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In order to solve the problems of water eutrophication, algae anoxic decay, and death by biological poisoning, which are caused by
the excessive emission of total nitrogen in wastewater treatment process, this paper proposes a method of total nitrogen peak
suppression which is based on neural network decision optimization. First, the SSORBF neural network is established according to
the wastewater treatment process, and total nitrogen, infow fow, current total nitrogen, dissolved oxygen concentration, and
nitrate nitrogen concentration are selected to predict the total nitrogen concentration. Second, the density- and memory-based
NSGA2multiobjective optimization method is used to set the optimal solution to meet the requirement of energy consumption. If
the prediction of total nitrogen exceeded the set value, the optimal control strategy is adopted to control the peak value of total
nitrogen in advance, and it cannot exceed the national maximum allowable emission value. If the prediction of total nitrogen is
lower than the set value, it continues to track the parameter set value. Finally, compared with other methods, the proposedmethod
can efectively suppress the peak value of total nitrogen under 18mg/L and reduce the energy consumption in wastewater
treatment by 7.6%. It can provide decisions and advice for wastewater treatment plants.

1. Introduction

Total nitrogen concentration is an important indicator to
measure the quality of efuent water [1–3]. Excessive dis-
charge of total nitrogen can cause serious consequences,
such as reduced dissolved oxygen concentration in water
bodies, eutrophication of water bodies, and death of or-
ganisms [4–6]. For this issue, China stipulates the daily
maximum allowable emission concentration for basic
control projects of water pollutant emissions (Table 1, 2002).
Te total nitrogen level I Class A emission standard is
15mg/L and the Class B emission standard is 20mg/L. Strict
emission standards highlight the importance China attaches
to the total nitrogen emissions. Currently, the common
methods to measure total nitrogen concentration in China
are traditional biological denitrifcation processes, new bi-
ological denitrifcation processes, and physical and chemical
processes [7–9]. Among them, traditional biological nitro-
gen removal processes such as A2/O and SBR have classic

process structures and high ammonia nitrogen removal
rates, but they have complex operating procedures, long
cycles, and high treatment costs. New biological nitrogen
removal processes such as short-range biological nitrogen
removal technology and synchronous digestion de-
nitrifcation technology have good removal efects when the
concentration of ammonia nitrogen wastewater is low, but
they are susceptible to the impact of dissolved oxygen, pH,
and other conditions. Physical and chemical methods (such
as sedimentation, stripping, and adsorption) require ex-
pensive equipment and reagents, and most wastewater
treatment plants cannot aford long-term treatment costs
[10, 11]. Te above processes can efectively achieve the
efective removal of ammonia nitrogen in the wastewater
treatment process, but how to achieve optimal control,
energy conservation, consumption reduction, and peak
suppression on the premise that the efuent from the
wastewater treatment process meets the standard is still
a difcult problem in the current research.
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Researchers have done a lot of studies on the control of
key parameters in wastewater treatment processes. Stare
et al. [12] proposed a simplifed nonlinear model and a linear
black box model. Compared to PI controllers, the model’s
predictive control strategy has a good ammonia nitrogen
removal efciency in the case of large errors. Vega et al. [13]
proposed a hierarchical control method based on nonlinear
model prediction, using a strategy of combining real-time
optimization and model predictive control to achieve pre-
dictive control of dissolved oxygen and nitrate nitrogen,
improving the control efect of key parameters and reducing
wastewater treatment operating costs. Mulas et al. [14]
proposed a multivariable controller based on a dynamic
matrix control strategy to control total nitrogen concen-
tration with the goal of minimizing economic and removal
efciency. Experiments have shown that this method can
simultaneously reduce energy consumption and total ni-
trogen concentration. Han et al. [15] proposed a data driven
multiobjective predictive control method for wastewater
treatment processes using data related to wastewater
treatment processes. Te results show that this method can
achieve good control over dissolved oxygen and nitrate
nitrogen in a relatively short time. Santin et al. [16] proposed
an improved fuzzy decision control method for wastewater
treatment, using a fuzzy controller to control the nitrifca-
tion and denitrifcation processes in the wastewater treat-
ment process, achieving the goal of meeting the water quality
standards and reducing operating costs while avoiding ex-
cessive emissions of ammonia nitrogen and total nitrogen.
Although this method efectively inhibits the peak value of
ammonia nitrogen in the efuent, there is a problem of high
energy consumption. Li et al. [17] proposed an optimization
method for wastewater treatment decision-making based on
the NSGA2 optimization algorithm. A fxed structure neural
network was used to establish a prediction model for am-
monia nitrogen and total nitrogen in the efuent, and the
optimization algorithm was used to optimize the set values
to reduce the total nitrogen and ammonia nitrogen con-
centration in efuent on the premise that the water quality
and energy consumption meet the standards. Although this
method can efectively reduce the concentration of pollut-
ants, there is a large computational complexity in the neural
network. Inaccurate prediction results in changes in water
infow parameters. In summary, for wastewater treatment

