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�is paper addresses the swarm tracking problem of multiple unmanned surface vehicles subjected to unknown time-varying
environmental disturbance and input saturation.�emain control objective of this paper is that USVs cluster to follow the virtual
leader with the desired position and heading and are required to maintain a speci�ed position separation relative to both neighbor
vehicles. In order to achieve the design goal, we mainly focus on three aspects. Firstly, to estimate the external disturbance
accurately and improve the convergence speed, a �nite-time disturbance observer is designed. Secondly, an auxiliary dynamic
system is introduced to solve the input saturation problem. �irdly, an output feedback controller based on a �nite-time
disturbance observer and an auxiliary dynamic system is designed to achieve swarm control of multiple unmanned surface
vehicles. �e stability of the system is proved by the Lyapunov directly method. Finally, the simulation results show that the
proposed control strategy is e�ective.

1. Introduction

In recent years, swarm control for multiple unmanned
surface vehicles (USVs) has attracted increasing interest in
many �elds, such as search and track mission [1], rescue
operations [2], and dynamic guarding [3, 4]. �ese have
brought new challenges to USV cluster control, especially
maintaining a desired position separation relative to what is
often required when USVs swarm to perform the corre-
sponding missions [5].

�ese challenges can be divided into two aspects: un-
known time-varying environmental disturbance and input
saturation. �e environmental disturbance is caused by the
wind, waves, and ocean currents in surge, sway, and yaw,
respectively. Due to the environmental disturbance being
unknown and time-varying, it cannot be measured directly
and accurately. �erefore, some control strategies based on
estimating disturbance or compensating for disturbance are
proposed in [6–11]. �rough these proposed control

strategies, the observation error only accurately estimates
rather than converges to a small neighborhood of an
equilibrium state as soon as possible. Furthermore, to im-
prove the convergence speed, the �nite-time control tech-
nology is adopted in [12–16], which ensures the consistency
of all states in the closed-loop system in a �nite time.
�erefore, the combination of disturbance observer and
�nite-time control technology is an executable program.

Except for environmental disturbance, another challenge
to USVs’ cluster control is input saturation. Since the USV
actuator cannot be in�nite, there is a deviation between the
expected input signal and the actual output of the actuator.
�erefore, the amplitude of the control signal is usually
limited to a certain range. In the process of designing the
actuator, it is necessary to consider the physical constraints
of the actuator, that is, input saturation. �e existence of
input saturation may lead to system oscillation and even
system instability. In recent years, the input saturation
problem of various systems has received the most extensive
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attention. In [17], an adaptive mechanism is devised to figure
out the input saturation problem. In [18], a novel finite-time
control approach is presented to overcome the effects of state
constraints on system performance. +e group consensus
algorithms with input saturation are given in [19]. From the
vessels’ work situation, it is very necessary to take input
saturation into account in cluster control through the actual
working conditions of the multiple USVs.

Based on the above research background, for the first
challenge, a finite-time disturbance observer is proposed to
resolve the first challenge, which can not only measure the
disturbance accurately, but also improve the converge speed.
Secondly, by using an auxiliary dynamic system to solve the
second problem of input saturation. Furthermore, to solve
the above two challenges more perfectly, an output feedback
controller is proposed, which is mainly composed of a finite
time-disturbance observer, an auxiliary dynamic system,
and other control technologies. Meanwhile, it is proved that
all signals in the closed-loop system are bounded by the
Lyapunov method.

+e main contributions of this paper are summarized as
follows: firstly, different from existing disturbance observer
approaches in [20], the unknown time-varying environ-
mental disturbance can be measured accurately by the finite-
time disturbance observer. Secondly, unlike the existing
work ignoring the actuator constraints, an auxiliary dynamic
system is introduced to resolve the input saturation problem.
+irdly, an output feedback controller is designed, which is
mainly composed of a finite-time disturbance observer, an
auxiliary dynamic system, and other control technologies.

A summary of recent works is outlined in Table 1,
corresponding to different features and classification.

+is paper is organized as follows: Section 2 describes some
necessary preliminaries and mathematical modeling of USVs.
Section 3 depicts the finite-time disturbance observer design.
Section 4 describes the output feedback controller design and
stability analysis. Simulation results and comparison results are
discussed in Section 5 and Section 6 concludes this paper.

