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Software-defined network separates the control plane and the data plane, making the networkmore flexible.With the expansion of
the network scale, one centralized controller cannotmeet the latency needs of large-scale networks.(erefore, it is necessary to use
multicontroller architecture, which has some problems with the controller placement. In this article, we take both the average
latency and the worst latency between switch and controller into consideration and make a multi-objective optimization model.
An improved label propagation algorithm based on traffic gravitation is proposed to solve the subdomain division problem, and a
heuristic method is for subdomain controller placement. (e simulation experiments show the effectiveness of the proposed
algorithm and the time complexity guarantee for large-scale networks.

1. Introduction

Software-defined network (SDN) provides extremely
flexible and customizable network services by separating
the control plane and the data plane. However, with the
expansion of network scale and data traffic, centralized
architectures cannot fulfill the needs of efficiency, scal-
ability, and availability [1]. In that case, there should be
several distributed synchronous controllers in the SDN
network. It has some problems that need to be solved, like
how many controllers are needed in an SDN network,
where should they locate, and what is the mapping of the
controllers and the switches. Heller et al. [2] proposed the
controller placement problem (CPP) for the first time and
established a mathematical model for it, and the experi-
ments showed that adding controllers for most networks
would reduce the latency, but the benefits would decrease
with the increase of controllers.

Most research regards CPP as a clustering problem, in
which case the switches are regarded as the nodes with
community attributes. However, CPP and traditional
community detection [3] are not exactly the same.(e nodes

in the latter have strong connections with neighbors but
weak connections with distant nodes, which is different from
the forwarding devices in the network. Although the two
network nodes are far apart (cannot share a controller), a
large amount of data traffic can be exchanged between them.
(erefore, in addition to considering the nature of the
network topology itself, it is also necessary to increase the
consideration of traffic demands.

(e CPP has many different optimization objectives [4],
such as network responsiveness, fault tolerance, resilience,
and QoS. We focus on the responsiveness of the control
plane, including the average and the worst latency between
switch and controller, and solve the CPP in two steps. (e
first step is to solve the problem of controller number and
mapping, by dividing the network topology into multiple
fully connected subdomains through an improved label
propagation algorithm (LPA) that uses the abstract gravi-
tation between nodes as a value function. In the second step,
we find the best controller placement position in each
subdomain, using the gravitational force of nodes to the
controller and a heuristic algorithm based on open
searching. Our main contributions are as follows:
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(i) Amodel that considers both the average latency and
the worst latency is designed for the CPP, and a two-
step heuristic algorithm is proposed to get the ap-
proximate optimal solution

(ii) We define the traffic gravitation using the traffic
demands of the network and propose a subdomain
division algorithm based on the LPA to determine
the number of controllers and the mapping

(iii) By defining the space gravitation between nodes and
controllers, a controller placement algorithm is
proposed to determine the specific location of the
controller in the subdomain

(iv) Experiments show that the proposed placement
algorithm is effective and has less time complexity
compared with some excellent algorithms

(e rest of this article is organized as follows: Section 2
surveys the related work, showing the present research
methods and their insufficiency. Section 3 optimizes the
model of CPP with both average latency and worst latency
and shows a brief of LPA. A two-step heuristic algorithm for
the CPP is proposed in Section 4. Section 5 shows com-
parative simulations between the proposed algorithm and
others. Finally, there are the future work in Section 6 and the
conclusion in Section 7.

2. Related Work

(ere has been some research on the CPP, and some
progress has also been made. (e most common method is
to optimize the proposed mathematical model through
(integer) linear programming (ILP). Yao et al. [5] consider
the controller’s capacity for the first time, which relies on
the k-center algorithm but adds capacity constraints. Fi-
nally, the problem is solved by integer linear programming.
Simulation experiments show that the strategy can effec-
tively reduce the number of controllers and the load of the
busiest controller. Sallahi et al. [6] take the deployment cost
as the optimization goal to determine the optimal number
and the placement of controllers. (e research uses linear
programming to build the model, which is solved by a
linear solver. Although this method is effective, it is very
time-consuming and only suitable for static calculations in
small networks. He et al. [7] select the forwarding devices in
the network topology as an alternative location and
complete the construction of a linear optimization model
for the end-to-end data flow establishment time. (ey
convert the problem into a mixed-integer linear optimi-
zation problem and adopt a linear optimizer, Gurobi [8], to
solve it. It can be seen that the linear programming method
has the advantages of strong versatility and optimization.
But no matter what the optimization goal is, it requires a lot
of prior knowledge, and its computational complexity is
too high to be accepted in the network solution for dy-
namical adjusting in time.