systems with large time-varying, strongly coupled, and
nonlinear characteristics, how to reduce energy consump-
tion and improve removal efciency while efectively sup-
pressing the peak value of total nitrogen in the efuent water
is worth exploring.

In order to solve the problems, this paper proposes
a total nitrogen peak suppression method based on neural
network decision optimization control. First, this method
uses the spiking self-organizing RBF neural network
(SSORBF neural network) to establish a predictionmodel for
total nitrogen in wastewater treatment, then uses a density-
and memory-based NSGA2 multiobjective algorithm
(NSGA2-DM) to optimize energy consumption and water
quality, select the appropriate solution as the set value for
dissolved oxygen and nitrate nitrogen, and fnally adopt
diferent optimal suppression control strategies based on
whether the predicted total nitrogen exceeds the standard.
Tis method can efectively improve the prediction accuracy
and adaptive ability of the network, reduce the peak value of
total nitrogen in the efuent, and meet the requirements of
energy conservation and consumption reduction, as well as
efuent compliance.

2. Prediction Model

Te neural network has good nonlinear ftting ability and
generalization strength. Te RBF neural network prediction
model is shown in Figure 1. Te network mainly consists of
an input layer, a hidden layer, and an output layer.

(1) Te output of the neurons in the input layer is
u(t) � [u1(t), u2(t), . . . ,up(t)].

(2) Te hidden layer output is θj(t) � e− ‖ui(t)− cj(t)‖2/2σ2
j
(t),

c is the center vector, and σ is the width.
Where cj(t) � [cj1(t), cj2(t), . . . , cjn(t)] is the center
vector of the jth neuron in the RBF layer;
cji(t) ∈ [− 2, 2] is a random value, and σj(t) is the
width of the jth node. Te maximum value of j is m,
m is the number of neurons in the hidden layer, and
σj(t) ∈ [0.01, 2] is the random value within
the range.

(3) Te output layer is y(t) � 􏽐
m
j�1wj(t)θj(t), w is the

output weight, and y(t) is the output of the output
layer at time t.

Table 1: Maximum allowable emission concentration of pollutants (daily average value); unit: mg/L.

Number Variable name Standard I Standard II Standard III
1 BOD 50 60 100 120
2 COD 10 20 30 60
3 SS 10 20 30 50
4 Animal and vegetable oils 1 3 5 20
5 Petroleum 1 3 5 15
6 Total nitrogen 15 20 — —
7 Ammonia nitrogen 5 (8) 8 (15) 25 (30) —
8 TP 0.5 1 3 5
9 pH 6–9
Note.Tefrst level standard is divided into categories A and B; the values outside the brackets for ammonia nitrogen are the control indicators when the water
temperature is >12°C, and the values inside the brackets are the control indicators when the water temperature is <12°C.
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In order to select the appropriate number of neurons,
this paper adopts the SSORBF neural network with adaptive
structural adjustment [18] and uses the biological neuron
membrane potential excitation mechanism to establish
a self-organized dynamic adjustment mechanism. When the
peak intensity of neurons is greater than the excitation
threshold, action potentials are activated and new neuronal
processing tasks are added; if the spike intensity of a neuron
is less than the excitation threshold, it is considered that the
neuron is in an inactive state and the hidden layer neuron
needs to be deleted. Te adjusted network structure is used
as a model for predicting the total nitrogen output of
wastewater treatment.

