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In order to solve the problem of low abnormal diagnosis rate of self-powered power supply system, an improved grey wolf
optimization-support vector machine (GWO-SVM) algorithm combined with maximal information coefcient (MIC) are
proposed. First, the feature sets of 11 kinds of monitoring data are optimized and selected based on MIC for self-powered power
supply system. By eliminating redundant variables and insensitive variables, feature variable sets with great infuence on abnormal
diagnosis are selected. Second, by upgrading the selection method of control parameter σ from linear to nonlinear, an improved
GWO-SVM algorithm that can take into account both global and local search capabilities is proposed. Furthermore, the optimal
feature set which has great infuence on abnormal diagnosis is selected as the input of the proposed algorithm, and then the
abnormal diagnosis method combining the improved GWO-SVMwithMIC is constructed for self-powered power supply system.
Te specifc algorithm fow and step are given. Finally, compared with other algorithm, the simulation experiments show that the
GWO-SVM method has a higher accuracy and a higher recall rate for the abnormal diagnosis in the self-powered power supply
system.

1. Introduction

Te self-powered power supply system is the self-
generating equipment that uses the vehicle chassis en-
gine as the power source, drives the generator through the
power take-of transmission device, and provides elec-
trical energy to the electrical equipment without an ex-
ternal power source. Diferent from other on-board power
supply systems, the self-powered power supply system has
the advantages of safety, strong mobility, light weight,
small size, freedom from external environmental in-
fuences, low installation requirements, and easy main-
tenance. In the modern battlefeld, no matter how rapid
the growth of mechanized and informatized weapons and
equipment, they are inseparable from the strong support
of military power stations, and self-powered power supply
systems are the main source of electrical energy for

weapon systems. If the self-powered power supply system
is abnormal, faulty, damaged, invalid, etc., the entire
weapon system may fall into a paralyzed state, which will
seriously afect the military’s combat efectiveness.
Terefore, it is an unavoidable problem that some com-
ponents of the self-powered power supply system have
diferent degrees of abnormality [1, 2]. If efective mea-
sures are not taken in time, the weak ones will afect the
training due to the lack of normal power supply for the
weapon equipment system, and the serious ones will even
endanger the lives of personnel. Terefore, the abnormal
diagnosis for self-powered power supply system is very
meaningful for weapons and equipment. At the same
time, how to accurately diagnose abnormalities from
a large amount of system operation data, as far as possible
to detect and alert the accident in advance, to provide
valuable information for subsequent condition-based
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maintenance. Te abovementioned study is a work with
certain research signifcance and practical value [3].

To perform abnormal diagnosis of self-powered power
supply system, data feature selection is an indispensable step
[4], which can efciently enhance the generalization capacity
of the model and reduce overftting [5]. Te maximum
information coefcient is adopted for feature selection based
on the actual collected monitoring data. Te original
monitoring data always contains redundant information,
which will conceal the true information contained in the
data itself, and the redundant information may even in-
terfere with the diagnosis results. Terefore, it is essential to
obtain the hidden feature information from the original
data. Data noise must be removed and redundant data must
be reduced to reduce the impact on the diagnosis result [6].
Tis process is data dimensionality reduction. Data di-
mensionality reduction includes feature transformation and
features choose two methods [7–9]. A binary version of the
hybrid two-phase multiobjective FS approach is proposed
based on particle swarm optimization (PSO) and grey wolf
optimization (GWO) in [10]. Te traditional typical data
dimensionality reduction method mainly uses the principal
ingredient analysis approach, which is to transform the
characteristic space to obtain a new comprehensive feature
to replace the original feature to realize the goal of data
dimensionality decrease. Tis approach can efciently de-
crease the dimensionality of many learning tasks, but there is
an obvious disadvantage that it is difcult to interpret the
features after dimensionality reduction. Even if a simple
linear combination of the original features is performed,
there will be a problem of poor interpretation performance
of the model. Te study uses the variable correlation mea-
surement of the maximum information coefcient to per-
form feature selection and can better extract important
features.