(e heuristic algorithm based on modularity is a
common community detection method, which is also
suitable for solving many CPP problems. Fan et al. [9]

establish an optimization model considering both control
latency and reliability, which uses an improved Louvain
algorithm [10] based on modularity to calculate sub-
domains. (en, they use particle swarm optimization
(PSO) to further calculate the placement of the controller
in the subdomain. In order to solve the problem of res-
olution limit and subdomain disconnection caused by the
Louvain algorithm, Traag et al. [11] propose a Leiden
algorithm, which is based on the subdomain calculated by
the Louvain algorithm and performs an internal subdi-
vision. It combines the nodes with a certain probability
and forms further-subdivided subdomains. Experiments
show that the Leiden algorithm has more efficient sub-
domain partitioning capabilities while avoiding the
problem of resolution limit and subdomain disconnec-
tion, and it is still applicable in the weighted graph. Chen
et al. [12] adopt the same research steps. First, the Louvain
algorithm based on modularity is used to calculate the
subdomain, and then, the nodes with the smallest average
and the smallest worst latency are found in the sub-
domains as the placement of the controller. A modularity-
based heuristic algorithm is a common community de-
tection algorithm, which has good results in community
discovery. However, the CPP is not exactly the same as
ordinary community detection, because of the traffic
demands between network nodes. So when this type of
algorithm is applied to the real network topologies, the
performance is slightly unsatisfactory.

Another commonmethod of community detection is the
label propagation algorithm (LPA) [13], which is also widely
used in CPP problems. CLPA is an algorithm for controller
load balancing and network stability proposed by Liu et al.
[14]. (e network stability is abstracted from the reciprocal
of the number of hops from the forwarding device to the
controller. CLPA divides the network into different sub-
domains by using LPA and then uses the k-median algo-
rithm [15] to calculate the placement of the controller in
each subdomain. (e simulation experiments show that its
computational complexity and delay performance are higher
than LPA.

Table 1 is a brief overview of the current and the
proposed algorithms, where the SC-avg and SC-wst, re-
spectively, represent the average and the worst latency
between the switch and the controller, and MILP repre-
sents mixed-integer linear programming. And the
remaining CPP research involves many optimization
methods and goals, such as NSGA-II [16] based on the
genetic algorithm and effective Pareto algorithm [17]
based on the Nash bargaining model. Most CPP research
sets the constant (or infrequently changing) attribute
value of the nodes as the optimization goals, but the
combination of the immutability of network topology and
the variability of traffic demands is actually one of the
difficulties of CPP [18]. For this reason, this article
converts the characteristics of traffic demands into the
attributes of network nodes as much as possible and
proposes a controller placement algorithm that focuses on
the influence of traffic, so that the final strategy is more in
line with the real network topology.
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3. Optimization Model

3.1. Problem Description. (e SDN infrastructure is shown
in Figure 1, and CPP is to calculate the optimal number,
location, and mapping of controllers in the control plane
when the data plane and related network parameters are
known. As shown in Figure 1, the entire topology deploys
two controllers, located at SW2 and SW4, respectively. (e
control domain of CTL A is \{SW1, SW2, SW3\}, and the
control domain of CTL B is \{SW4, SW5\}.

3.2.Model and Symbol. (is article uses the models of graph
theory to abstract the optimization model. For a given
network topology, the data layer is G � (V, E), where V �

vi n is the set of network nodes, |V| � n is the total number
of nodes, and E � eij 

n∗ n
is the set of network links. When

eij � 0, there is no direct physical link between nodes vi and
vj. (e control layer is C � vi k, where k is the total number
of controllers.

For a simple description, it is necessary to describe the
mapping of switches and controllers using a specific data
structure. First of all, the entire network topology is divided
into several subdomains according to the control domain,
presented as a dictionary structure subDomain � li: v0,

v1 . . . vni
}}, i ∈ [0, k), where li is the label (unique identifier)

of i subdomain and ni is the number of nodes in i sub-
domain. We have

(1) Each switch only has one controller, that is,

∪ k−1
i�0 si � V, (1)

si ∩ sj � ϕ, ∀i, j ∈ [0, k) and i≠ j, (2)

where si � subDomain[i] is the node set of i sub-
domain. Equation (1) means that all nodes are di-
vided into subdomains, and equation (2) means that
the subdomains do not overlap each other.

