roots of (22) are considered by Lemma 1. Without
losing generality, we suppose that (22) has three positive
roots, which are defined by 𝑧1, 𝑧2, and 𝑧3.

If we denote

𝜏(𝑖)𝑘 = 1𝜔𝑘 {arccos(
𝐴1𝜔2 − 𝐴3𝐴6 ) + 2𝑖𝜋} ,

𝑖 = 0, 1, 2, . . . , 𝑘 = 1, 2, 3,
(23)

then ±𝑖𝜔𝑘 is a pair of purely imaginary roots of (8) with 𝜏2 =𝜏(𝑖)𝑘 .
Define 𝜏20 = 𝜏(0)𝑘 = min𝑘∈{1,2,3}{𝜏(0)𝑘 } and 𝜔0 = 𝜔𝑘0 . Let𝜆(𝜏) = 𝜉(𝜏)+ 𝑖𝜔(𝜏) be the root of (21) near 𝜏2 = 𝜏20, satisfying𝜉(𝜏10) = 0 and 𝜔(𝜏10) = 𝜔0, then the following transversality

condition holds.

Lemma 6. Suppose that 𝑧𝑘 = 𝜔2𝑘 and ℎ󸀠(𝑧𝑘) ̸= 0, then(𝑑Re 𝜆(𝜏20)/𝑑𝜏2)𝜏1=𝜏(𝑖)𝑘 ̸= 0, (𝑑Re 𝜆(𝜏20)/𝑑𝜏2)𝜏1=𝜏(𝑖)𝑘 , and
ℎ󸀠(𝑧𝑘) have the same sign.

The proof is similar to that of Lemma 4, so we ignore the
proofs. By applying Lemma 6 to (21), we have the following
theorem.

Theorem 7. As 𝜏2 increases from zero, there exists a critical
value 𝜏20, such that 𝐸∗ is locally asymptotically stable for 𝜏1 ∈[0, 𝜏20) and unstable when 𝜏2 > 𝜏20. Moreover, system (6)
occurs a Hopf bifurcation at 𝐸∗ when 𝜏2 = 𝜏20.
Case 4 (𝜏1 ̸= 𝜏2, 𝜏1 > 0, and 𝜏2 > 0). We consider (8)
with 𝜏1 in its stability range. Regarding 𝜏2 as a parameter,
without losing generality, we consider system (6) in Case 2.
Let 𝜔𝑖 (𝜔 > 0) be a root of (8); then we obtain

𝐹1 (𝜔) + 𝐹2 (𝜔) sin (𝜔𝜏1) + 𝐹3 cos (𝜔𝜏1) = 0, (24)

where

𝐹1 (𝜔) = 𝜔6 + 𝜔4 (𝐴21 + 𝐴24 − 2𝐴2)
+ 𝜔2 (𝐴22 + 𝐴25 − 2𝐴1𝐴3) + 𝐴23 − 𝐴26,

𝐹2 (𝜔) = −2𝜔5𝐴4 + 𝜔3 (2𝐴2𝐴4 − 2𝐴1𝐴5)
+ 2𝜔𝐴3𝐴5,

𝐹3 (𝜔) = −2𝜔5𝐴4 + 2𝜔4𝐴1𝐴4 + 2𝜔3𝐴2𝐴4
− 2𝜔2𝐴3𝐴4.

(25)

Therefore, utilizing the general Hopf bifurcation theorem
for functional differential equations (FDEs) as given in Hale
[33], we obtain the following results for system (6).

Theorem 8. Suppose that (24) has at least finite positive roots,𝑃𝑅𝑄𝑅 + 𝑃𝐼𝑄𝐼 ̸= 0 and 𝜏1 ∈ [0, 𝜏10), then the positive
equilibrium point 𝐸∗ of system (6) is locally asymptotically
stable for 𝜏2 ∈ [0, 𝜏2∗). For 𝐸∗, system (6) undergoes a Hopf
bifurcation when 𝜏2 = 𝜏2∗. System (6) has a branch of periodic
solutions bifurcating from the zero solution near 𝜏2 = 𝜏2∗.
4. Stability and Direction of
the Hopf Bifurcation

In the above section, we have studied that PI hydroturbine
governing model (6) with double delays undergoes a Hopf
bifurcation for 𝜏 = 𝜏(𝑖)𝑘 (𝑖 = 0, 1, 2, . . . , 𝑘 = 1, 2, . . .). In
this section, we assume that system (6) undergoes a Hopf
bifurcation at 𝜏 = 𝜏(𝑖)0 (𝑖 = 0, 1, 2, . . .). Utilizing the normal
form theory and the center manifold reduction, the stability,
the direction, and the bifurcation of the periodic solutions are
determined.