Relative to abnormal monitoring, abnormal diagnosis is
a more accurate classifcation problem. Aiming at achieving
the ideal abnormal diagnostic efcacy, the classifcation
method is to establish a classifcation model with the label
data set. Artifcial intelligence-based methods are widely
used in many abnormal diagnosis and classifcation
methods, which use the historical data of the system under
normal and various abnormal conditions to train through
machine learning algorithms and then use it for abnormal
diagnosis [11]. Among them, there is a classifcation method
based on clustering, and its clustering efect is greatly af-
fected by independent points, noise, and initial clustering
centers [12, 13]; the rules are learned in the data set, and the
rules will be changed with the change of the data set [14, 15];
the abnormal diagnosis method based on neural network has
strong diagnostic ability, but the setting of the neural net-
work model parameters has a greater infuence on the
outcomes, and there is no unifed standard so far [16, 17].
Te SVM shows the merits of short training time and great
generalization ability and can be better used in abnormal
diagnosis [18]. Te SWM which is on basis of the learning
principle of structural risk minimization criterion can

overcome the defect of slow convergence rate. In the so-
lution of classifcation problems, SVM’s kernel function
coefcients and penalty factor values will afect the accuracy
of classifcation. If the kernel function coefcients and
penalty factor values are too large or too small, the diagnostic
error will become larger. At present, the coefcients of the
support vector machine are mainly improved by intelligent
improvement algorithms including grid search method,
PSO, genetic algorithm (GA), whale algorithm, and GWO,
but there is still a problem that the optimal penalty element
and kernel function coefcients cannot be obtained accu-
rately [19, 20].

For solving the abovementioned issues, frst the features
are selected based on MIC, and the GWO algorithm is
modifed by improving the control parameter σ.Te location
update method of GWO in conjunction is updated with Levi
fight. Furthermore, the kernel function coefcients and
penalty elements are optimized, and SVM parameters are
obtained. Te optimal solution to achieve the purpose of
abnormally accurate diagnosis of the self-powered power
supply system is given at last.

2. Analysis of AbnormalWorking Conditions of
Self-Powered Power Supply System

Te core modules of the self-power supply system are mainly
cage-type asynchronous generator modules, generator
control modules, and inverter modules. In the main three
core modules of the self-powered power supply system, due
to the long-term operation of the asynchronous generator in
the electromagnetic and variable working environment, it is
very prone to failure, and its common abnormal conditions
are bearing condition, rotor broken strip working condition,
air gap eccentric working condition, rotor unbalanced
working status, and stator winding interturn short circuit
condition. Under the help of “self-powered power supply
system simulation platform” developed by our laboratory, in
the early stage, the two types of gradient abnormal working
conditions of the short circuit among the stator windings of
the asynchronous motor and the broken rotor bar in the
early stage of the self-powered power supply system are
realized by modifying the main module simulation pa-
rameter. In the actual engineering, the two types of short
circuit among the stator windings of the asynchronous
motor and the broken rotor bar in the early stage occur more
frequently. Te electrical fault caused by the short circuit
among the stator windings of the asynchronous motor ac-
counts for 30% to 40%; in addition, the rotor break and the
electrical fault caused by it account for 10%. Stator winding
interturn short circuit and rotor break are the common
progressive development of abnormal conditions, that is, the
system parameters from the initial appearance of abnormal
to abnormally obvious process. Terefore, abnormal di-
agnosis studies were carried out on anomalies caused by two
types of gradient faults in the stator windings of asyn-
chronous generators, namely, short circuits between turns
and rotor breaks.
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3. Abnormal Diagnosis Scheme of Self-Powered
Power Supply System

Tis paper mainly studies the abnormal diagnosis of the
short circuit among the stator windings and the broken rotor
bar in the early stage of the asynchronous motor for the self-
powered power supply system. For solving the above-
mentioned issues, this paper puts forward an abnormal
diagnosis approach on basis of the combination of the
maximum information coefcient method (MIC) and the
improved GWO-SVM, and the reasons for the improvement
and combination of the abovementioned algorithms are
because of the following reasons.

One is that the monitoring data collected in the self-
powered power supply system have a strong or weak in-
fuence on the abnormal diagnosis efect of the system, and
MIC can eliminate redundant characteristic data based on
the correlation between the data.

Second, the SVM method is more sensitive to abnormal
data than traditional methods, such as K-nearest neighbors
and decision trees. Te SVM has good generalization ca-
pabilities and is often used in abnormal diagnosis.

Te third is that the GWO algorithm is a smart im-
provement algorithm, which shows the merits of quick
convergence speed and great improvement ability. Te
improved GWO algorithm in this paper optimizes the SVM
parameters and has outstanding performance in avoiding
getting stuck at the local optimum and can possess a higher
precision for abnormal diagnosing.

In summary, for the self-powered power supply system,
an improved GWO-SVM abnormal diagnosis scheme
combined with MIC is proposed, as shown in Figure 1.