Notations: the following notations will be used
throughout this paper. A/B denotes all elements that belong
to A and not to B. | · | represents the absolute value of a
scalar. ‖ · ‖ denotes the Euclidean norm. Rm×n represents the
m × n dimensional Euclidean Space. diag ai􏼈 􏼉 denotes a
block-diagonal matrix with ai being the ith diagonal ele-
ment. (·)T and (·)− 1 represent the transpose and inverse of a
matrix, respectively. ⊗ denotes the Kronecker product of
matrix. λmin(·) and λmax(·) represent minimum and maxi-
mum of eigenvalues a matrix, respectively.
sigδ(·) � | · |δsign(·), sign represents the Symbolic function,
i.e., sign(t) � − 1, ∀t< 0; sign(t) � 0, t � 0; sign(t) � 1,
∀t> 0. In represents the n × n dimensional identity matrix. i

is used to denote the subscript of USVs.

2. Preliminaries and Mathematical
Modeling of USVs

2.1. Algebraic Graph %eory. Graph theory is used to de-
scribe the communication topology of n follower USVs and a
virtual leader vehicle (denoted by 0). A directed graph G �

(V, ε) consists of a vertex setV � 0, 1, 2, . . . , n{ } and the set
of edges ε⊆ (i, j) ∈ V × V􏼈 􏼉. A directed edge (i, j) is not only
the incoming edge of node j but also the outgoing edge of
node i. If (i, j) ∈ ε, node j is an adjacent node of node i. +e
set of all adjacent nodes of node i is represents by
Ni � j ∈ V, (i, j) ∈ ε􏼈 􏼉, see [21].

Consider a directed graph G composed of n nodes, the
adjacency matrix A � [aij]n×n is used to represent the link
relationship between nodes, where aij � 1, if (i, j) ∈ ε;
aij � 0, otherwise. If aij � aji, the graph is undirected;
otherwise is directed. +e Laplacian matrix L associates
with the graph G is defined as L � D − A where
D � diag d1, d2, . . . , dn􏼈 􏼉 with di � 􏽐

n
j�1 aij. Laplacian ma-

trix L always has a right eigenvector of 1n � (1, 1, . . . , 1)T

associated with eigen value λ1 � 0.
In particular, a diagonal matrixA0 � diag ai0􏼈 􏼉 is defined

as a leader adjacencymatrix, where ai0 � 1, if and only if the i

th USV receives information from the virtual leader vehicle;
ai0 � 0, otherwise. Finally, the information exchange matrix
is defined as H � L + A0.

Assump 1. +e graph G is directed, and there is at least one
spanning tree from the root node to the leader node, i.e., the
H is a positive definite matrix.

2.2. Finite Time Stability

Lemma 1 (see [13]). Consider the system of differential
equations

_y(t) � f(y(t)),

f(0) � 0,
(1)

where f: U⟶ Rn is continuous on an open neighborhood
U⊆Rn of the origin. A continuously differentiable function
y: T⟶ U is said to be a solution of formula (1) on the
interval T ⊂ R if y(t) satisfies formula (1) for all t ∈ T.

Suppose there exists a continuous positive definite
function V: U⟶ R, real numbers c1 > 0, c2 ∈ (0, 1) and an
open neighborhood U0⊆U of the origin such that

_V(x) + c1(V(x))
c2 ≤ 0, x ∈ U0\ 0{ }. (2)

+en the origin is a finite-time-stable equilibrium of (1).
Moreover, if U � Rn, V(x) is proper, and _V(x) takes

negative values on Rn\ 0{ }, then the origin is a globally finite-
time-stable equilibrium of (1). And T is called the conver-
gence-time function, it satisfies

T(x)≤
1

c1 1 − c2( 􏼁
(V(x))

1− c2 , x ∈ Rn
\ 0{ }. (3)

2.3. USVs Modeling. Consider a group of USVs swarm
consisting a virtual leader vehicle (subscript is 0) and n

follower USVs (subscript is 1, 2, . . . , n), the 3 degrees of
freedom (DOFs) kinematics and dynamics equations of the i

th USV can be expressed in vector form as follows:[23]
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_ηi � Ri ψi( 􏼁υi, (4)

Mi _υi + Diυi � τi + di, (5)

where Ri(ψi) is the rotation matrix, it is given as follows:

Ri ψi( 􏼁 �

cos ψi( 􏼁 − sin ψi( 􏼁 0

sin ψi( 􏼁 cos ψi( 􏼁 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (6)

with properties: ‖Ri(ψi)‖ � 1 and RT
i Ri(ψi) � I3×3.

ηi: � [xi, yi,ψi]
T is the position and yaw angle in the earth-

fixed frame XEOEYE (see Figure 1). υi: � [ui, vi, ri]
T is the

velocity vector in the body-fixed frame XBOBYB. +e system
inertia matrix Mi ∈ R3×3 is positive definite and constant,
where Mi � MT

i and Mi

.

� 0. +e damping matrix
Di ∈ R3×3 is also symmetric and positive define.
τi: � [τi1, τi2, τi3]

T is the control input, which is produced
by the propellers. di: � [di1, di2, di3]

T is unknown time-
varying environmental disturbance, which caused by the
wind, waves, and ocean currents in surge, sway, and yaw,
respectively.