(2) Each subdomain only has one controller, and the
controllers of all subdomains are different from
each other. In this article, unless otherwise spec-
ified, the label of the subdomain and the subscript
of the controller are considered to have a one-to-
one correspondence, shown in the following
equation:

si↔li↔ci. (3)

(en, we use traffic matrix M � mij 
n∗ n

to describe the
end-to-end traffic demands between nodes in network G,
where mij is the total traffic that node vi needs to send to
node vj in the initial state. Define Tfwd � tfi n and
Tsnd � tsij 

n∗ n
, where tfi is the total traffic actually for-

warded by the node vi and tsij is the total traffic actually
required to be sent from vi to vj, shown as in the following
equations:

Table 1: An overview of current controller placement approaches and the proposed approach.

Author Objective(s) Method Tool(s) Evaluation

Yao et al. [5] (e SC-wst LP Capacitated K-center Fewer number of controllers, but is complex for large-
size networks

Sallahi et al.
[6] Network cost ILP Linear solver High complexity, only for the small size networks

He et al. [7] Flow setting time MILP Gurobi [8] Moderate complexity

Fan et al. [9] Control latency and
reliability Modularity Louvain and PSO

[10]
Low complexity, but has subdomain disconnection

problem
Traag et al.
[11] Control latency Modularity Leiden Low complexity, fix the problem of the Louvain

algorithm
Chen et al.
[12] (e SC-avg or SC-wst Modularity Louvain, traverse

search Moderate complexity, well-done for subdomain division

Liu et al. [14] Load balancing and
stability LPA K-median Much low complexity, but is bad for subdomain division

with traffic

(e proposed (e SC-avg and SC-wst LPA Heuristic algorithm Much low complexity and is good for both SC-avg and
SC-wst

Application Plane

Northbound Interface

East-west

Interface

CTL BCTL A
Control Plane

Southbound Interface

SW1
Data Plane

SW2

SW3

SW4
SW5

SDN controller
SDN switch

Figure 1: (e infrastructure of SDN.
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tfi � 
msd∈M

msd · δsd(i), ∀i ∈ [0, n), (4)

tsij � 
msj∈M

msj · δsj(i), ∀i, j ∈ [0, n),
(5)

δsd(i) �
1, if vi ∈ Path vs  vd ,

0, else,
 (6)

where Path[vs][vd] is the routing path from vs to vd.
Finally, summarize the optimization model of controller

placement. We focus on the response latency between
switches and controllers, in which the average latency
(represented by SC-avg) can reflect the basic performance of
propagation in the SDN network and the worst latency
(represented by SC-wst) can reflect the performance under
strict constraints [19]. (e optimization problem for opti-
mizing these two goals can be obtained as

min αLavg + βLwst, (7)

Lavg �
1
n


v∈V

d v, ci( |v ∈ si, (8)

Lwst � maxv∈Vd v, ci( |v ∈ si, (9)

s.t. α + β � 1, (10)

len(subDomain) � k

satisfy equation (1)(2)(3),
(11)

where d(v, ci)|v ∈ si is the latency from the node v to the
controller ci of its subdomain. Equations (8) and (9) are the
calculation formulas for the average and the worst latency.
Equation (10) is the weight constraint, and equation (11) is
the controller number constraint.

3.3. Brief of LPA. Since the subdomain division algorithm is
based on LPA, in order to ensure the continuity of the article,
it is necessary to briefly introduce LPA. LPA is originally
applied to solve the problem of community detection. Be-
cause of its simple idea and approximately linear time
complexity; meanwhile, the result does not depend on the
initial solution, and it is widely used in various fields. (e
main process is

(1) Initialize the network; each node is regarded as an
independent community and marked with a globally
unique label

(2) Randomly select some nodes and update the node
label to the label with the largest value of the eval-
uation function among its neighbors

(3) Iterate the second step until there are no more
changes to the label

When LPA converges, nodes with the same label belong
to the same community. (e limitations of LPA are di-
chotomous oscillation, unstable results of multiple

calculations, and resolution limitations [11]. (ese problems
are solved in Section 4.1 using some restrictions.