For convenience sake, we suppose that 𝜏0 is less than𝜏2∗, where 𝜏2∗ ∈ [0, 𝜏10). Let 𝑢(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡))𝑇 ∈𝑅3, 𝜏1 = 𝜏0 + 𝜇, in which 𝜇 ∈ 𝑅, then we transform
system (6) into functional differential equations (FDEs) in𝐶 = 𝐶([−1, 0], 𝑅3) as

𝑥̇ (𝑡) = 𝐿𝜇 (𝑥𝑡) + 𝑓 (𝜇, 𝑥𝑡) , (26)
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where 𝐿𝜇 : 𝐶 → 𝑅3, 𝑓 : 𝑅 × 𝐶 → 𝑅3 are given, respectively.
We obtain

𝐿𝜇 (𝑥𝑡) = (𝜏0 + 𝜇)[[
[
0 1 𝑐1𝑐2 𝑐3 0
𝑐4 0 0

]]
]
[[
[
𝜙1 (0)𝜙2 (0)𝜙3 (0)

]]
]

+ (𝜏0 + 𝜇)[[
[
𝑐5 0 0
0 0 𝑐60 0 0

]]
]
[[
[
𝜙1 (−1)𝜙2 (−1)𝜙3 (−1)

]]
]
,

𝑓 (𝑢, 𝜙) = (𝜏0 + 𝜇)[[
[
𝑐5𝜙1 (−1)𝑐6𝜙3 (−1)0

]]
]
,

(27)

where 𝑐1 = 𝑏1𝑁, 𝑐2 = 𝑎1𝑏1𝑁𝐾𝑃 − 𝑏0𝑁𝐾𝑃 − 𝑎0, 𝑐3 = −𝑎1, 𝑐4 =−𝐾𝐼, 𝑐6 = (𝑏0−𝑎1𝑏1)𝑁, 𝑐5 = −𝑏1𝑁𝐾𝑃 and 𝜙 = (𝜙1, 𝜙2, 𝜙3)𝑇 ∈𝐶([−1, 0], 𝑅3).
Utilizing the Riesz representation theorem, there is a 3×3

matrix-valued function 𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈[−1, 0], such that

𝐿𝜇𝜙 = ∫0
−1
𝑑𝜂 (𝜃, 0) 𝜙 (𝜃) ,

where 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅3) .
(28)

Indeed, we may take

𝜂 (𝜃, 𝜇) = (𝜏0 + 𝜇)[[
[
0 1 𝑐1𝑐2 𝑐3 0
𝑐4 0 0

]]
]
𝛿 (𝜃)

− (𝜏0 + 𝜇)[[
[
𝑐5 0 0
0 0 𝑐60 0 0

]]
]
𝛿 (𝜃 + 1) ,

(29)

where 𝛿 is the Dirac delta function.
For 𝜙 ∈ 𝐶−1([−1, 0], 𝑅3), we define

𝐴∗𝜓 (𝑠) = {{{{{{{
−𝑑𝜓 (𝑠)𝑑𝑠 , 𝑠 ∈ (0, 1]
∫0
−1
𝑑𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0 (30)

and a bilinear inner product:

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)
− ∫0
−1
∫𝜃
𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (31)

where 𝜂(𝜃) = 𝜂(𝜃, 0); 𝐴(0) and 𝐴∗ are adjoint operators.
From the above analysis, we obtain that 𝑞(𝜃) and 𝑞∗(𝑠) are
eigenvectors of𝐴 and𝐴∗ corresponding to 𝑖𝜔0𝜏𝑘 and −𝑖𝜔0𝜏𝑘,
respectively. Suppose that 𝑞(𝜃) = (1, V1, V2)𝑇𝑒𝑖𝜔0𝜏𝑘𝜃 is the
eigenvector of 𝐴(0) corresponding to 𝑖𝜔0𝜏𝑘; then 𝐴(0)𝑞(𝜃) =

𝑖𝜔0𝜏0𝑞(𝜃). It follows from the definition of 𝐴(0), 𝐿𝜇𝜙, and𝜂(𝜃, 𝜇) that
𝑞 (𝜃) = (1, V1, V2)𝑇 𝑒𝑖𝜔0𝜏𝑘𝜃 = 𝑞 (0) 𝑒𝑖𝜔0𝜏𝑘𝜃, (32)

and similarly, by definition of 𝐴∗,
𝑞∗ (𝜃) = 𝐷 (1, V∗1 , V∗2 )𝑇 𝑒𝑖𝜔0𝜏𝑘𝜃 = 𝑞∗ (0) 𝑒𝑖𝜔0𝜏𝑘𝜃. (33)

Through a simple calculation, we can obtain

V1 = −𝜔0𝑐5𝑒−𝑖𝜔0𝜏𝑘 + (𝜔20 + 𝑐1𝑐4) 𝑖𝜔0 ,

V2 = 𝑐3𝑐5𝑒−𝜔0𝑖𝜏𝑘 − 𝑐2 − 𝜔20 − (𝜔0𝑐3 + 𝑐5𝑒−𝜔0𝑖𝜏𝑘) 𝑖𝑐6𝑒−𝜔0𝑖𝜏𝑘 − 𝑐1𝑐3 + 𝑐1𝜔0𝑖 ,
V∗1 = 𝑐1𝑐4 + 𝜔20 − 𝜔0𝑐5𝑒−𝜔0𝑖𝜏𝑘 𝑖𝑐2𝜔0𝑖 − 𝑐4𝑐6𝑒−𝜔0𝑖𝜏𝑘 ,

V∗2 = 𝑐2 + 𝜔20 − 𝑐3𝑐5𝑒−𝜔0𝑖𝜏𝑘 − (𝜔0𝑐3 + 𝑐5𝜔0𝑒−𝜔0𝑖𝜏𝑘) 𝑖(𝜔0𝑖 + 𝑐3) 𝑐4 .