In this paper, considering the input saturation con-
straint, the control forces and moment produced via the
propellers are limited.+e input saturation constraint can be
described as follows:

τi �

τi,max, ifτic > τi,max,

τic, ifτi,min ≤ τic ≤ τi,max,

τi,min, ifτic < τi,min,

⎧⎪⎪⎨

⎪⎪⎩
(7)

where τi,max ∈ R3 and τi,min ∈ R3 are the maximum and
minimum control forces and moment of i th vehicle, re-
spectively. τic � [τic1, τic2, τic3]

T is calculated by the output
feedback controller.

+e main goal of this paper is to design a control law so
that the USVs can track the desired reference point while
maintaining a fixed formation, i.e.,

lim
t⟶+∞

ηi − ηd − μi

����
����≤ σi, (8)

where ηd: � [xd, yd,ψd]T is the desired reference point.
μi: � [xiμ, yiμ,ψiμ]T represents the expected relative devi-
ation position and heading between the i th USV and the
desired reference point. In order to maintain fixed formation

for USVs cluster, thus μi is a constant vector. σi > 0 is a
positive constant.

Assump 2. +e reference signal ηd is smooth and differ-
entiable everywhere. Its first derivative _ηd and second de-
rivative €ηd exist and are bounded.

Assump 3. +e time-varying environmental disturbances di

is unknown but bounded, and its first derivative di

.

exists
and is bounded, i.e.,

di

����
����≤ di,max, di

.�����

�����≤ c3, (9)

where di,max > 0 and c3 > 0 are positive constants.

Assump 4. +e system inertia matrix Mi and damping
matrix Di are known.

2.4. Environmental Disturbances Modeling. . Unmodeled
external forces and moment due to wind, ocean currents,
and second waves are lumped together into an earth-fixed
slowly-varying bias term di ∈ R3 [24, 25]. A widely used bias
model for USVs is the first-orderMarkov process [26–28]. In
this paper, the environmental disturbances are modeled as
follows:

di � − R
T
i b, (10)

where b represents the first-order Markov process, it is given
as follows:

_b � − T− 1
b + Ebϑb, (11)

where T ∈ R3×3 is the diagonal matrix of positive bias time
constants, Eb ∈ R3×3 is the diagonal matrix scaling the
amplitude of the ϑb, ϑb ∈ R3 is a vector of zero-mean
Gaussian while noise.

Table 1: Recent works on consensus problems.

Features Classification References

About environmental
disturbance

Formation control [6]
Tracking control [7, 8]
Output-feedback

control [5, 9, 10]

About time control
Fixed-time control [11]
Finite-time control [12–16]
Time-varying control [21]

Constraints Input saturation [17, 19, 22]
Full state constraints [18]

XE XB

YB

YE

OB

OE

r

ψ u

v
(x, y)

Figure 1: Earth-fixed frame and body-fixed frame.
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3. Finite-Time Disturbance Observer Design

Owing the environmental disturbance is unknown and time-
varying, the accurate value is difficult to receive directly. To
solve this problem, a finite-time disturbance observer
(FTDO) is designed as follows:

Mi
_􏽢υi � − Diυi + τi + 􏽢di, (12)

where 􏽢di is the estimate of the unknown time-varying en-
vironmental disturbance di, 􏽢υi is the estimate of υi.

A new variable is defined as follows:

ωi � Miυi − Mi􏽢υi, (13)

+e update law (􏽢di) of FTDO is obtained as follows:

􏽢di � Hi1sig
δi1 ωi( 􏼁 + Hi2􏽚 sigδi2 ωi( 􏼁dt, (14)

where Hi1 ∈ R3×3 and Hi2 ∈ R3×3 are positive define diag-
onal matrices. δi1 > 0 and δi2 > 0 are positive constants and
satisfy 0.5≤ δi1 < 1 and δi2 � 2δi1 − 1, respectively.

Define the estimation error of disturbances 􏽥di � di − 􏽢di.
+e time derivative of (13) is given as follows:

_ωi � di − 􏽢di � 􏽥di � − Hi1sig
δi1 ωi( 􏼁 − Hi2􏽚 sigδi2 ωi( 􏼁dt + di.

(15)

Define a new variable vector ρi � [xT
i1, xT

i2]
T � [ωT

i , ςT
i ]T,

where ςi � − Hi2􏽒 sigδi2(ωi)dt + di. +us, the formula (15) is
rewritten as follows:

_xi1 � − Hi1sig
δi1 xi1( 􏼁 + xi2, (16)

_xi2 � − Hi2sig
δi2 xi1( 􏼁 + _di. (17)

If a new closed-loop system is constructed by the for-
mulas (16) and (17), then xi1 and xi2 can be regarded as the
internal states of this closed-loop system. Under these

circumstances, if xi1⟶ 0 and xi2⟶ 0 in finite time, then
_xi1⟶ 0 and 􏽢di � di in finite time.