4. Solution of the Problem

For the optimization goal of Section 3.2, a controller
placement algorithm is proposed, which aims at minimizing
the average latency and the worst latency between switches
and controllers as much as possible in a large-scale network.
As analyzed above, CPP needs to be divided into two parts,
which are the subdomain division of the network and the
placement of the controller in each subdomain. (erefore,
algorithms are proposed to solve these two subproblems
based on the node’s traffic gravitation and space gravitation,
respectively. (e flow diagram of the whole algorithm is
shown in Figure 2, and the details are introduced in Sections
4.1 and 4.2.

4.1. Subdomain Division Algorithm. In community detec-
tion, there are some indicators to measure the importance of
nodes, such as degree centrality [20], betweenness centrality
[21], and LeaderRank value [22]. However, these indicators
cannot fully measure the importance of nodes in the field of
communication networks, in which one of the main dif-
ferences is the traffic demands. We use Tfwd, the total traffic
forwarded by nodes, to present the importance of nodes.
Furthermore, inspired by the betweenness centrality, the
out-degree dout(v) is selected to be the penalty factor.
Combining the results of several rounds of simulation ex-
periments, the importance of node Iv is defined in the
following equation:

Iv �
tfv������

dout(v)
 , ∀v ∈ V. (12)

Influenced by traffic demand, we believe that there is a
mutual attraction relationship between nodes. (e more
traffic that needs to be transmitted between two nodes, the
greater the possibility of belonging to the same subdomain.
(erefore, through analogy with the concept of gravity, the
traffic Tsnd actually transmitted between nodes is defined as
the quality of the nodes, and the length hopsij of the routing
path between two nodes is defined as the distance.(erefore,
the traffic gravitation Ftraf(vi, vj) between nodes is defined
in the following equation:

Ftraf vi, vj  �
tsij

hops2ij
, ∀vi, vj ∈ V. (13)

Section 3.3 has briefly introduced LPA, which is im-
proved in this section to get better performance. In the label
propagation process of LPA, the update selection of nodes is
random, which may increase the convergence time expo-
nentially in the worst case. So we consider sacrificing a
certain amount of randomness to greatly shorten the con-
vergence time. When initializing the network topology, the
traffic matrix is used to calculate the importance of each
node, and the initial update queue is formed in descending
order. In each round of updates, the node whose label
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changes and its neighbors join the update queue again
according to the node’s importance, to wait for the next
update round. (is node selection strategy can effectively
reduce the number of nodes that need to be processed during
each update round in a large-scale network, thereby greatly
reducing the algorithm convergence time. (e complete
process of the subdomain division algorithm (gravSDA) is
described in detail through Algorithm 1, and Table 2 shows
the meaning of the symbols used in gravSDA.

Algorithm 1, gravSDA, improves on LPA, in which the
initialization phase completes the initialization of the node
label li, the calculation of Tfwd and Tsnd, and the initiali-
zation of the update queue Qupdate. (e entire iterative
process of label propagation is completed by lines 1 to 11.
Lines 3 to 10 are the core of gravSDA, which uses the traffic
gravitation among neighboring nodes to update the label of
the node; lines 7 and 10 indicate that the update queue is
updated to the union of the nodes with the label change and
its neighbors, and it is sorted in descending order according
to Iv. In the iterative process, the maximum number of
iterations maxIter is added to prevent the dichotomous
oscillation that may occur. It should be noted that if the
number of subdomains is larger than k in line 15, we will
combine the smallest subdomain to its neighbor until there
are just k subdomains. (e flow diagram of gravSDA is
shown in Figure 3.

GravSDA uses the network traffic matrix and the traffic
gravitation between nodes as the standard for label update,
so it is more in line with the requirements of subdomain
division in the communication network topology compared
with other graph theories and clustering algorithms. Its

effectiveness for the real network is experimentally verified
in Section 5.3. Furthermore, gravSDA improves the order
and range of label updating on the basis of LPA, which
greatly reduces the algorithm convergence time, and it is
verified in Section 5.4.