(34)

From (31), one has

⟨𝑞∗ (𝑠) , 𝑞 (𝜃)⟩ = 𝑞∗ (0) 𝑞 (0)
− ∫0
−1
∫𝜃
𝜉=0

𝑞∗ (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝑞 (𝜉) 𝑑𝜉
= 𝐷 (1, V∗1 , V∗2 ) (1, V1, V2)𝑇 − ∫0

−1
∫𝜃
𝜉=0

𝐷(1, V∗1 , V∗2 )
⋅ 𝑒−𝜔0𝑖𝜏𝑘(𝜉−𝜃)𝑑𝜂 (𝜃) (1, V1, V2)𝑇 𝑒𝜔0𝑖𝜏𝑘𝜉 𝑑𝜉 = 𝐷 {1
+ V∗1 V1 + V∗2 V2 + 𝜏𝑘 (𝑐5 + 𝑐6V∗2 ) 𝑒−𝜔0𝜏𝑘𝑖} .

(35)

Thus we can choose𝐷 as

𝐷 = 11 + V∗1 V1 + V∗2 V2 + 𝜏𝑘 (𝑐5 + 𝑐6V∗2 ) 𝑒−𝜔0𝜏𝑘𝑖 , (36)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1 and ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.
Next, through the use of the same notations in Hassard et

al. [34], we can calculate the coordinates describing the center
manifold 𝐶0 at 𝜇 = 0. Therefore, we have the following:

𝑔20 = 2𝐷𝜏𝑘 [(𝑐5 + 𝑐6V∗2 ) 𝑒−𝑖𝜔0𝜏𝑘 + 1 + 𝑐3] ,
𝑔11 = 2𝐷𝜏𝑘 [(𝑐5 + 𝑐6V∗2 󵄨󵄨󵄨󵄨V2󵄨󵄨󵄨󵄨2)Re {𝑒𝑖𝜔0𝜏𝑘} + 1 + 𝑐1] ,
𝑔02 = 2𝐷𝜏𝑘 [(𝑐5 + 𝑐6V∗2 ) 𝑒𝑖𝜔0𝜏𝑘 + 1 + 𝑐3] ,
𝑔21 = 𝐷𝜏𝑘 [𝑐5 (𝑊(1)20 (−1) + 𝑊(1)11 (−1))

+ 𝑐6 (𝑊(3)20 (−1) + 𝑊(3)11 (−1))] ,

(37)
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where

𝑊20 (𝜃)
= 𝑖𝑔20𝜔0𝜏𝑘 𝑞 (0) 𝑒𝑖𝜔0𝜏𝑘𝜃 +

𝑖𝑔023𝜔0𝜏𝑘 𝑞 (0) 𝑒−𝑖𝜔0𝜏𝑘𝜃
+ 𝐸1𝑒2𝑖𝜔0𝜏𝑘𝜃,

𝑊11 (𝜃)
= − 𝑖𝑔11𝜔0𝜏𝑘 𝑞 (0) 𝑒𝑖𝜔0𝜏𝑘𝜃 +

𝑖𝑔11𝜔0𝜏𝑘 𝑞 (0) 𝑒−𝑖𝜔0𝜏𝑘𝜃 + 𝐸2,
𝐸1

= 2[[[
[

𝑐5𝑒−2𝑖𝜔0𝜏𝑘 1 𝑐1 + 2𝑖𝜔0
𝑐2 + 2𝑖𝜔0 𝑐3 + 2𝑖𝜔0 𝑐6𝑒−2𝑖𝜔0𝜏𝑘𝑐4 + 2𝑖𝜔0 0 0

]]]
]

−1

[[[
[

𝑐5𝑒−𝑖𝜔0𝜏𝑘
𝑐6𝑒−𝑖𝜔0𝜏𝑘0

]]]
]
,

𝐸2 = 2[[
[
𝑐5 1 𝑐1𝑐2 𝑐3 𝑐6𝑐4 0 0

]]
]

−1 [[[
[

𝑐5 Re {𝑒−𝑖𝜔0𝜏𝑘}
𝑐6 Re {𝑒−𝑖𝜔0𝜏𝑘}0

]]]
]
.

(38)

Thus, we get the following quantities:

𝑐1 (0) = 𝑖2𝜔0𝜏𝑘 (𝑔20𝑔11 − 2
󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 13 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨2) + 12𝑔21,

𝜇2 = − Re {𝑐1 (0)}
Re {𝜆󸀠 (0)} ,

𝑇2 = − Im {𝑐1 (0)} + 𝜇2 Im {𝜆󸀠 (0)}
𝜔0𝜏𝑘 ,

𝛽2 = 2Re {𝑐1 (0)} .

(39)

From the above analysis, we have the theorem as follows.

Theorem 9. When 𝜏𝑘 is equal to 𝜏𝑖0, the stability and direction
of the Hopf bifurcation for system (6) are confirmed by the
parameters 𝜇2, 𝑇2, and 𝛽2.

(1) 𝜇2 determines the direction of the Hopf bifurcation: if𝜇2 > 0 and 𝜏𝑘 > 𝜏00 , then the Hopf bifurcation is
supercritical; if 𝜇2 > 0 and 𝜏𝑘 > 𝜏00 , then he Hopf
bifurcation is subcritical. In both cases, the bifurcating
periodic solutions of system (6) exist.