4. FeatureOptimizationBasedon theMaximum
Information Coefficient

When faced with tens of thousands of data variables, for
a specifc output result, some variables have important
causal relationships with them that have not been revealed
yet, some variables are redundant with each other, and some
variables and output results are not relevant at all. Based on
the MIC, the correlation of the early stage is calculated
among the characteristic variables, the rotor broken bar, and
the stator winding interturn short circuit. Furthermore, the
rank of them will be given according to the relevant sen-
sitivity scores. Finally, select the optimal feature subset that
is more sensitive to anomalies in the monitored variables,
that is, eliminate insensitive or even irrelevant data features
with less impact. At the same time, eliminate redundant
variables and select the most infuential optimal charac-
teristic set to improve the accuracy of the abnormal di-
agnosis method.

Te core idea of the MIC is as follows: for the certain
output and two variables, if there is a certain correlation
between the two, then the grid x × y can be drawn con-
tinuously in the two-dimensional plane. Te data points in
the scatter diagram composed of two variables are divided,
and the maximum mutual information in their state is
obtained. Also, then the maximum mutual information

obtained in diferent network grid states can be obtained.
Te information forms a characteristic matrix A, which is
expressed as follows:

F �

f22f23 · · · f2y,

f32f33 · · · f3y,

⋮⋮ · · ·⋮,

fx2fx3 · · · fxy.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(x−1)×(y−1)

. (1)

Ten, the matrix F is standardized to eliminate the
infuence of the number of grids, so that the maximum
mutual information of the elements of matrix F can be
compared with each other. After standardization, the ele-
ment value of matrix F is between 0 and 1. Finally, the MIC
is calculated. Te calculation formula is

MIC(X, Y) � max
x∗y<B

I(X(G), Y(G))

logmin x, y 
. (2)

In equation (2), X, Y are the given two variables.
I(X(G), Y(G)) is the mutual information. logmin x, y 

stands for normalization. B is the maximum number of
grids. B is usually taken as n0.6, and n is the amount of data.
Furthermore, the MIC is applied to the abnormal diagnosis
of the self-powered power supply system.Te characteristics
are sorted by calculating the MIC that represent the cor-
relation of the characteristics, and the characteristics are
eliminated according to the correlation from small to large.
Finally, the optimal feature set is selected by comparing the
accuracy of the algorithm.

5. The Abnormal Diagnosis Method of Self-
Powered Power Supply System Based on
Improved GWO-SVM

As an algorithm of machine learning, SVM shows unique
merits in settling nonlinear, small sample, and high-
dimensional pattern recognition issues, but the perfor-
mance of SVM is largely afected by internal parameters.
Using the traditional particle swarm algorithm, cuckoo
search algorithm, and GA to optimize SVM parameters, the

Data collection of self-power supply system

Optimized feature set selection based on MIC

Simulation experiment and result analysis of improved GWO-SVM
abnormal diagnose algorithm

Preferred data feature set

Abnormal diagnosis based on improved GWO-SVM

Parameter improvement

Location updating
GWO SVM

Process
+

Step

Figure 1: Abnormal diagnosis scheme of self-powered power
supply system.
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improvement performance is limited. Since 2014, the au-
thors in [20] proposed that the grey wolf algorithm is simple
and efcient in fnding the optimal solution. But it is not easy
to take into account the global search and local search ca-
pabilities at the same time. An optimized grey wolf algo-
rithm to enhance SVM parameters is proposed, and the
efect of abnormal diagnosis is thereby improved.

5.1.GreyWolfOptimizationAlgorithm. TeGWO algorithm
is a new algorithm proposed in recent years. Tis algorithm
is derived from predation behavior and the social hierarchy
of wolf populations [20]. Other related algorithms inspired
by nature have their own limitations and shortcomings. Te
GA which exhibits immature convergence cannot guarantee
global optimization and have low search efciency in the
later stage. Although the PSO algorithm is simple and easy to
implement without too many parameters to adjust, it is
difcult to select network weights and genetic operators.Te
diferential evolution algorithm cannot achieve global op-
timal evolution and is prone to search stagnation. Te
annealing algorithm has slow convergence speed and
complex parameter tuning. Te ant colony algorithm has
slow convergence speed and is prone to falling into local
optimal. Compared with the naturally inspired algorithms
mentioned above, the GWO algorithm has a simple struc-
ture, and requires fewer adjustment parameters. Te GWO
is easy to implement and has an adaptive convergence factor
and information feedback mechanism, which can achieve
a balance between local and global search. Terefore, it has
superior performance in terms of problem solving accuracy
and convergence speed. Te hierarchical structural diagram
is shown in Figure 2 for the grey wolf populations.