4.2. Controller Placement Algorithm in Subdomain. With the
results of Section 4.1, it can further study the placement of
controllers in each subdomain. Since there is no strict
correspondence between the data flow and the control flow
[23], the traffic gravitation model is not suitable for con-
trollers. (us, we assume the following:

(1) All new data flows trigger packet-in message from
the switch to the controller, and the total amount of
transmitted data is equal

(2) (e soft and hard timeout time of all flow tables is
constant

(3) Although in-band communication is used between
the switch and the controller, sufficient bandwidth is
reserved under any circumstances to transmit con-
trol messages

Under the above assumptions, the latency of control
messages is only determined by the length of the routing path,
and the importance of the node depends on its out-in degree
in a subdomain. Since the synchronization latency between
the controllers needs to be considered, when the subdomain si

is analyzed separately, the remaining subdomains should be
regarded as virtual nodes to analyze the impact on si.

Inspired by the idea of force balance, CPP can be
analogous to a scene where one particle is balanced by force
and is fixed in a force field. First, select an initial position for
the controller ci, which can be any position in the space area.
And then, it is affected by the gravitational force Fg

�→
of both

nodes in the domain and virtual nodes outside the domain.
(e force Fg

�→
of the node to the controller is similar to the

node’s demand for the controller. When the controller is far
away, the node “eagerly” wants the controller to be closer, so
the calculation formula should be more similar to Hooke’s
law. We propose the calculation formula in the following
equation:

Fg

�→
vi, c, e(  �

0, if dis vi, c( < e,

ω · dis vi, c(  − e( , else,
 (14)

where e is the original length, that is, when the distance
between nodes and controllers is less than e, the gravitational
force is ignored, dis(vi, c) is the Euclidean distance between
node vi and controller c, and ω is the coefficient of elasticity.

Finally, some special processing is added to ensure the
time complexity and effectiveness of the controller place-
ment algorithm (gravCPA). When selecting the initial po-
sition, choose the center of the smallest covering circle that
contains all nodes in a subdomain, which can be obtained
with the Elzinga–Hearn algorithm [24] in O(n) time com-
plexity. (e controller may oscillate in the space force field,
so every time in the iteration, the penalty factor φ is used to
reduce the moving step length of the controller to ensure

Initialize nodes' label, calculate
the value of node importance and traffic

information

Use Algorithm 1 to divide
the subdomains

�e number of subdomains
 is less than k?

Use Algorithm 2 to calculate the
controller placement for each subdomain

Every subdomain has
its controller?

Merge minimal
subdomainsNO

YES

NO

fix the controller in the physical
topology using neighborhood search

output the number, location,
and mapping of controllers

YES

Figure 2: (e flow diagram of the placement algorithm.
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final convergence. Due to the open search, the final con-
troller may place outside the network topology. In order to
make gravCPA more general, it needs to search again in its
surroundings to find an alternative placement in the to-
pology. It is described in Algorithm 2 in detail, and Table 3 is
a description of the symbols used in gravCPA.

(e idea of Algorithm 2 is based on the space gravitation
F
→

g of the node to the controller, which is firstly finding the
optimal controller placement through open search and finally
fixing the placement in the network topology. (e open
search process is lines 2 to 8, in which the resultant force in
intradomain F

→
int is calculated by equation (14) and the re-

sultant force extra-domain F
→

ext only considers the unit force
formed by the relative positions. Each iteration penalizes the
step length to ensure that the algorithm eventually converges.
(e surrounding search process is the 9th to 13th line, in
which the placement is found through traversal in some
subdomain nodes with suitable distance tolerance. (e flow
diagram of Algorithm 2 is shown in Figure 4.

5. Simulation

(e performance and convergence time of gravCPA are
simulated and evaluated on the x86 platform in this section.
(e operating system of the simulation experiment is
Ubuntu 16.04.3 LTS, the processor model is Intel(R)
Xeon(R) CPU E5-2609 0 @ 2.40GHz, and the physical
memory is 16GB. And in this section, we define the sum of
SC-avg latency and SC-wst latency as the integrated latency
for a simple description.

5.1. Influence of the Number of Controllers. Except for a few
algorithms that depend on the initial conditions, other CPP
algorithms can obtain the optimal number of controllers
when running. In fact, the number of controllers cannot be
increased without any upper limit. Based on this consid-
eration, we limit the number of controllers and compare the
proposed gravCPA with CTR [7], LDN [11], and CLPA [14].
(e metrics are SC-avg latency and SC-wst latency in the
network. Particularly, when the limited number is greater
than the calculated number, the latter is selected.