(2) 𝑇2 determines the period of the bifurcating periodic
solutions: if 𝑇2 > 0, the period increases; else the period
decreases.

(3) 𝛽2 determines the stability of the bifurcating periodic
solutions: the bifurcating periodic solutions are stable
(unstable) for 𝛽2 < 0 (𝛽2 > 0).

5. Numerical Example

Suppose the hydroturbine governing system which is set
works under certain operating conditions, the parameters are
as follows:𝑁 = 1, 𝑎0 = 0.667, 𝑎1 = 2.522, 𝑏0 = 0.311, 𝑏1 =−0.342. Utilizing the function dde23( ), numerical calcula-
tions have been performed as follows.

In Case 1, system (6) has two same time delays 𝜏, initial
value 𝑥0 = (0.05, 0.05, 0.05), 𝐾𝑃 = 4.5, and 𝐾𝐼 = −1.326;
we can obtain the Hopf bifurcation value 𝜏0 = 0.35 s. When𝜏 < 𝜏0 = 0.35 s, at the equilibrium 𝐸∗ = (𝑥∗1 , 𝑥∗2 , 𝑥∗3 ), system
(6) is asymptotically stable, and it is unstable when 𝜏 > 𝜏0 are
shown in Figures 2(b) and 2(d), respectively.

In Case 2, when initial value 𝑥0 = (0.05, 0.05, 0.05),𝐾𝐼 < 1.7326, 𝐾𝑃 = 0.5, and 𝜏1 > 0, the corresponding
oscillation curves of 𝑥𝑖(𝑡) are shown in Figure 3(a). System
(6) is asymptotically stable at the equilibrium point 𝐸0 =(0, 0, 0). We can compute the Hopf bifurcation value 𝜏10 =0.8322 s. When 𝐾𝐼 ≥ 1.7326, 𝜏2 = 0, the equilibrium point𝐸∗ = (𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) of system (6) is asymptotically stable for𝜏1 ∈ [0, 𝜏10), and it is unstable when 𝜏1 > 𝜏10 are shown in
Figures 4(b) and 4(d), respectively.

In Case 3, when initial value 𝑥0 = (0.05, 0.05, 0.05), 𝐾𝑃 =5, 𝐾𝐼 = −1.2, and 𝜏1 = 0, we obtain the Hopf bifurcation
value 𝜏20 = 0.455 s. System (6) is asymptotically stable for𝜏1 ∈ [0, 𝜏20), and it is unstable when 𝜏2 is more than 𝜏20 at
the equilibrium point 𝐸∗ = (𝑥∗1 , 𝑥∗2 , 𝑥∗3 ), which are shown in
Figures 5(b) and 5(d), respectively.

In Case 4, when initial value 𝑥0 = (0.05, 0.05, 0.05), 𝐾𝐼 =−1.5326, 𝜏10 = 0.8322 s, and 𝜏2∗ = 0.5655 s. The phase
portraits are obtained from Theorem 8 in Figures 6(b) and
6(d). When 𝐾𝑃 = 5, at Hopf point 𝐸∗ = (𝑥∗1 , 𝑥∗2 , 𝑥∗3 )
system (6) is stable and for each 𝜏2 < 𝜏20, but close to 𝜏20
there is a stable periodic orbit near the asymptotically stable
equilibrium point 𝐸∗ = (𝑥∗1 , 𝑥∗2 , 𝑥∗3 ). When 𝜏2 = 𝜏2∗ and𝜏1 = 𝜏10, system (6) has a transversal Hopf point at 𝐸∗ =(𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) (see Figure 6(d)).
6. Conclusions

In the paper, we establish a PI hydroturbine governing system
with saturation and double delays. In the case of positive
equilibrium point 𝐸∗, the stability of the PI hydroturbine
governing system is discussed when the values of the speed
control delay and the displacement delay of the servomotor
is equal to zero and greater than zero, respectively. The
results show that the PI hydroturbine governing system
may have unexpected limit cycle oscillation when the delay
parameters meet certain conditions. We obtain the scope of
three parameters, which determine the stability of periodic
solution, the direction of Hopf bifurcation, and the cycle of
periodic solutions, respectively. Finally, the theoretical results
are validated via the numerical simulation. In addition, a
novel approach is proposed to analysis dynamic character-
istics of the PI hydroturbine governing system with double
delays.

Our work illustrates that the oscillation can be effectively
controlled by decreasing speed control delay and setting
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Figure 2: Time waveforms and phase portrait of the PI hydroturbine governing system. (a) Time waveforms with 𝐾𝑃 = 4.5, 𝐾𝐼 = −1.326,
and 𝜏 < 0.35 s. (b) The phase portrait with 𝐾𝑃 = 4.5, 𝐾𝐼 = −1.326, and 𝜏 = 0.15 s. (c) Time waveforms of 𝑥𝑖(𝑡) with 𝐾𝑃 = 1.1, 𝐾𝐼 = −3.6326,
and 𝜏 ≥ 0.35 s. (d) The phase portrait with𝐾𝑃 = 1.5 and 𝜏 = 0.4 s.
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Figure 3: Time waveforms and phase portrait of the PI hydroturbine governing system with the initial value 𝑥0 = (0.05, 0.05, 0.05), 𝐾𝐼 <1.7326, and 𝜏2 = 0. (a) Time waveforms of 𝑥𝑖(𝑡). (b) The phase portrait with 𝜏1 > 0.