+erefore, the following theorem holds.

Theorem 1. %e disturbance observer composed by the
formulas (12) and (14), the unknown time-varying environ-
mental disturbance can be estimated in finite time, and the
disturbance estimation error converges to a neighborhood of
the equilibrium point in finite time.

Proof. +e Lyapunov function Vi is chosen as follows:

Vi �
1
2
χT

i Piχi, (18)

where the vector χi and positive define matrix Pi are
designed as follows, respectively.

χi �
sig

δi1 xi1( 􏼁

xi2

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

Pi �

2Hi2

δi1
+ H

2
i1 − Hi1

− Hi1 2I3×3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(19)

Note that Lyapunov function Vi is continuous and
differentiable everywhere except ρi � (xi1, xi2)|xi1 � 03×1􏼈 􏼉

and positive definite. +en, we get
1
2
λmin Pi( 􏼁 χi

����
����
2 ≤Vi ≤

1
2
λmax Pi( 􏼁 χi

����
����
2
, (20)

where

χi

����
����
2

� sig
δi1 xi1( 􏼁􏼐 􏼑

2
+ x

T
i2xi2 � xi1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2δi1 + x

T
i2xi2. (21)

+e time derivative of Lyapunov function Vi is given as
follows:

_Vi � χT
i

δi1Hi1 − Hi2

− δi1 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦Piχi +

1
2
χT

i Pi

03×3

_di

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + χT
i Pi

δi1 xi1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
δi1− 1

− Hi1sig
δi1 xi1( 􏼁 + xi2􏼐 􏼑

− Hi2sig
δi2 xi1( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

1
2
χT

i Pi

03×3

_di

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� χT
i Pi

xi1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
δi1− 1δi1 − Hi1sig

δi1 xi1( 􏼁 + xi2􏼐 􏼑

− Hi2sig
δi1− 1

xi1( 􏼁sig
δi1 xi1( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + χT

i

δi1Hi1 − Hi2

− δi1 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦Piχi + χT

i Pi

03×3

_di

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� − xi1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
δi1− 1χT

i Liχi + χT
i li

_di ≤ − λmin Li( 􏼁 xi1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
δi1− 1 χi

����
����
2

+ c3 χi

����
���� li
����

����,

(22)

where
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Li � Hi1
Hi2 + δi1H

2
i1 − δi1Hi1

− δi1Hi1 δi1I3×3

⎡⎣ ⎤⎦,

li �
− Hi1

2I3×3
􏼢 􏼣.

(23)

From formula (21), the following inequality holds:

χi

����
����
2

� xi1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2δi1 + x

T
i2xi2

⇒ χi

����
����
2 ≥ xi1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2δi1

⇒ xi1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
δi1− 1 ≥ χi

����
����

δi1− 1( )/δi1 .

(24)

Substituting the formula (24) into (22), the inequation
(22) is written as follows:

_Vi ≤ − ci1 χi

����
����
δi1+δi2/δi1 , (25)

where ci1 � λmin(Li) − (c3 ‖li‖/‖χi‖
δi2/δi1) � λmin(Li)−

c3‖li‖‖χi‖
− (δi2/δi1).

To ensure the coefficient ci1 > 0, the following inequality
is holds

χi

����
����>

c3 li
����

����

λmin Li( 􏼁
􏼠 􏼡

δi1/δi2

. (26)

From formulas (20) and (26), the term _Vi is bounded,
i.e.,

_Vi ≤ − ci2V
ci3
i , (27)

where

ci2 � 2ci1
λ− δi2/2δi1( )
min Pi( 􏼁

�������
λmin Pi( 􏼁

􏽱 � 2ci1λ
− ci3
min Pi( 􏼁> 0,

0< ci3 �
δi1 + δi2

2δi1
< 1.

(28)

According to the Lemma 1, the new closed-loop system
composed of formulas (16) and (17) converges to a neigh-
borhood of the equilibrium point in finite time.

+is completes the proof.

4. Output Feedback Controller Design

In this chapter, inspired by references [29, 30], the output
feedback controller is designed. +e structure diagram of
multiple unmanned surface vehicles swarm control is shown
in Figure 2.

4.1.AuxiliaryDynamicSystemDesign. In this subsection, the
auxiliary dynamic system (ADS) is introduced to settle the
input saturation problem [22]. For ADS, as shown in Fig-
ure 2, the input of the system is the difference value (Δτi)

between the control forces andmoments with saturation (τi)

and those without saturation constraint (τic). +e output of
ADS is the compensation of position and heading tracking
error (βi1) and the compensation of velocity tracking error

(βi2) for i th USV. +e purpose of designing ADS is to
compensate for the specified variables in the closed-loop
system.