Te predation behavior includes three parts: searching
and tracking, encircling, and attacking prey. When the grey
wolf is searching and tracking prey, the distance from the
prey to the individual grey wolf is

dis � D × fP(t) − f(t)


. (3)

In equation (3), fP(t) means the position of the prey,
f(t) stands for the position information of the current it-
eration wolf ω, and D is the coefcient vector.

Te formula of predation position updating is expressed
as the following for grey wolf populations:

f(t + 1) � fP(t) − C × dis,

C � 2σm1 − σ,

σ �
2 − 2t

T
,

D � 2m2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

In equation (4), C represents the coefcient vector and σ
represents the distance control parameter, that is, the
convergence factor. Each component of σ linearly reduces
from 2 to 0 in iterative process. m1 and m2 are selected as
random vectors, and the selecting range of them are between
[0, 1]. T is selected as the maximum number of iterations.

Te grey wolf tracking prey is described as follows:

disα � D1 × fα(t) − f(t)


,

disβ � D2 × fβ(t) − f(t)


,

disδ � D3 × fδ(t) − f(t)


.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

In equation (5), fα(t), fβ(t), fδ(t) are the present po-
sitions of the wolf in α, β, δ, respectively. D1, D2, D3 is the
coefcient vector of the wolf in α, β, δ, respectively.
disα, disβ, disδ are the distance from α, β, δ to other in-
dividuals, respectively, that is, the distance at which the
current wolf tends to the 3 optimal solutions.

Te step length and direction of individual ω of the wolf
pack that towards α, β, δ can be expressed as follows:

f1(t) � fα(t) − C1 × disα,

f2(t) � fβ(t) − C2 × disβ,

f3(t) � fδ(t) − C3 × disδ.

⎧⎪⎪⎨

⎪⎪⎩
(6)

Furthermore, the position of wolf ω is updated as
follows:

f(t + 1) �
f1(t) + f2(t) + f3(t)( 

3
. (7)

Responsible for group decision
-making

Assist management decision

Responsible for investigation,
sentry, hunting, etc.

Responsible for balancing
internal relationships.

α

β

δ

ω

Figure 2: Te hierarchical structural diagram of grey wolf populations.
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According to the position of α, β, δ wolf, the positional
relationship between the prey and the grey wolf individual ω
can be judged.

5.2. Improving the GWO Algorithm. In the general GWO
algorithm, it can be seen from equations (4)–(6) that the
parameter σ determines the change of the control coefcient
C which can coordinate the global and local search capability
of the GWO algorithm. Te value of σ in equation (4) re-
duces linearly from 2 to 0 in the iterative process.

It can be seen from the literature [20] that when |C|> 1,
in order to seek better prey, the encirclement will be ex-
panded by the wolf populations, corresponding to the global
search capability. Te strong global search capability can
maintain the grey wolf population’s diversity, and it can
prevent the GWO algorithm from plugging into the local
maximum; when |C|< 1, the grey wolf population will shrink
the encirclement to complete the fnal attack on the prey. At
the same time, it can refect the better local search capability,
and the algorithmwith strong local search capability, and the
algorithm with strong local search capability can ensure the
accurate search and can enhance the convergence rate.
Terefore, the selecting value of C has a relationship with the
global and local search capability for the GWO.

However, the change of the control parameter C depends
on σ. When σ selects a linear decreasing strategy, the actual
optimization search process cannot be fully refected. Also, it
is not easy to take into account the global search and local
search capabilities simultaneously. In a word, it is important
to improve the control parameter σ and propose a new
nonlinear method for updating the control parameters,
which can be expressed as follows:

σ � 2 ·

��������

1 −
t

T
 

2


. (8)

It can be seen from equation (8) that the nonlinear
strategy changes slowly in the early phase of the search, and
its representative algorithm has a great global exploration
capability; in the later stage of the search, σ changes quickly,
and its representative algorithm will have good local search
capability.Te control parameter σ expressed in equation (8)
is simpler and easier to implement than the parameter se-
lection method in [21]. Te convergence factor σ will show
a nonlinear dynamic change law with the growth of evo-
lutionary iterations number, and it can provide a compro-
mise between global and local search capabilities.

Figure 3 shows the change trend of the control parameter
σ before and after the enhancement.