up the high efficiency of PI controller parameters. A time
response device is designed to offset the speed control
delay in the hydroturbine governing system. Utilizing data
analysis method, the accuracy of servomotor displacement
can be improved. The research provides theoretical guidance

for hydropower station in maintaining the stability of the
hydropower system. In the future work, the model of the PI
hydroturbine governing system will be constituted by new
materials. The rich nonlinear dynamic characteristics of the
system will be analyzed accurately by the theory of fractional



Journal of Control Science and Engineering 9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
x1
x2
x3

−0.25
−0.2

−0.15
−0.1

−0.05
0

0.05
0.1

0.15
0.2

0.25
So

lu
tio

n 
x

(a)
−0.1 −0.05

0 0.05 0.1

−0.2
−0.1

0
0.10.2

x1
x2

−0.4
−0.2

0

0.2

0.4

x
3

(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
x1
x2
x3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

So
lu

tio
n 
x

(c)

−0.1 −0.05 0 0.05 0.1

−0.2
−0.1

0
0.1

0.2

x1
x2

−0.4
−0.2

0

0.2

0.4
x
3

(d)

Figure 4: Time waveforms and phase portrait of the PI hydroturbine governing system. (a) Time waveforms with 0 < 𝜏1 < 𝜏10. (b)The phase
portrait with 𝜏1 = 0.75 s < 𝜏10. (c) Time waveforms for 𝜏1 = 0.92 s > 𝜏10. (d) The phase portrait with 𝜏1 = 0.84 s > 𝜏10.

order. These methods and results will provide new ideas to
the research of the stability of the hydropower station.

Appendix

Stability Analysis and Hopf Bifurcation

According to time delays 𝜏1 and 𝜏2, we analyze the nonlinear
dynamic behavior of system (6) under the four different cases.

Case A.1 (𝜏 = 𝜏1 = 𝜏2 ̸= 0). If 𝜆 = 𝑖𝜔 is a root of (11), then we
have

𝜔𝐴5 sin (𝜔𝜏) + (𝐴6 − 𝜔2𝐴4) cos (𝜔𝜏) = 𝜔2𝐴1 − 𝐴3
𝜔𝐴5 cos (𝜔𝜏) − (𝐴6 − 𝜔2𝐴4) sin (𝜔𝜏) = 𝜔3 − 𝜔𝐴1. (A.1)

From (A.1), we can obtain

sin𝜔𝜏 = 𝜔5𝐵1 + 𝜔3𝐵2 + 𝜔𝐵3𝜔4𝐵21 + 𝜔2𝐵4 + 𝐵5
cos𝜔𝜏 = 𝜔4𝐵6 + 𝜔2𝐵7 + 𝐵8𝜔4𝐵21 + 𝜔2𝐵4 + 𝐵5 ,

(A.2)

where

𝐵1 = 𝐴4,
𝐵2 = 𝐴1𝐴5 − 𝐴1𝐴4 − 𝐴6,
𝐵3 = 𝐴1𝐴6 − 𝐴3𝐴5,
𝐵4 = 𝐴25 − 2𝐴4𝐴6,
𝐵5 = 𝐴26,
𝐵6 = 𝐴5 − 𝐴1𝐴4,
𝐵7 = 𝐴1𝐴6 − 𝐴1𝐴5 + 𝐴3𝐴4,
𝐵8 = −𝐴3𝐴6.

(A.3)

Then we have (12). Let 𝑧 = 𝜔2; we have
𝑧5 + 𝑧4𝐶1 + 𝑧3𝐶2 + 𝑧2𝐶3 + 𝑧𝐶4 + 𝐶5 = 0. (A.4)

To analyze the existence and distribution of roots of (A.4), we
have (14) and the following:

ℎ󸀠 (𝑧) = 5𝑧4 + 4𝑧3𝐶1 + 3𝑧2𝐶2 + 2𝑧𝐶3 + 𝐶4. (A.5)
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Figure 5:The corresponding oscillation curves and phase portrait of the PI hydroturbine governing system. (a)The corresponding oscillation
curves for 𝐾𝑃 = 5 and 𝜏2 ∈ [0, 𝜏20). (b) The phase portrait with 𝐾𝑃 = 5 and 𝜏2 = 0.35 s ∈ [0, 𝜏20). (c) The corresponding oscillation curves
with 𝐾𝑃 = 1.5 and 𝜏2 ≥ 𝜏20. (d) The phase portrait with 𝐾𝑃 = 1.5 and 𝜏2 = 0.46 s ≥ 𝜏20.

From the above analysis, we have Lemma 2. The proof is
as follows.