Among them, βi1 and βi2 are position and heading
compensation and velocity compensation for zi1 and zi2,
respectively. +e ADS is designed as follows:

_βi1 � − Li1βi1 + aidJiβi2, (29)

_βi2 � − Li2βi2 + M
− 1
i Δτi. (30)

where βi1 ∈ R3×1 and βi2 ∈ R3×1 are the output states of the
ADS. Li1 ∈ R3×3 and Li2 ∈ R3×3 are diagonal positive ma-
trices. aid � di + ai0. Δτi � τi − τic, ‖Δτi‖≤Δτi,max,
Δτi,max > 0 is a positive constant.

4.2. Output Feedback Controller Design. In this subsection,
the output feedback controller of multiple USVs is designed
by using dynamic surface control technology [20]. +e
design process of output feedback controller is divided into
the following steps.

Step 1. +e first tracking error of the i th USV in earth-fixed
frame is defined as follows:

zi1 � 􏽘
j∈Ni

aij ηi − μi − ηj − μj􏼐 􏼑􏼐 􏼑 + ai0 ηi − ηd − μi( 􏼁 − βi1,

(31)

whereNi, aij and ai0 are defined in Section 2.2. ηi, μi and ηd

are explained in formula (8), ηj and μj have similar
definitions.

+e time derivative of zi1, and using the formula (4) and
(29), we obtain as follows:

_zi1 � 􏽘
j∈Ni

aij _ηi − 􏽘
j∈Ni

aij _ηj + ai0 _ηi − ai0 _ηd − _βi1

� 􏽘
j∈Ni

aij + ai0
⎛⎝ ⎞⎠Riυi − 􏽘

j∈Ni

aij _ηj − ai0 _ηd + Li1βi1 − aidJiβi2

� aidRiυi − 􏽘
j∈Ni

aij _ηj − ai0 _ηd + Li1βi1 − aidJiβi2.

(32)

Choosing υi as a virtual input in formula (32), by using
dynamic surface control technology, the kinematic control
law αi is designed as follows:

αi �
R

T
i

aid

− Ki1zi1 + 􏽘
j∈Ni

aij _ηj + ai0 _ηd − Li1βi1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (33)

where Ki1 ∈ R3×3 is the positive definite diagonal matrix.
From the kinematic control law obtained, it can be found

that it is complex to calculate the time derivative of the αi.
+erefore, a first-order low-poss filter is introduced to settle
the matter.

Let αi pass through a first-order low-poss filter
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ιi _υid � _αi − υid,

υid(0) � αi(0),
(34)

where ιi > 0 is a time constant, υid ∈ R3×1 is the output vector
of the first-order low-poss filter.

Step 2. According to the velocity (υi) of the i th USV, the
output (υid) of the first-order low-pass filter, and the state βi2
of ADS, the second tracking error of the i th USV is defined
as follows:

zi2 � υi − υid − βi2. (35)

By differentiating zi2 and using the formula (5) and (30),
we get the formula as follows:

Mi _zi2 � − Diυi + τic + di − Mi _υid − Li2βi2( 􏼁. (36)

Furthermore, the term di in formula (36) is replaced by
the estimated value 􏽢di of unknown time-varying environ-
mental disturbance produced via the FTDO. +en, by using
dynamic surface control method, the dynamic control law
τic is designed as follows:

τic � − Ki2zi2 + Diυi + Mi _υid − Li2βi2( 􏼁 − 􏽢di, (37)

where Ki2 ∈ R3×3 is the positive definite diagonal matrix.
By substituting formula (33) and (37) into (31) and

(35), the error subsystem of the i th USV is obtained as
follows:

_zi1 � − Ki1zi1 + aidRi zi2 + qi( 􏼁, (38)

Mi _zi2 � − Ki2zi2 − 􏽥di, (39)

where qi � υid − αi, 􏽥di is explained in formula (15).
According to the definition of vector qi, by differenti-

ating qi, and using the formula (34), we get the equation as
follows:

_qi � −
qi

ιi
− _αi. (40)

By integrating the two sides of formula (40), we have the
following formula:

qi(t) � qi(0)e
− t/ιi( ) − 􏽚

t

0
e

− (t− τ)/ιi( ) _αi(υ)dυ. (41)

Further calculation, the following inequality holds:

qi(t)
����

����≤ qi(0)
����

����e
− t/ιi( ) + supυ∈[0,t] _αi(υ)􏼈 􏼉 􏽚

t

0
e

− t− υ/ιi( )dυ

≤ qi(0)
����

����e
− t/ιi( ) + ιi _αi

����
����∞.