We use Python 3.8.0 and NetworkX components for
simulation and use a randomly generated LFR benchmark
network that is fully connected. After 200 times repeated
experiments, the average results are shown in Figure 5. (e
parameters in this experiment are shown in Table 4, where
PLD means power law distribution.

Table 2: Symbols of Algorithm 1.

Symbol Description

Qupdate/Qnew
Node queue to be updated in this round of iteration/

next round

isChange Flag indicated whether the label has changed in this
iteration

G.nodes(i)
Construct an instance of the node numbered i in the

network G

Input: G(V, E), M,maxIter, k

Output: subDomain � li: v0, v1 . . . vni
  

Initialize: subDomain � vi: set for vi inV 

Tfwd, Tsnd calculate values using equations (4) and (5)
Qupdate � sorted (V, key� lambda x Iv(x))

Process
1 while is change and iterTimes<maxIter do
2 iterTimes+ � 1, Qnew � ϕ
3 for node vi in Qupdate do
4 lnew � findMaxNeighbors(G, Tsnd, vi)

5 if li ≠ lnew then
6 update li and is change
7 Qnew.add(vi ∪G.neighbours(vi))

8 end if
9 end for
10 Qupdate � sorted (Qnew, key� lambda x Iv(x))
11 end while
12 for node vi in V do
13 subDomain[li].add(vi)

14 end for
15 return subDomain
Function 1 findMaxNeighbors (G, Tsn d, vi) ⟶ label:

16 res � [−1, G.Nodes(−1)]

17 for node vj in G.neighbours(vi) do
18 res � [Ftraf(vi, vj), vj]if Ftraf(vi, vj)> res[0]

19 end for
20 return res[1].label if res[0]≠ − 1 else vi.label

ALGORITHM 1: Subdomain Division Algorithm (gravSDA).
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Figure 5 shows the response latency curve of the
network control plane when the number of controllers
changes under gravCPA and three comparative algo-
rithms. Figure 5(a) shows the change of SC-avg latency,
and it can be seen that gravCPA has better performance
on SC-avg than other CPP algorithms. When the number

of controllers k � 5, gravCPA’s SC-avg is 233.86 μs, which
is 21.1% lower than CLPA’s 296.52 μs and 32.6% lower
than CTR’s 347.1 μs; when 1≤ k≤ 6, the SC-avg of
gravCPA is lower than LDN, but it is a little worse when
k> 6. Combined with Figure 6, it can be seen that 95% of
k is less than 8.63 and 80% is less than 7.03 for gravCPA,

Input: G,
M, maxIter, k

Initialize node labels,
and calculate node importance
and related traffic parameters

Use labels to build subDomain structures

Output: subDomain

Yes

Yes

No

No

Q is Q_new sorted by the
node importance

i=0, Q_new is the list of V

is Change=1 and
i<maxIter ?

is Change = 1 if l_j is changed else0,
add v_j and its neighbors to Q_new

Calculate l_j using Function 1,
which find the label of the node that
affect v_j the most in its neighbors

j<len (Q) ? j+=1

i+=1, j=0, leave
Q_new empty

Figure 3: (e flow diagram of Algorithm 1.

Input: G(V, E), subDomain,φ, ε, δ
Output: dictionary structure: ctls � li: v 

Initialize: ctls � li: EH(si) for li, si in subDomain 

Process
1 for si in subDomain do
2 loci � ctls[li]

3 while STEP> ε and loci change do

4 F
→

int � sum(Fg

�→
(vj, loci, e)for vj in si)

5 F
→

ext � sum (vj.x − loci.x, vj.y − loci.y)/
������������������������

vj.x − loci.x
2

+ vj.y − loci.y
2



for vj inVext(si)
⎛⎝ ⎞⎠

6 loci←loci + ( F
→

int + F
→

ext) · STEP
7 STEP∗ � φ
8 end while
9 vres← find the closest node to loci

10 D � dis(vres, loci)

11 for vj in \{v for v in si if dis(v, loci)<D + δ\} do
12 vres � vj if calOptFunc (vj)< calOptFunc (vres)

13 end for
14 ctls[li] � vres
15 end for
16 return ctls

Function 2 calOptFunc (v)⟶ int:
17 res←calculate the value of equation (7)
18 return res

ALGORITHM 2: Controller Placement Algorithm (gravCPA).
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while these two values for LDN are 10.25 and 9.24, re-
spectively. In another word, the controller’s number of
gravCPA is not more than 7 in most cases. When k

increases in the gravCPA experiment, the number of
controllers does not increase actually so that the SC-avg
latency does not decrease. In summary, gravCPA can
obtain a better average latency with a smaller number of
controllers.