Proof. We denote

𝑃 = [3𝜆2 + 2𝐴1𝜆 + 𝐴2 + (2𝐴4𝜆 + 𝐴5) 𝑒−𝜆𝜏]𝜆=𝜔𝑖= −3𝜔2 + 𝐴2 + 𝐴5 cos (𝜔𝜏) + 2𝐴4𝜔 sin (𝜔𝜏)
+ (2𝐴4𝜔 cos (𝜔𝜏) + 2𝜔𝐴1 − 𝐴5 sin (𝜔𝜏)) 𝑖 fl 𝑃𝑅+ 𝑃𝐼𝑖,

𝑄 = [−𝜆 (𝐴4𝜆2 + 𝐴5𝜆 + 𝐴6) 𝑒−𝜆𝜏]𝜆=𝜔𝑖 = 𝜔3𝐴4
⋅ sin (𝜔𝜏) + 𝜔2𝐴5 cos (𝜔𝜏) − 𝜔𝐴6 sin (𝜔𝜏)
+ (𝜔3𝐴4 cos (𝜔𝜏) − 𝜔2𝐴5 sin (𝜔𝜏)
− 𝜔𝐴6 cos (𝜔𝜏)) 𝑖 fl 𝑄𝑅 + 𝑄𝐼𝑖.

(A.6)

Taking the derivative of 𝜆with respect to 𝜏 in (11), one can get
(𝑑𝜆𝑑𝜏)

−1 = 3𝜆2 + 2𝐴1𝜆 + 𝐴2 + (2𝐴4𝜆 + 𝐴5) 𝑒−𝜆𝜏−𝜆 (𝐴4𝜆2 + 𝐴5𝜆 + 𝐴6) 𝑒−𝜆𝜏
− 𝜏𝜆 .

(A.7)

By substituting 𝜆 = 𝜔𝑖 into (A.7) we have

(𝑑Re 𝜆 (𝜏)𝑑𝜏 )−1
𝜏=𝜏(𝑖)
𝑘

= Re[3𝜆2 + 2𝐴1𝜆 + 𝐴2 + (2𝐴4𝜆 + 𝐴5) 𝑒−𝜆𝜏−𝜆 (𝐴4𝜆2 + 𝐴5𝜆 + 𝐴6) 𝑒−𝜆𝜏 ]
𝜏=𝜏(𝑖)
𝑘

= 𝑃𝑅𝑄𝑅 + 𝑃𝐼𝑄𝐼𝑃2𝑅 + 𝑄2𝐼 .

(A.8)

If H2 = 𝑃𝑅𝑄𝑅 + 𝑃𝐼𝑄𝐼 ̸= 0, we can obtain

(𝑑Re 𝜆 (𝜏)𝑑𝜏 )
𝜏=𝜏(𝑖)
𝑘

̸= 0. (A.9)

This proves Lemma 2.
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Figure 6:The corresponding oscillation curves and phase portrait of the PI hydroturbine governing system. (a)The corresponding oscillation
curves with 𝐾𝑃 = 5 and 𝜏2 ∈ [0, 𝜏20). (b) The phase portrait with 𝐾𝑃 = 5 and 𝜏2 ∈ [0, 𝜏20). (c) The corresponding oscillation curves with𝐾𝑃 = 1.2, 𝜏1 = 0.01 s, and 𝜏2 ≥ 𝜏2∗. (d) Hopf bifurcation occurs for 𝐾𝑃 = 1.2, 𝜏1 = 0.01 s, and 𝜏2 = 𝜏2∗.

Case A.2 (𝜏1 ̸= 0, 𝜏2 = 0). Let 𝜆 = 𝑖𝜔 be a root of (16), then
we have

𝐴3 + 𝐴6 − 𝜔2𝐴4 cos (𝜔𝜏) − 𝜔2𝐴1 + 𝜔𝐴5 sin (𝜔𝜏)
+ (𝜔𝐴5 cos (𝜔𝜏) + 𝜔𝐴2 − 𝜔3 + 𝜔2𝐴4 sin (𝜔𝜏)) 𝑖= 0.

(A.10)

The real and imaginary parts are separated; we obtain

−𝜔2𝐴4 cos (𝜔𝜏) + 𝜔𝐴5 sin (𝜔𝜏) = 𝜔2𝐴1 − 𝐴3 − 𝐴6𝜔𝐴5 cos (𝜔𝜏) + 𝜔2𝐴4 sin (𝜔𝜏) = 𝜔3 − 𝜔𝐴2. (A.11)

From (A.11), we can obtain

sin (𝜔𝜏)
= 𝜔4𝐴4 + 𝜔2 (𝐴1𝐴5 − 𝐴2𝐴4) − (𝐴3𝐴5 + 𝐴5𝐴6)𝜔3𝐴24 + 𝜔𝐴25
cos (𝜔𝜏)
= 𝜔3 (𝐴5 − 𝐴1𝐴4) + 𝜔 (𝐴3𝐴4 − 𝐴2𝐴5 + 𝐴4𝐴6)𝜔3𝐴24 + 𝜔𝐴25 .

(A.12)

It follows that

𝜔8 + 𝜔6𝐷1 + 𝜔4𝐷2 + 𝜔2𝐷3 + 𝐷4 = 0, (A.13)
where

𝐷1 = (𝐴21𝐴24 + 𝐴25 − 𝐴44 − 2𝐴2𝐴24)𝐴24 ,
𝐷2 = (−2𝐴24𝐴25 + 𝐴21𝐴25 + 𝐴22𝐴24 − 2𝐴2𝐴25 − 2𝐴1𝐴3𝐴24 − 2𝐴1𝐴24𝐴6)𝐴24 ,
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𝐷3 = (−𝐴45 + 𝐴23𝐴24 + 𝐴24𝐴26 + 𝐴22𝐴25 + 2𝐴3𝐴24𝐴6 − 2𝐴1𝐴3𝐴25 − 2𝐴1𝐴25𝐴6)𝐴24 ,

𝐷4 = (𝐴3𝐴5 + 𝐴5𝐴6)2𝐴24 .
(A.14)

Then we obtain (17).