(42)

Owing to the control input of adjacent USVs are
bounded, i.e., ∃αi,max > 0: ‖ _αi‖≤ αi,max, ∀t ∈ [0,∞]. In fact,
since all systems are energy consuming system, the output of
all USVs is bounded. +erefore, the following inequality
holds:

qi(t)
����

����≤ qi(0)
����

����e
− t/ιi( ) + ιiαi,max. (43)

+erefore, qi(t) is bounded and ‖qi(t)‖≤ qi,max.

4.3. Stability Analysis

Theorem 2. A close-loop system is considered, which is
composed of n USVs cluster with input saturation, FTDO (12)
and (14) with unknown time-varying environmental distur-
bance, ADS (29) and (30), output feedback controller (33) and
(37). %e swarm control scheme guarantees that all error
signals in this close-loop system are bounded, and the tracking
error converges to a neighborhood of the equilibrium point in
finite time.

Proof. Consider the above closed-loop system, the Lyapu-
nov function V is chosen as follows:

V � 􏽘 n
i�1

1
2
z

T
i1zi1 +

1
2
z

T
i2Mizi2 +

1
2
βT

i1βi1 +
1
2
βT

i2βi2􏼚 􏼛. (44)

+e time derivative of V, we obtain the following
equation:

_V � 􏽘 n
i�1 z

T
i1 _zi1 + z

T
i2Mi _zi2 + βTi1 _βi1 + βTi2 _βi2􏽮 􏽯. (45)

From the formula (32), and using Young’s inequality, we
get the following equation:

ϑi, ηd, η·d
ηj, ϑi

ηi, υi

ηi, υizi1 zi2αi
–

– –

–

–

j∈Ni
+ +

+

βi1 βi2

di

d⌃i

Kinematic
control law

Dynamic
control law

First-order
Low pass filter

υid τic τi

τi

∆τi

υid

υi
υi

USV

 Auxiliary
dynamic system

Unknown time-varying
environmental disturbance

Finite-time
disturbance observer

Figure 2: Structure diagram of multiple unmanned surface vehicles swarm control.
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z
T
i1 _zi1 � z

T
i1 − Ki1zi1 + aidRi zi2 + qi( 􏼁( 􏼁

� − z
T
i1Ki1zi1 + z

T
i1aidRizi2 + z

T
i1aidRiqi

≤ − z
T
i1Ki1zi1 +

aid

2
zi1

����
����
2

+
aid

2
zi2

����
����
2

+
aid

2
zi1

����
����
2

+
aid

2
qi

����
����
2

≤ − z
T
i1Ki1zi1 + aid zi1

����
����
2

+
aid

2
zi2

����
����
2

+
aid

2
qi

����
����
2
.

(46)

Similarly, the following inequalities hold:

z
T
i2Mi _zi2 ≤ − z

T
i2Ki2zi2 −

1
2

zi2
����

����
2

+
1
2

􏽥di

����
����
2
,

βT
i1

_βi1 ≤ − βT
i1Li1βi1 +

aid

2
βi1

����
����
2

+
aid

2
βi2

����
����
2
,

βT
i2

_βi2 ≤ − βT
i2Li2βi2 +

1
2
Δτi( 􏼁

T
M

− 1
i􏼐 􏼑

T
M

− 1
i Δτi +

1
2
βi2

����
����
2
.

(47)

Substituting the formulas (46) and (47) into (45), then
(45) is rewritten as follows:

_V≤ 􏽘

n

i�1
z

T
i1 _zi1 + z

T
i2Mi _zi2 + βT

i1
_βi1 + βT

i2
_βi2􏽮 􏽯,

≤ 􏽘
n

i�1
− λmin Ki1( 􏼁 − αid( 􏼁 zi1

����
����
2

− λmin Ki2( 􏼁 −
αid + 1

2
􏼒 􏼓 zi2

����
����
2

− λmin Li1( 􏼁 −
αid

2
􏼒 􏼓 βi1

����
����
2

􏼚

− λmin Li2( 􏼁 −
αid + 1

2
􏼒 􏼓 βi2

����
����
2

+
1
2

􏽥di

����
����
2

+
aid

2
qi

����
����
2

+
1
2

M
− 1
i Δτi􏼐 􏼑

T
M

− 1
i Δτi.

(48)

From the FTDO, the term 􏽥di converges to zero in finite
time. According to the formula (43), ‖qi(t)‖≤ qi,max. For the
i th USV, Mi is a known positive constant matrix.
‖Δτi‖≤Δτi,max is defined in Section 4.1. +us, we have the
following equation:

c4 � 􏽘
n

i�1

1
2

􏽥di

����
����
2

+
aid

2
q
2
i,max +

1
2
λmin M

− 1
i􏼐 􏼑

T
M

− 1
i􏼒 􏼓 Δτi,max􏼐 􏼑

2
􏼚 􏼛.