5.3. LocationUpdateMethodofGWOAlgorithm. Te general
GWO algorithm is still prone to fall into a local extreme
prematurely when solving complex optimization problems,
that is, premature convergence occurs [22]. For solving the
above issues, it is necessary to use Levi fight for updating the
position of the grey wolf populations [23]. Levi’s fight is
a random walk, which is a good search strategy. It performs

a global search for α grey wolves in the group, which can
expand the search scope of the algorithm and can avoid the
problem of falling into local optimality prematurely. Te
updating method of its location can be shown as follows:

L(t + 1) � fα + falpha⊕fLevy(λ). (9)

In equation (9), falpha is 0.01. Te random search path is
selected as follows:

fLevy(λ) �
v

|u|
1/λ · f(t) − fm(t)  · frandom. (10)

In equation (10), fLevy(λ) is a random search path. Te
value of λ is 1.5. fm(t) is the position of α, β, δ wolf in the
present iteration. frandom is a random number in the interval
[0, 1]. u, v both correspond to normal distribution:

u ∼ N(0, 1),

v ∼ N 0, S
2

 ,

S �
Γ(1 + λ) + sin(π · λ/2)

Γ(1 + λ/2) · λ · 2(λ−1)/2 

1/λ

.

(11)

5.4. Support Vector Machines. Te major concept of the
SVM algorithm is as follows: frst, select the mapping
function Ψ(xi) to match with the n-dimensional sample
vector (xi, yi)(i � 1, 2, . . . , l), which can shine the original
space upon the Gaussian feature space. Second, set up the
optimal linear decision function in this Gaussian feature
space and convert the classifcation work into an optimi-
zation work. Finally, in order to reduce the complexity of the
operation, the dot product operation for the feature space is
replaced by the kernel function for the original space
cleverly.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

Improved
Original

Figure 3: Te change trend of the control parameter σ.
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min
1
2

· ‖r‖
2

+ C 
l

i�1
ςi, s.t.yi Ψ xi(  · r + b(   + ςi � 1.

⎧⎨

⎩

(12)

In equation (12), r is the weight vector. Ψ(xi) is the
mapping function. ςi means a relaxation variable. C is the
penalty factor. xi is the input data, and yi is a category tag.

Using Lagrange’s equation to solve equation (8), the
optimization problem can be expressed as follows:

max
l

i�1
ci −

1
2



l

i,j�1
ci yi yjK xi, xj cj, s.t. 

l

i�1
ci yi � 0.

⎧⎪⎨

⎪⎩

(13)

Select the kernel function of SVM as follows:

K x, xi(  � e
− x−xi‖ ‖

2
/c2

. (14)

Te values of C and c in equations (13) and (14) infuence
the classifcation role of SVM. Te former plays the role of
balancing the maximization of the classifcation interval and
the minimization of misclassifcation samples. Te latter
determines whether the low-dimensional samples can be
efectively shined upon the high-dimensional space for
achieving linear separability.

5.5.TeAbnormalDiagnosis Process andSteps of Self-Powered
Power Supply System Based on Improved GWO-SVM
Algorithm. Trough the combination and improvement of
the abovementioned algorithm, taking the self-powered
power supply system as the research object and consider-
ing two types abnormalities of stator winding interturn short
circuit and rotor broken bar, the steps for diagnosing the two
types of abnormalities in the early stage are as follows:

Step 1: collect state monitoring characteristic data from
the self-powered power supply system.
Step 2: based on the maximum information coefcient
(MIC), select the optimal feature set of the data.
Step 3: perform numerical initialization, including: grey
wolf population, position (C, c) of individual grey
wolves, and objective function values.
Step 4: for the grey wolf population, update its position
information, furthermore update the predation posi-
tion information of the wolf populations according to
equation (4) and Levi’s fying formula.
Step 5: calculate the ftness of the wolf pack after
updating the position. If the ftness value of the new
individual is more suitable than the old individual,
modify the new generation individual, and replace the
original position with the new individual position. On
the contrary, keeping the old individual, the original
ftness value remains unchanged.
Step 6: calculate the parameters C, D obtained by each
iteration, and then update the parameters C, D and
update the grey wolf individual position information
(C, c).

Step 7: if the iteration termination condition is reached,
the value of output C and c will enter Step 8, otherwise
it will return to Step 4.
Step 8: based on the optimal parameters C and c, build
the SVM modeling, and diagnose the test set, and give
abnormal diagnosis results.

Based on the improved GWO-SVM algorithm, the ab-
normal diagnosis fowchart is shown in Figure 4.

Te computational complexity of our algorithm is re-
duced by balancing global and local search. Te time
complexity of the algorithm mainly refers to the time that is
spent on abnormal diagnosis for the self-powered power
supply system. In the improved GWO-SVM, the time
complexity of the algorithm is equal to
O(T∗ Fn∗Wp∗An∗ σ). T is selected as the maximum
number of iterations. Fn represents the number of features
which is fltered out through the maximum information
coefcient (MIC).Wp represents the total number of wolves.
An represents the number of objectives. σ represents the
distance control parameter.