Assume that (17) has positive roots. Without losing
generality, we suppose that (17) has four positive roots, which
are defined by 𝑧1, 𝑧2, 𝑧3, and 𝑧4. Then, (17) has four positive
roots 𝜔𝑘 = √𝑧𝑘, 𝑘 = 1, 2, 3, 4.

From the above analysis, we have Lemma 4. The proof is
as follows.

Proof. Taking the derivative of 𝜆with respect to 𝜏1 in (16), we
have

( 𝑑𝜆𝑑𝜏1)
−1 = (3𝜆2 + 2𝐴1𝜆 + 𝐴2) 𝑒𝜆𝜏1𝜆 (𝐴4𝜆2 + 𝐴5𝜆)

+ 2𝐴4𝜆 + 𝐴5𝜆 (𝐴4𝜆2 + 𝐴5𝜆) −
𝜏1𝜆 .

(A.15)

In addition, we have

[𝜆 (𝐴4𝜆2 + 𝐴5𝜆)]𝜆=𝜔𝑘𝑖 = −𝜔𝑘2𝐴5 − 𝜔𝑘3𝐴4𝑖,
[3𝜆2 + 2𝐴1𝜆 + 𝐴2]𝜆=𝜔𝑘𝑖 = 𝐴2 − 3𝜔𝑘2 + 2𝐴1𝜔𝑘𝑖,

[2𝐴4𝜆 + 𝐴5]𝜆=𝜔𝑘𝑖 = 𝐴5 + 2𝐴4𝜔𝑘𝑖.
(A.16)

For simplification of analysis, we define 𝜔𝑘 as 𝜔 and 𝜏(𝑖)𝑘 as 𝜏1.
From (A.15)-(A.16) and (A.12), we can obtain

(𝑑Re 𝜆 (𝜏10)𝑑𝜏1 )−1
𝜏1=𝜏
(𝑖)

𝑘

= Re[(3𝜆2 + 2𝐴1𝜆 + 𝐴2) 𝑒𝜆𝜏1𝜆 (𝐴4𝜆2 + 𝐴5𝜆) ]
𝜏1=𝜏
(𝑖)

𝑘

+ Re[ 2𝐴4𝜆 + 𝐴5𝜆 (𝐴4𝜆2 + 𝐴5𝜆)]𝜏1=𝜏(𝑖)𝑘 = 1Λ {−𝜔 (𝐴2
− 3𝜔2) [𝜔𝐴5 cos (𝜔𝜏) + 𝜔2𝐴4 sin (𝜔𝜏)]
+ 2𝐴1𝜔2 [𝜔𝐴5 sin (𝜔𝜏) − 𝜔2𝐴4 cos (𝜔𝜏)]
− 2𝜔4𝐴24 − 𝜔2𝐴25} = 1Λ {4𝐴24𝜔6 + 3𝜔4 (𝐴21𝐴24

+ 𝐴25 − 𝐴44 − 2𝐴2𝐴24) + 2𝜔2 (−2𝐴24𝐴25 + 𝐴21𝐴25
+ 𝐴22𝐴24 − 2𝐴2𝐴25 − 2𝐴1𝐴3𝐴24 − 2𝐴1𝐴24𝐴6)
+ 𝐴23𝐴24 − 𝐴45 + 𝐴24𝐴26 + 𝐴22𝐴25 + 2𝐴3𝐴24𝐴6
− 2𝐴1𝐴3𝐴25 − 2𝐴1𝐴25𝐴6} = 1Λ ⋅ ℎ󸀠 (𝑧𝑘) ,

(A.17)

where Λ = 𝜔6𝐴44 + 𝜔4𝐴25𝐴24. Thus we have

sign[𝑑Re 𝜆 (𝜏10)𝑑𝜏1 ]
𝜏1=𝜏
(𝑖)

𝑘

= sign[𝑑Re 𝜆 (𝜏10)𝑑𝜏1 ]−1
𝜏1=𝜏
(𝑖)

𝑘

= sign[ℎ󸀠 (𝑧𝑘)Λ ]
̸= 0.

(A.18)

Furthermore, since 𝑧𝑘 > 0, we conclude that [𝑑Re 𝜆(𝜏10)/𝑑𝜏1]𝜏1=𝜏(𝑖)𝑘 and ℎ󸀠(𝑧𝑘) have the same sign.

Case A.3 (𝜏1 = 0, 𝜏2 ̸= 0). By letting 𝜆 = 𝑖𝜔 be the root of
(21), we have

cos (𝜔𝜏2) = (𝐴1𝜔2 − 𝐴3)𝐴6
sin (𝜔𝜏2) = (𝐴2𝜔 − 𝜔3)

𝐴6 .
(A.19)

It follows that

𝜔6 + 𝐸1𝜔4 + 𝐸2𝜔2 + 𝐸3 = 0, (A.20)

where 𝐸1 = −2𝐴2, 𝐸2 = 𝐴21 + 𝐴22 − 2𝐴1𝐴3, 𝐸3 = 𝐴23 − 𝐴26.
If we define 𝑧 = 𝜔2, we have (22); then we also obtain

Lemma 6 andTheorem 7.