(49)

where c4 is bounded, i.e., 0< c4 ≤ c4,max.
To ensure the stability of the closed-loop system, the

parameters Ki1, Ki2, Li1, and Li2 should meet the following
conditions:

bi1 � λmin Ki1( 􏼁 − αid > 0

bi2 � λmin Ki2( 􏼁 −
αid + 1

2
> 0

bi3 � λmin Li1( 􏼁 −
αid

2
> 0

bi4 � λmin Li2( 􏼁 −
αid + 1

2
> 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

where bi1, bi2, bi3, and bi4 are positive constants.
Substituting the formulas (49) and (50) into (48), then

(48) is rewritten as follows:

_V≤ 􏽘
n

i�1
− bi1 zi1

����
����
2

− bi2 zi2
����

����
2

− bi3 βi1
����

����
2

− bi4 βi2
����

����
2

􏼚 􏼛 + c4,max

≤ − bV + c4,max.

(51)

where b � 2min bi1, bi2, bi3, bi4􏼈 􏼉> 0.
From the formula (51), either ‖zi1‖>

��������
c4,max/bi1

􏽱
, or

‖zi2‖>
��������
c4,max/bi2

􏽱
, or ‖βi1‖>

��������
c4,max/bi3

􏽱
, or

‖βi1‖>
��������
c4,max/bi3

􏽱
, then _V≤ 0 holds. +is implies that:

V(t)≤ V(0) −
c4,max

b
􏼒 􏼓e

− bt
+

c4,max

b
. (52)

It can be concluded that all signals (zi1, zi2, βi1, βi2,
􏽢di) in

the closed-loop system are bounded. +us, the values of
variables zi1 and βi1 are given as:

zi1
����

����≤
�����
c4,max

b

􏽲

, (53)

βi1
����

����≤
�����
c4,max

b

􏽲

. (54)

Next, it will be proved that the USV cluster can track the
reference signal with the desired relative deviation.

+e tracking error of the i th USV in the earth-fixed
frame is defined as δi, it satisfies the following
constraints:

δi � ηi − ηd − μi, (55)

According to the formula (31), we obtain:

z1 + β1 � H⊗ I3( 􏼁δ, (56)

where z1 � [zT
11, zT

21, . . . , zT
n1]

T, β1 � [βT
11, β

T
21, . . . , βT

n1]
T, and

δ � [δT
1 , δT

2 , . . . , δT
n ]T. H is defined in Section 2.2.

According to the Assumption 1 of algebraic graph
theory in the Section 2.2, it can be concluded that all
eigenvalues of matrix H have positive real parts. Fur-
thermore, using the formulas (53) and (54), we get the
following equation:
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‖δ‖≤
‖z1‖ + ‖β1‖
λmin(H)

≤
2

������
2c4,max

􏽰

λmin(H)
�
b

√ . (57)

According to the formulas (51) and (57), by adjusting the
parameters of controller and disturbance observer, the upper
bound of tracking error can be reduced and finally converges
to a very small neighborhood close to zero.

+is completes the proof.

5. Simulation Results

In this section, a USV swarm consisting of one virtual leader
vehicle (indexed by 0) and six follower USVs (indexed by
1, 2, . . . , 6) is considered to demonstrate the effectiveness of
the proposed control strategy. +e directed communication
graph is shown in Figure 3.

In simulations, the model of the surface ship Cybership
II is used [31].+e time-varying environmental disturbances
are modeled as first-order Markov processes [24]. +e
control forces and moment are limited as
τi1,max � − τi1,min � 2N, τi2,max � − τi2,min � 2N and
τi3,max � − τi3,min � 1.5Nm.+e desired reference point is set
as ηd � [15m, 15m, 45deg]T. Some parameters setting are
shown in Table 2.

5.1. Performance of Proposed Control Strategy. In this sub-
section, the simulation results are given to verify the per-
formance of proposed control strategy.

+e parameters of environmental disturbance are se-
lected as T � diag 10− 3, 10− 3, 10− 3􏼈 􏼉, b(0) � [0, 0, 0]T,
Eb � diag 10− 5, 10− 5, 10− 5􏼈 􏼉, ϑb � [0.5, 0.5, 0.5]T. +e pa-
rameters of observer are selected as Li1 � diag 10, 10, 10{ },
Li2 � diag 10, 10, 10{ }, δi1 � 0.75 and δi2 � 0.5. +e design
parameters of controller are chosen as ιi � 0.001,
Ki1 � diag 1.2, 1.2, 1.2{ } and Ki2 � diag 0.6, 0.6, 0.6{ }.