5.6. Evaluation Index. Te essence of abnormal diagnosis is
still a classifcation problem. For this type of problem, false
positives and underreports are usually used to refect the true
situation of the classifcation, and the accuracy and recall
rate as evaluation indicators can be used to measure the
classifcation results.

(1) Accuracy:

p �
TP + TN

TP + FP + FN + TN
× 100%. (15)

(2) Recall rate:

Start

Import feature dataset

Feature selection based on MIC

Set parameters and initialize the location of the wolf pack

Update parameters C, D

Calculate the respective fitness value

Update wolf pack location with Levi Flight

Does it meet the condition ?

Abnormal diagnosis result

SVM training

Finish

Y

N

Output parameters C and γ

Figure 4: Abnormal diagnosis fow chart based on improved
GWO-SVM.
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Recall �
TP

TP + FN
× 100%. (16)

In equations (15) and (16), TPmeans the normal number
of matching correct, FP refers to the number of mis-
reporting, TN is the number which stands for abnormal
matching correctly, and FN is the number which stands for
false negative.

6. Simulation Analysis

A 8 kW military self-powered power supply system is taken
as the simulation object. It mainly includes cage, asyn-
chronous generator, generator, control module, and inverter
module. Its model is shown in Figure 5.

6.1. Data Acquisition. At present, due to the insufcient
accumulation of data on abnormal faults in the self-power
supply system, the abnormal working conditions of the short
circuit between turns and rotor break strips of the stator
winding are simulated in the simulation platform for the
self-power supply system. Te operating state monitoring
data were collected for the abovementioned two types of
abnormalities, of which the main monitoring data is shown
in Table 1.

Te collected status monitoring data is shown in Table 2.

6.2. Data Set Division. Te state monitoring data are col-
lected from the built simulation platform, and the related
preprocessing is performed. Te sorted 6000 sets of data are
frstly used for MIC feature selection to eliminate re-
dundancy, and fnally the feature selection subset is used as
the diagnosing data group, which is decomposed into H1
(training set) and H2 (test set). Among them, 4800 sets of
data for H1 are used for training SVM classifer, and the
remaining data are used as H2 for verifying the training
efect test. Table 3 shows the distribution results.

In Table 2, F1 represents normal data. F2 and F3, re-
spectively, represent the two states of insignifcant and
obvious abnormal short circuit between turns of the stator
winding. F4 and F5, respectively, represent the two states of
insignifcant and obvious abnormality of broken rotor bars.

6.3. Result Analysis of Feature Optimization Based on MIC.
Based on the 11 kinds of state monitoring characteristic data
collected in Section 6.1, theMIC representing the correlation
is calculated according to Section 4 and sorted according to
the size of the MIC. Table 4 shows the sorting results.

In response to the complexity and diversity of data
collected by the self-powered power supply system, the
relationship between each performance indicator and ab-
normal states was independently measured. Using classif-
cation inspection and chi-square test in statistical testing, we
can compare the degree of deviation between the actual
value and the theoretical value, such as the size of the chi-
square value. Also, 11 kinds of collecting state monitoring
feature data are sorted. Te relevant results are shown in
Table 5.

From Table 5, it can be seen that the order of chi-square
values is the steady-state voltage adjustment rate, bus
voltage, active power, frequency, asynchronous motor stator
current, and asynchronous motor torque. Te diagnosis
results of the improved GWO-SVM algorithm based on the
abovementioned features are 95.2% and 93.9%, respectively.
By comparison, it was found that the optimal feature subset
selected by MIC has a higher accuracy in abnormal
diagnosis.

In order to select the optimal feature set for abnormal
diagnosis of the self-powered power supply system, the less
correlated features and redundant features are sequentially
eliminated. Te precision rate is used as the assessment
index, which can refect the pros and cons of the selected
feature subset, and Table 6 shows the outcomes.

As can be seen from Table 4, the MIC is sorted from
largest to smallest as torque, bus voltage, steady-state voltage
regulation, and active power. In order to determine the
optimal set of input features from Table 4, it can be seen that
as more and more redundant or insensitive variables are
excluded, when the frst 6 feature variables are excluded, the
accuracy rate reaches a peak, that is, 95.2%. Compared with
the elimination of 5 variables and 7 variables, in the case of
retaining 5 characteristic variables, it can not only retain the
valid characteristics of the data but also reduce redundant

Prime
Mover

Cage
Asynchronous

Motor

Generator
Control
Module

Inverter
Module Filter Load

Figure 5: Self-powered power supply system.