In this study, variance threshold [19], analysis of variance
(ANOVA) [20], and mutual information (MI) [21] were
used to select the feature of the data. Te concentration of
total nitrogen in wastewater treatment is infuenced bymany
factors, such as pH, temperature, BOD, COD, ORP, dis-
solved oxygen concentration, total nitrogen in water, infow
fow, current total nitrogen in water, nitrate nitrogen con-
centration, and so on. Some parameters have a signifcant
impact on the total nitrogen in the efuent, while others have
a smaller impact. Based on the mechanism analysis and
literature research of the wastewater treatment process, fve
variables with the greatest impact are selected as the input of
the network: total nitrogen in water, infow fow, current
total nitrogen in water, dissolved oxygen concentration, and
nitrate nitrogen concentration. Te network output is the
predicted value of total nitrogen concentration in water.
Select the data sampled from the BSM1 experimental
platform as the model training test data. Te set value of SO,5
concentration is set at 1.4–2.4mg/l, and the set value of SNO,2
concentration is set at 0.5–1.5mg/l. Te data sampling pe-
riod is 14 days and the sampling time is 15 minutes. 181390
sets of data are obtained. Among them, 163251 sets of data
are used as training samples, and 18139 sets of data are used
as test samples [17]. Using trial and error methods, the
network structure is initially selected as 5-50-1, and the
sample sampling normalization method is used. Te
learning algorithm uses a gradient algorithm with a learning
rate of 0.1, and the maximum number of learning steps is
4000. RMSE of diferent prediction models is shown in

Table 2. It can be seen that the proposed method has better
training RMSE and testing RMSE under the same number of
neurons.

3. Optimization of Set Points for Wastewater
Treatment Processes

From the above analysis, it can be seen that SO,5, and SNO,2
have a direct impact on the total nitrogen concentration of
the efuent, and optimizing their set points can efectively
reduce energy consumption. Terefore, this article uses the
establishment of energy consumption and water quality
models as optimization objective functions and then uses the
NSGA2-DM algorithm to optimize multiple objectives,
selecting appropriate solutions as the set values for SO,5,
and SNO,2.

According to the research background of the wastewater
treatment process, energy consumption and water quality
are used as the objective functions of the optimization al-
gorithm. However, due to the complexity of wastewater
treatment mechanism and many infuencing factors, this
paper uses the current conventional feed-forward neural
network to establish energy consumption and water quality
models. Te input variables for both the energy consump-
tion model and the water quality model are the concen-
tration of suspended solids in the efuent, SNH,e, SO,5, and
SNO,2 [24]. Data collection does not consider time delay, and
data are collected every 15minutes. Te SNO,2 concentration
setting values and the SO,5 concentration setting values are
selected within a range of values and experiments are
conducted on the BSM1 platform.

3.1. Optimization Problem Model. In order to establish an
efective optimization model and simplify the description of
the problem, F1 and F2 are selected as the energy con-
sumption and water quality objective functions, and f1 and
f2 are selected as the energy consumption and water quality
models, respectively. (x1, x2) are the dissolved oxygen
concentration in the ffth zone and the nitrate nitrogen
concentration in the second zone, respectively.

Minimize
F1(X) � f1(X)+Δ,

F2(X) � f2(X)+Δ,
􏼨

X � x1, x2( 􏼁,

li ≤ xi ≤ vi, i � 1, 2,

Δ � 100CNtot,

CNtot �
fNtot x1, x2( 􏼁− 18, fNtot x1, x2( 􏼁> 18,

0, fNtot x1, x2( 􏼁< 18,
􏼨

(1)

where li and vi are the lower and upper bounds of the ith
decision variable, respectively; Δ is the penalty term for
exceeding the limit; CNtot is the predicted total nitrogen
exceeding the limit in the efuent; fNtot represents the SNtot,e
prediction model established in Section 2 of the article; and
18 is the upper limit value of SNtot,e by the empirical method.

Total nitrogen
in water

Inflow flow

Current total
nitrogen in water

Dissolved oxygen
concentration

Nitrate nitrogen
concentration

Predicting value of
ammonia nitrogen

Figure 1: Prediction model of total nitrogen concentration.
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3.2. Local Search. Calculate its sparsity by assuming the
target vector of the ith solution is (F1(Xi), F2(Xi)). After
normalization, the sparsity calculation formula for the ith
solution is as follows:

SP Xp
( 􏼁 �

Wp

N
, p � 1, 2, . . . , N, (2)

where Wp is the number of target vectors F(Xi) in the
objective function space whose Euclidean distance from the
target vector is less than r, and the value range of r is
0< r< 1. In this paper, the value is 0.1. Te sparse solution
selects the nondominant solution with the smallest current
sparsity, N� 100, and the number of decision variables,
n� 2.