Figures 5(b) and 5(c) show the curve of the worst latency
and the integrated latency, respectively. It can be seen that
these two parameters of gravCPA are better than other al-
gorithms. Furthermore, based on the numerical error of
4.56%, gravCPA converges when k � 7, and at this time, the
integrated latency 867.62 μs decreases by 7.0%, 8.1%, and
16.8%, respectively, compared with LDN’s 932.68 μs, CLPA’s
943.82 μs, and CTR’s 1042.6 μs.

5.2. Cumulative Distribution Function of Latency.
Although each CPP algorithm wants to make an optimal
placement for every network as much as possible, its per-
formance varies with the network parameters and situation.
We use a randomly generated network topology with full
connection to verify the versatility, where the number of
nodes is n ∈ [12, 200] and the number of links is
m ∈ [n − 1, n∗ (n − 1)/2]. (e cumulative distribution
function of the integrated latency of gravCPA is compared
with CTR, LDN, and CLPA.

We also use Python 3.8.0 and NetworkX components for
simulation and use Seaborn components to generate the
cumulative distribution function curve from the results of
200 repeated experiments. (e results are shown in Figure 7.

Figure 7 shows the cumulative distribution function of
the integrated latency of four CPP algorithms in a

Table 3: Symbols of Algorithm 2.

Symbol Description
φ Factor for STEP penalty
ε Iteration accuracy for STEP
δ Factor for distance tolerance
EH (si) Function that calculates the minimum covering circle’s center of si using Elzinga–Hearn [24]
STEP Step length of controller movement
F
→

int/F
→

ext Resultant force of intra-/extra-domain nodes
Vest(si) Set of subdomain abstract nodes except si

Input: G, φ, ε, δ,
subDomain, STEP

take unprocessed subdomain
s_i in subDomain

Calculate the minimum covering circle`s
center loc of s_i using EH algorithm

Move loc using the resultant force
of nodes the intra-domain and

extra-domain and step size STEP

Traverse search for the optimal node in the
neighborhood of the nearest node to loc (tolerance is δ)

all subdomains
processed ?

ouput: all controllers’
 location

No

Yes

No

Yes
STEP>ε and loc

is changed ?

STEP *= φ

Figure 4: (e flow diagram of Algorithm 2.
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randomly generated network. When k � 3, as shown in
Figure 7(a), the integrated latency performance of gravCPA
is significantly better than the other three algorithms.
Compared with CLPA that has the second best perfor-
mance, when the confidence levels are 95% and 80%, the
integrated latency of gravCPA decreases by 26.2% (from
1789.11 μs to 1320.58 μs) and 18.8% (from 1420.98 μs to
1153.25 μs), respectively.

Comparing Figures 7(b) and 7(c), it can be seen that
when k> 6, the integrated delay of gravCPA no longer
decreases with the increase of k. Relatively, the other three
algorithms have different improvements and the perfor-
mance of LDN is improved the most. However, when k � 12,
the integrated latency of gravCPA (1084.46 μs) is just
slightly larger than LDN (972.9 μs), which is about 111.4% of
LDN.

In summary, it is concluded that gravCPA can still
achieve better performance of integrated latency with a small
number of controllers when faced with the randomly gen-
erated network.

5.3. Performance inRealNetworks. Sections 5.1 and 5.2 show
the latency performance of the four algorithms in the LFR
benchmark network and the randomly generated network.
Since the traffic demands between nodes in the real network
are not exactly the same, it is more complicated for research.
In this section, we use the real network topologies and traffic
demands [25] to compare the latency performance of each
algorithm.

We use the real topologies in Table 5 simulated by
Python 3.8.0 and NetworkX components. Assume that the
first data packet of each flow triggers the packet-in message,
and the transmission latency of the control message is the
sum of each hop latency from the node to the subdomain
controller, where the hop latency is equal to the reciprocal of
one-tenth of its bandwidth. (e experimental results are
shown in Figure 8.
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Figure 5: Response latency curve of controllers’ number k.

Table 4: Simulation parameters settings.