Table 1: Correspondence between feature no. and feature name.

Feature no. Name of feature
1 Rotating speed
2 Bus voltage
3 Te output voltage
4 Output current
5 Active power
6 Frequency
7 Power factor
8 THD
9 Steady-state voltage regulation
10 Asynchronous motor torque
11 Asynchronous motor stator current
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variables and insensitive variables, ensuring the accuracy of
abnormal diagnosis of the self-power supply system. By
comparing the original dataset with the selected feature
subset, the results show that the selected optimal feature
subset can efectively replace the original data feature set for
abnormal diagnosis and achieve the purpose of feature
selection.

In order to select the optimal feature set for abnormal
diagnosis of self-powered power supply systems for training
PSO-SVM, GA-SVM, and GWO-SVM, features with low
correlation and redundant features were sequentially re-
moved to determine the feature names in the optimal feature
set. Te results were compared with the improved GWO-
SVM, as shown in Table 7.

From Table 7, it can be seen that the optimal feature
subset of the improved GWO-SVM is bus voltage, active
power, steady-state voltage regulation, asynchronous
motor torque, and asynchronous motor stator current.
Te optimal feature subset of GWO-SVM is bus voltage,
active power, steady-state voltage regulation, asynchro-
nous motor torque, and asynchronous motor stator

current; Te optimal feature subset of GA-SVM is bus
voltage, active power, power factor, THD, steady-state
voltage regulation, asynchronous motor torque, and
asynchronous motor stator current; the optimal feature
subset of PSO-SVM is bus voltage, active power, power
factor, steady-state voltage regulation, asynchronous
motor torque, and asynchronous motor stator current.
Te accuracy rates of abnormal diagnosis are 95.2%, 93%,
94%, and 94.6%, respectively.

In summary, the top 5 feature variables in this paper
are selected as the optimal feature subset, namely, bus
voltage, active power, steady-state voltage regulation,
asynchronous motor torque, and asynchronous motor
stator current.

6.4. Simulation Results Analysis of Improved GWO-SVM
Algorithm. Te abnormal diagnosis steps of the self-
powered power supply system are given in Section 5.5.
First, on the basis of completing the collection of 11 kinds
of state monitoring data, the 11 kinds of monitoring data
are selected by the MIC method, and then the optimized
GWO improvement algorithm is adopted for analyzing
the SVM optimize the coefcients C and c. Te grey wolf
population size in the GWO algorithm is selected as 30.
We select 300 as the iterations number. Te independent
variable dimension is 2, that is, the two parameters are
optimized. Te optimization ranges of C and c are, re-
spectively, [0.1, 100] and [0.01, 1000]. For SVM, the
Gaussian radial basis function (RBF) with nonlinear
mapping capability is chosen as the kernel function, and
then some related value of parameters are 98.174 and
2.972, respectively, after optimization.

Te simulation experiment is carried out for the self-
powered power supply system, and Table 8 shows the
simulation outcomes.

According to Table 5, the accuracy rates of F1, F2, F3,
F4, and F5 in 1200 groups test data are, respectively,
94.5%, 88.8%, 99.2%, 93.3%, and 100%. Te recall rates
are 89.72%, 90.25%, 100%, 96.14%, and 100%. In turn, it
can be calculated that the average rate of abnormal di-
agnosis accuracy and recall rate is 95.16% and 95.22%,
respectively.

Compared with unimproved GWO-SVM classifcation
algorithm, the improved GWO-SVM algorithm shows good
performance. Table 9 shows the comparison outcomes.

Table 3: Assignment of H1 and H2.

Parameters Training set H1 Test set H2 Total
F1 960 240 1200
F2 960 240 1200
F3 960 240 1200
F4 960 240 1200
F5 960 240 1200
Total 4800 1200 6000

Table 4: Correlation ranking of feature selection based on MIC.

Initial
order 1 2 3 4 5 6 7 8 9 10 11

MIC sorting 11 2 9 10 4 8 6 7 3 1 5

Table 5: Feature selection and sorting based on chi-square test.

Initial
order 1 2 3 4 5 6 7 8 9 10 11

Chi-square value sorting 11 2 9 5 3 4 8 7 1 6 5

Table 6: Number of feature elimination and abnormal diagnosis
results.