Two population variation strategies are used here. First,
use the limit optimization method to conduct a local search,
resulting in a number of local solutions of n, and the mu-
tation formula is as follows:

Xp � x1′, x2′( 􏼁, p � 1, 2, . . . ,N,

xi
′ � xi + α · βmax xi( 􏼁, i � 1, 2,

α �
(2h)

(1/(q+1))
− 1, 0< h< 0.5,

1 − [2(1 − h)]
((1/q)+1)

, 0.5≤ h< 1,

⎧⎨

⎩

βmax xi( 􏼁 � max xi − li, vi − xi􏼂 􏼃, 0< i≤ n,

(3)

where xi is a decision variable; h is a random number be-
tween 0 and 1; and q is a positive real number, called a shape
parameter. In this paper, q is set to 1.1; βmax(xi) is the
maximum value that can be changed for the current decision
variable.

Second, in order to avoid falling into a local optimum,
a random migration strategy is used for mutation opera-
tions, resulting in a local solution number of 0.2N.

XXk � x1′, x2′( 􏼁, k � 1, 2, . . . , [0.2N],

xxi
′ � cxi, i � 1, 2, 0< c< 1.2,

(4)

where c is a random number between 0 and 1.2. Te
maximum changeable value of the decision variable and the
mutated solution set are n+ 0.2N local solutions generated
by the above two mutation strategies for the mutated de-
cision variable.

Te NSGA2-DM algorithm is based on the original
genetic algorithm, and it establishes a memory bank to store
the central solution and environmental variables. When the

input data changes, an initial population is generated based
on the memory to quickly fnd the optimal solution, re-
ducing the amount of computation and improving the
search speed.

3.3. Multiobjective Optimization and Optimal Solution
Selection. Using the NSGA2-DM algorithm to obtain
multiple nondominated solutions can efectively obtain
a solution set that meets the requirements of energy con-
sumption and water quality. Te specifc process can be
summarized as follows: First, initialize the population and
calculate the ftness and crowding distance of all solutions in
the population. Second, the optimal N solutions are obtained
through cross-mutation to form the next-generation pop-
ulation. Finally, the optimal solution is obtained through
iteration. Te obtained multiple nondominant solutions are
brought into the SSORBF prediction model. If the efuent
index meets the standard, select the solution with the lowest
energy consumption. If the efuent index does not meet the
standard, a peak suppression control strategy is adopted, and
the solution with the highest water quality is selected as the
set value.

4. Peak Suppression Control of Total Nitrogen
Concentration in Effluent

Te wastewater treatment process adopts the denitrifcation
process using organic compounds in the wastewater as the
carbon source for the denitrifcation process, thereby
eliminating the need for additional carbon sources such as
methanol and acetic acid. Te peak inhibition strategy for
total nitrogen in efuent is shown in Figure 2. Te bio-
chemical reaction tank in the fgure is the secondary
treatment stage in the wastewater treatment process, and
tracking control mainly controls the oxygen conversion
coefcient (KLa5) and internal return fow (Qa) in the ffth
zone.Terefore, it can be seen that when the predicted values
of SNtot,e do not exceed the standard, fuzzy control rules are
used to control KLa5 and Qa through the error and error
variation between the current concentration and the set
value, respectively, to achieve tracking control of SNtot,e. Tis
article focuses on peak suppression control methods and will
not do much in-depth research here.

When SNtot,e is predicted to exceed the standard, fuzzy
control is performed on the frst and second zone external
carbon sources (qEC1) and (qEC2) based on the predicted SNtot
values. Increasing carbon sources can promote denitrifcation
and remove nitrogen. In this paper, the value range of SNtot
suppression control is 17 to 19.7mg/L, and the value range of
qEC is 4 to 6m3/d. Terefore, the fuzzy rules are as follows:

If (SNtot is 19.0–19.7), then (qEC1 is 5, qEC2 is 2)
If (SNtot is 18.0–18.9), then (qEC1 is 4, qEC2 is 1)
If (SNtot is 17.0–17.9), then (qEC1 is 4, qEC2 is 0)

Switch back to fuzzy tracking control when the predicted
total nitrogen in the efuent is below 17mg/L and the total
nitrogen in the ffth zone is below 13.5mg/L. Te parameter
value of 17mg/L is obtained based on empirical methods.

Table 2: RMSE of diferent prediction models.

Number of
neurons Training RMSE Testing RMSE

Proposed method 50 0.1031 0.1275
BP 50 0.4811 0.5238
RBF 50 0.2127 0.2404
GDFNN [22] 50 0.1528 0.1672
GRRBF [23] 50 0.3049 0.3697

4 Journal of Control Science and Engineering



5. Results and Discussion

Tis experiment uses BSM1 sewage treatment process pa-
rameters and verifes the efectiveness of the proposed total
nitrogen suppression method through experimental analysis
and simulation. Te evaluation indicators used include ef-
fuent quality (EQ), total cost (OCI) [25], and percentage of
water quality exceeding the standard (P). Te specifc
analysis is as follows.