Parameter Value Description
n 100 Number of nodes
dmin 2 Minimum degree of nodes
τ1 3 PLD index for the degree
τ2 1.5 PLD index for the community size
μ 0.1 Fraction of intercommunity edges
α,φ, ε, δ 0.5, 0.99, 10− 6, 3 units Parameters of gravCPA
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Figure 8(a) shows the simulation result of the Abilene
network with 12 nodes, which is representative of the
small-scale network. It can be seen that although the SC-
avg latency of gravCPA is slightly larger than LDN, the
remaining parameters are all better than the other three
algorithms. (e integrated latency of gravCPA is only
7.597ms, compared with 8.399ms of LDN, 10.355ms of
CLPA, and 10.757ms of CTR, which are reduced by
9.54%, 26.63%, and 39.37%, respectively. In a word, the
gravCPA based on traffic gravitation has a stronger

optimization performance when considering the real
traffic demands.

Figure 8(b) shows the simulation result of the Cost266
network with 37 nodes, which is a medium-scale network.
Compared with Alibene, the traffic demands in large- and
medium-scale networks are more complex, and better
performance cannot be obtained without considering the
impact of traffic. When gravCPA restricts the number of
controllers in Cost266, the integrated latency is 60.381ms.
Compared with LDN’s 69.302ms, CLPA’s 80.307ms, and

Table 5: Topologies in the experiment.

Topology Nodes Links Demand pairs
Abilene 12 15 132
Cost266 37 57 1332

1
0.95

0.8

0.6

0.4

0.2

0

cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
the integrated latency (100 μs)

gravLPA
LDN

CLPA
CTR

(a)

1
0.95

0.8

0.6

0.4

0.2

0

cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
the integrated latency (100 μs)

gravLPA
LDN

CLPA
CTR

(b)

1
0.95

0.8

0.6

0.4

0.2

0

cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
the integrated latency (100 μs)

gravLPA
LDN

CLPA
CTR

(c)

Figure 7: (e cumulative distribution function curve of the integrated latency.
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CTR’s 79.89ms, it decreases by 12.87%, 24.81%, and
24.42%, respectively.

5.4. Convergence Time. Although this article does not focus
on the dynamic placement, time complexity will seriously
affect the universality of the algorithm faced with large-scale
network topologies. (us, we increase the scale of the
network to compare the convergence time of each algorithm.
(e results are shown in Table 6, which cannot be shown in a
line or bar figure because of the serious nonlinear growth of
the value. It should be noticed that the convergence time
includes the time of subdomain division and controller
placement, and the TLE in Table 6 means the code is the time
limit (5 minutes) exceeded.

Although there may be errors in code optimization, the
experimental results are in line with expectations. GravCPA
and LDN are based on LPA and Louvain algorithms, re-
spectively, which improve the iterative operations and have
good time complexity. However, CLPA does not consider
calculation acceleration, while CTR is an algorithm based on
linear programming. It is difficult for the two to complete the
calculation in a short time with a larger network.

6. Future Work

6.1. Flow Types. In traffic engineering, data flow is usually
divided into two types, elephant flow (bulk data transfer), and
mice flow (short-lived data exchange) [26]. (ese two types
have completely different effects on the control messages
between the switch and the controller. (e former has huge
data transmission but only exchanges little control messages,
while the latter is totally opposite. In this article, the place-
ment strategy is only based on the size of the traffic demands,
the performance will decrease when facing extreme condi-
tions. We consider completing the controller deployment
strategy based on the predicted flow type in the next step.

6.2. Stability. We have noticed that both LPA and gravi-
tation models have problems with oscillations and non-
unique results. Although we have added a lot of assumptions
and constraints, there is still a problem that the placement
strategy results are not unique in specific or complex sce-
narios. And this part will become the direction of follow-up
research.

7. Conclusion

In this article, we focus on the CPP in the SDN multi-
controller architecture. Different from many research, we
optimize the average latency and the worst latency using the

data plane traffic demands. For the subdomain division
problem, the traffic gravitation is defined and an improved
LPA is designed accordingly. On the other hand, for the
subdomain controller placement, we use the open search for
the first and then use the traversal search in the surrounding
of the first step’s result to decide which placement is located
in the topology. (e comparative experiment proves the
effectiveness of the proposed algorithm, which can achieve
lower average latency and worst latency with a smaller
number of controllers, and it also has a certain time com-
plexity guarantee.
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