Te initial sequence
number of the
eliminating variable

Te correlation
number of the

eliminating variable

Te accuracy rate
of abnormal
diagnosis (%)

None None 91.8
1 11 92.2
1, 4 11, 10 92.2
1, 4, 3 11, 10, 9 92.5
1, 4, 3, 6 11, 10, 9, 8 93.4
1, 4, 3, 6, 8 11, 10, 9, 8, 7 94.3
1, 4, 3, 6, 8, 7 11, 10, 9, 8, 7, 6 95.2
1, 4, 3, 6, 8, 7, 11 11, 10, 9, 8, 7, 6, 5 93.8

Table 7:Te sequence number of excluded variables and diagnostic
accuracy.

Algorithms

Te initial
sequence
number of
excluded
variables

Te abnormal
diagnostic

accuracy (%)

Improved
GWO-SVM 1, 4, 3, 6, 8, 7 95.2

GWO-SVM 1, 4, 3, 6, 8, 7 93
GA-SVM 1, 4, 3, 6 94
PSO-SVM 1, 4, 3, 6, 8 94.6
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From Table 6, it can be drawn the conclusion that the
accuracy and recall rate of the improved GWO-SVM have
been signifcantly improved compared with the unimproved
GWO-SVM, which are 2.16% and 2.1%, respectively. Te
control parameter σ in the GWO algorithm is improved and
the position information updating method of Levi fight is
added, which takes into account both the global and the local
search capability, thereby improving the diagnostic accuracy
of GWO algorithm.

For verifying the superiority of the algorithm put for-
ward herein, the PSO algorithm and the GA algorithm are
used to optimize the SVM, which are used as comparisons,
and then the algorithm performance is judged by the

accuracy of anomalous classifcation. Figure 6 and Table 10
show the experimental outcomes.

From the comparison of Figure 6 and Table 10, the
qualitative and quantitative analysis shows that the di-
agnostic accuracy of the improved GWO-SVM is
1.17% and 0.7% higher than that of GA-SVM and PSO-
SVM, respectively, which expresses that the abnormal
diagnostic performance shown in the abnormal di-
agnosis process of the self-power supply system is sig-
nifcantly better than that of the other two algorithms.

Te improved GWO-SVM is compared with other
classifcation algorithms DT, LR, RF, k-NN, SVM, and RBF
under the optimal feature subset, which is shown in Table 11:

Table 8: Diagnosis results of the improved GWO-SVM

Actual classifcation
Accuracy (%)

F1 F2 F3 F4 F5

Abnormal classifcation F1 227 11 0 2 0 94.5
F2 20 213 0 7 0 88.8

Classifcation F3 0 2 238 0 0 99.2
F4 6 10 0 224 0 93.3

Classifcation F5 0 0 0 0 240 100
Recall rate 89.72% 90.25% 100% 96.14% 100%

Table 9: Detection results of improved methods before and after.

Classifers Accuracy (%) Recall rate (%)
GWO-SVM 93.00 93.12
Improved GWO-SVM 95.16 95.22

80.00

85.00

90.00

95.00

100.00

105.00

F1 F2 F3 F4 F5

(%)

GA-SVM
PSO-SVM
Improved GWO-SVM

Figure 6: Te comparative display of results accuracy of 3 optimization algorithms.

Table 10: Te comparative display of results accuracy of 3 optimization algorithms.

Classifers Improved GWO-SVM (%) GA-SVM (%) PSO-SVM (%)
F1 94.50 92.50 93.75
F2 88.80 87.50 88.80
F3 99.20 98.75 99.20
F4 93.30 91.70 93.30
F5 100.00 99.95 99.50
Average accuracy 95.16 93.99 94.46
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From Table 11, it can be seen that compared with other
classifcation algorithms DT, LR, RF, k-NN, SVM, and RBF,
the improved GWO-SVM still has signifcant advantages.

7. Conclusion

An improved GWO-SVM abnormal diagnosis algorithm
combined with MIC is proposed in this paper. After a series
of simulation tests and result analysis, the following con-
clusions are drawn.

First, the optimal feature set obtained from theMIC solves
the problem of redundancy in the monitoring data of the self-
powered power supply system, and eliminates redundant
variables, insensitive and irrelevant variables, which can ef-
fectively improve the accuracy of abnormal diagnosis.

Second, based on improving the control parameters and
improving the updated position of the grey wolf population
with Levy fight, this algorithm can cooperate between the
global and local search capacity. Furthermore, the improved
GWO-SVM algorithm’s performance is shown that the rele-
vant abnormal data can be accurately diagnosed based on the
monitoring data of self-powered power supply system.

Finally, by comparing with GA-SVM and PSO-SVM
algorithms, it is shown that the diagnostic precision of the
improved GWO-SVM is better than that of GA-SVM and
PSO-SVM.
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