+e simulation results are shown in Figures 4–8. Figure 4
shows the trajectories of six USVs under the constraints of
time-varying environmental disturbance and input satura-
tion. It can be seen from Figure 4, the position and heading
of six USVs can track the reference signal in the form of
swarm motion and maintain the desired relative position
with each other, although there is a deviation in the initial
position of each USV. Figure 5 depicts the position and
heading tracking errors of six USVs. It can be seen from the
figure that the tracking errors of six USVs are convergent.
Figure 6 shows the control forces and moments of six USVs
with an auxiliary dynamic system. +rough the analysis of
Figure 6, the control inputs of six USVs are limited within
the range of input constraints, and finally the constraint of
input amplitude saturation is realized. Figure 7 depicts the
true value of the time-varying environmental disturbance
acting on the 1st USV and the estimated values obtained by
methods FTDO and MDA, respectively. Figure 8 shows the
disturbance error (􏽥di) of six USVs between the actual value
(di) and estimation value (􏽢di) via the FTDO. +e specific
values of simulation test and comparison test are shown in
Table 3.

5.2. Comparison Group. +e first comparison simulation is
carried out by using a modular design approach (MDA)
proposed in [20].

Simulation results on the proposed predictor module for
estimating the value and estimation error of the unknown

USV0

USV3

USV1

USV2 USV5 USV6

USV4

Figure 3: Directed communication topology.

Table 2: +e parameters of six follower USVs.

μi data/(m,m, deg) ηi data/(m,m, deg)

μ1 [− 2.8, 0.3, 0]T η1 [− 2.5, 0, 0]T

μ2 [− 1.6, 2.5, 0]T η2 [− 1.3, 2.2, 0]T

μ3 [− 1.6, 1.9, 0]T η3 [− 1.3, − 2.2, 0]T

μ4 [1.0, 2.5, 0]T η4 [1.3, 2.2, 0]T

μ5 [1.6, − 2.5, 0]T η5 [1.3, − 2.2, 0]T

μ6 [2.2, − 0.3, 0]T η6 [2.5, 0, 0]T
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Figure 4: Trajectories of six follower USVs.
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ocean disturbances are shown in Figures 7 and 9. Figure 7
shows the different time-varying environmental disturbance
estimations of the 1st USV about actual value, MDA, and
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Figure 5: Tracking errors of six follower USVs.
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Figure 6: +e control input (τi) of six USVs with ADS.
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Figure 8: +e disturbance error (􏽥di) of six USVs.

Journal of Control Science and Engineering 9



FTDO, respectively. Figure 9 shows the disturbance error of
six USVs by using MDA. From Figures 7–9, the control
inputs of two methods are both limited, but the more ac-
curate estimation of the environmental disturbance is ob-
tained by FTDO.

+e other simulation results of the proposed state
feedback controller without the auxiliary dynamic system
and input saturation are illustrated in Figures 10 and 11,
Figure 10 shows the control input of six follower USVs
without considering the auxiliary dynamic system. Figure 11
shows the control input of six follower USVs without ac-
tuator constraint. +rough comparing Figures 6, 10, and 11,
the auxiliary dynamic system can effectively finish off the
input saturation, and it is very necessary to take the physical
constraints of the system into account when designing the
controller.

Table 3: Specific values of simulation test and comparison test.

Performance parameter Values
Consider ADS Convergence time 24.0 s
No ADS Convergence time 31.2 s
Consider input saturation τi1,max and τi2,max 2N
No input saturation τi1,max and τi2,max 200N
Consider input saturation τi3,max 1.5Nm
No input saturation τi3,max 150Nm
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Figure 9: +e disturbance error (􏽥di) of six USVs via MDA.
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Figure 10: +e control input (τi) of six USVs with the input
saturation without ADS.
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Figure 11: +e control input (τi) of six USVs without the actuator
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6. Conclusion

+is paper investigates swarm control for multiple USVs in
the presence of an unknown time-varying environmental
disturbance and input saturation. Firstly, an observer is
designed to estimate disturbance by using finite time control
technology. Secondly, an auxiliary dynamic system is in-
troduced to finish off the input saturation problem. +irdly,
an output feedback controller is designed, which is mainly
composed of a finite-time disturbance observer, an auxiliary
dynamic system, and other control technologies. At the same
time, the stability of the system is proved by the Lyapunov
method. Finally, the effectiveness of the proposed control
strategy is verified by simulation results.

However, in the design process of the controller, only
input amplitude saturation and time-varying environmental
disturbance are considered: collision avoidance and obstacle
avoidance are ignored. Safe, reliable, and collision-free track
planning is an important research direction in the field of
unmanned surface vehicles. +is is the focus of our future
research.
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