Case A.4 (𝜏1 ̸= 𝜏2, 𝜏1 > 0, and 𝜏2 > 0). Without losing
generality, we consider system (6) in Case 2. Let 𝜔𝑖 (𝜔 > 0)
be a root of (8), then we obtain

− 𝜔2𝐴4 cos (𝜔𝜏1) + 𝜔𝐴5 sin (𝜔𝜏1)= 𝜔2𝐴1 − 𝐴3 − 𝐴6 cos (𝜔𝜏2)𝜔𝐴5 cos (𝜔𝜏1) + 𝜔2𝐴4 sin (𝜔𝜏1)= 𝜔3 − 𝐴2𝜔 + 𝐴6 sin (𝜔𝜏2) .
(A.21)

Eliminating 𝜏2, we obtain (24).
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If (24) has finite positive roots, we define the roots of (24)
as 𝜔1, 𝜔2, . . . , 𝜔𝑘, such that there is a sequence {𝜏(𝑗)2𝑖 | 𝑗 =1, 2, . . .} for every fixed 𝜔𝑖 (𝑖 = 1, 2, . . . , 𝑘).

From (A.21), if we denote

𝜏(𝑗)2𝑖 = 1𝜔𝑖 {arccos(
𝜔𝐴5 sin (𝜔𝜏1) − 𝜔2𝐴4 cos (𝜔𝜏1) + 𝐴3 − 𝐴1𝜔2𝐴6 ) + 2𝑗𝜋} , 𝑖 = 1, 2, . . . , 𝑘, 𝑗 = 0, 1, 2, . . . (A.22)

then ±𝑖𝜔𝑖 is a pair of purely imaginary roots of (24) with 𝜏2 =𝜏(𝑗)2𝑖 .
Let 𝜏2∗ = {min(𝜏(𝑗)2𝑖 ) | 𝑖 = 1, 2, . . . , 𝑘, 𝑗 = 1, 2, . . .}, when𝜏2 = 𝜏2∗, (24) has a pair of purely imaginary roots ±𝑖𝜔∗ for𝜏1 ∈ [0, 𝜏10).
Next, in order to verify the transversality condition of

Hopf bifurcation, we differentiate (8) with respect to 𝜏2 and
substitute 𝜏2 = 𝜏2∗; then we have

(𝑑Re 𝜆 (𝜏2)𝑑𝜏2 )−1
𝜏2=𝜏2∗

= −𝑃𝑅𝑄𝑅 + 𝑃𝐼𝑄𝐼𝑃2𝑅 + 𝑄2𝐼 , (A.23)

where

𝑃𝑅 = 𝐴6 cos (𝜔𝜏2) ,
𝑃𝐼 = −𝐴6 sin (𝜔𝜏2) ,
𝑄𝑅 = −3𝜔2 + cos (𝜔𝜏1) (𝐴5 + 𝐴4𝜔2)

+ sin (𝜔𝜏1) (2𝐴2𝐴4𝜔 − 𝐴5𝜔) ,
𝑄𝐼 = 2𝐴1𝜔 + cos (𝜔𝜏1) (2𝐴2𝐴4 − 𝐴5𝜔)

− sin (𝜔𝜏1) (𝐴5 + 𝐴4𝜔2) ,
𝑃𝑅𝑄𝑅 + 𝑃𝐼𝑄𝐼 ̸= 0.

(A.24)

Therefore, Theorem 8 is true.

Nomenclature

𝐺𝑡(𝑠): The transfer function of the guide vane to
the hydroturbine moment𝐺𝑠(𝑠): The transfer function from the
Hydroturbine moment to the speed of the
generator𝑒𝑦: Servomotor stroke transfer coefficient of
the turbine torque (p.u.)𝑒𝑞𝑦: Servomotor stroke transfer coefficient of
the flow rate (p.u.)𝑒𝑞ℎ: The transfer coefficient of the flow rate on
the water head of a turbine (p.u.)𝑒ℎ: The transfer coefficient of the torque on
the water head of a turbine (p.u.)𝑇𝑎: The sum of the machine starting time and
load time constant (s)𝐾𝑃: The proportional component

𝑃: The load perturbation𝑚𝑡: Turbine output torque (N⋅m)𝐶: The reference input𝑥1, 𝑥2, 𝑥3: The intermediate variables𝑠: The strength of the elastic water hammer
effect𝑇𝜔: The water inertia time constant of a pres-
sure guide-water system (s)𝑒𝑥: The transfer coefficient of a speed on the
turbine torque (p.u.)𝑦: The displacement of the servomotor (m)𝑒𝑔: The load self-regulation factor (p.u.)𝜏1: The speed control delay of the generator (s)𝜏2: The displacement-control delay of the ser-
vomotor (s)𝐾𝐼: The integral component𝑥: The output of the system𝑧: The nonlinear part𝑁: The constant of nonlinear part𝑒, 𝑒𝑛: The intermediate variables.
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