Figure 3 shows the change curve of total nitrogen
concentration in the efuent without the peak suppression
method, and Figure 4 shows the change curve of total ni-
trogen concentration in the efuent with the peak sup-
pression method. From the analysis in Figure 3, it can be
seen that the efuent SNtot,e predicted by the SSORBF neural
network exceeds the upper limit value of conventional total
nitrogen control by 20mg/L at 15 h, 20 h, and 65 h and

cannot meet the emission standard. Terefore, when the
predicted SNtot,e exceeds 18mg/L, a suppression control
method is used to add carbon sources in advance. Te
simulation efect is shown in Figure 4, and the ammonia
nitrogen concentration in the efuent does not exceed
20mg/L, achieving the goal of eliminating the peak value.
Figure 5 shows the curve diagram of the change between the
set value and the actual value of dissolved oxygen con-
centration after adding the peak suppression method, and
Figure 6 shows the curve diagram of the change between the
set value and the actual value of nitrate nitrogen concen-
tration after adding the peak suppression method. Te red
curve in the fgure represents the actual value, and the blue
curve represents the set value. As can be seen from Figure 5,
when the predicted total nitrogen exceeds the set value, peak
suppression is the main goal, so the actual value of dissolved
oxygen concentration difers greatly from the set value.

Biochemical reaction tank for waste
treatment process

Biochemical reaction tank Control

KLa5 Dissolved
oxygen

ControlNitrate nitrogen Nitrate
nitrogen

setting value

Dissolved
oxygen

setting value

NSGA2

Set

strategy carbon
source

Predict value

Figure 2: SNtot,e peak suppression control strategy.
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Figure 3: Variation curve of total nitrogen concentration in efuent without peak suppression.
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When the total nitrogen does not exceed the set value (such as
125 h–150 h), tracking the set value is the main goal. Figure 6
refects the change curve of nitrate nitrogen concentration,
which is basically the same as that described in Figure 5 and
will not be described in detail. From Figures 7 and 8, it shows

the control of KLa5 and Qa by decision optimization control
when SNtot,e predictions do not exceed the standard.

Table 3 shows the comparison and comparison results of
the proposed algorithm with Jeppsson et al. [26], Nopens
et al. [27], Flores Alsina et al. [28], and Santin et al. [16].
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Figure 4: Variation curve of total nitrogen concentration.
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From the table, it can be seen that the percentage of total
nitrogen in efuent exceeding the standard is 0%, and
compared to other control algorithms, energy consumption

is signifcantly reduced and water quality is improved. Ex-
perimental simulation results verify the efectiveness of peak
suppression with this method.
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Figure 6: Optimization and tracking results of SNO,2.
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6. Conclusion

In order to solve the problem that the peak value of total
nitrogen in the wastewater treatment process exceeds the
standard, this paper proposes a decision optimization
method for total nitrogen in wastewater treatment based on
the SSORBF neural network and NSGA2-DM optimization
algorithm, which can efectively inhibit the concentration of
total nitrogen in wastewater while reducing energy con-
sumption. Te specifc conclusions are as follows:

(1) An optimization algorithm is used to analyze the
possible peaks, and optimal decisions are made to
adjust the amount of carbon sources added on the
premise that the efuent meets the standard.
Trough experimental analysis and comparison with
other methods, this method achieves better total
nitrogen control efect, lower energy consumption,
and better efuent quality in sewage treatment,
meeting the national discharge standards for sewage
treatment.

(2) When the predicted values of SNtot,e do not exceed
the standard, fuzzy control rules are used to control
KLa5 and Qa through the error and error variation
between the current concentration and the set value,
respectively. When the predicted values of SNtot,e
exceed the standard, fuzzy control is performed on
the frst and second zone external carbon sources.

Increasing carbon sources can promote de-
nitrifcation and remove nitrogen.

From the long-term perspective of industry develop-
ment, there are still many shortcomings in wastewater
treatment data analysis methods; for example, network
prediction and learning algorithms can be further improved,
tracking control efects can be improved when total nitrogen
does not exceed the standard, and the selection of non-
dominant solutions and learning algorithms during optimal
control still need to be improved.
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