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Tis paper focuses on the event-triggered quantized control for Markov jump systems with deception attacks. First, we design an
event-triggered scheme relying on dwell time and end instants of attacks. It can limit the number of switches within the triggered
intervals and the lower bound of triggered instants. Second, the quantization rules and the increasing/decreasing rate of Lyapunov
function are obtained for diferent cases. Next, combined with the increasing/decreasing rate, the lower bound of triggered
instants, and the probability of switches occurring, the upper bound of Lyapunov function at the triggered instants is provided. On
this basis, sufcient conditions ensuring the exponential convergence in the mean sense of the closed-loop system are given.
Finally, atwo-tank system is provided to verify the efectiveness of the proposed stability analysis framework for Markov jump
systems.

1. Introduction

In recent years, due to the powerful modeling ability of
Markov process, Markov jump systems have received ex-
tensive attention in aircraft control systems and robot
systems [1–3]. Before the system data are transmitted
through the network, they must be quantized and coded.
Terefore, the impact of quantization errors on the system
performance must be considered. Moreover, the network
may sufer a malicious attack initiated by an attacker, which
will seriously afect the safe operation of the system [4–6]. As
a common attack method, deception attacks disrupt the
system’s performance by tampering with the transmitted
data. Especially, in a Markov jump system, the tampered
mode will result in a mode mismatch between the system
side and the controller side even if the system does not
switch. Tus, the system’s performance is seriously reduced.
Considering that the event-triggered transmission scheme
can efectively reduce the amount of data transmission [7, 8],
this paper will design an event-triggered quantized control
strategy to guarantee the stability operation of the Markov
jump systems under the infuence of deception attacks.

For the Markov jump systems sufered by deception
attacks, some control algorithms have been proposed to
guarantee the system stability. Literature [9] designs an
event-triggered scheme similar to switching according to
triggered errors, switching signals, and deception attack
instants to ensure the mean-square exponential input-to-
state practical stability of the system. By using a novel
dynamic-memory event-triggered protocol, a memory-
based sliding mode control for singular semi-Markov
jump systems is provided in [10] to ensure the mean-
square exponential stability of the system. For Markov
jump neural networks subjected to cyber-attacks, which
include deception attacks and denial of service attacks,
a static output feedback strategy regardless of whether hy-
brid cyber-attacks occur is designed in reference [11] to
guarantee the specifed H∞/passive performance.

As we can see, the event-triggered scheme is a useful
method to deal with the efect of deception attacks. Diferent
from the existing results, the triggered scheme proposed in
this paper does not rely on the triggered error, which can
efectively avoid the Zeno behavior. Meanwhile, such
scheme guarantees the existence of the lower bound of
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triggered instants, which is the key point to pursue the upper
bound of Lyapunov function.

Quantized control for Markov jump systems also gains
fruitful results. In reference [12], a quantized iterative
learning control scheme is studied by quantizing the
tracking error signal based on a logarithmic quantizer. A
time-triggered quantized control method is adopted in [13]
to ensure the system stability. Literature [14] provides
a novel switching delay quantizer with flter connections.
Te problem of fnite-time control by using logarithmic
quantizer is mainly studied in [15]. For the Markov jump
system with data quantization and delay, the authors in [16]
designed a hybrid-triggered mechanism and control algo-
rithm to guarantee the asymptotic stability of the system.

If data quantization and deceptive attacks occur in
a Markov jump system simultaneously, the quantized state/
output and the systemmodemay be tampered. It is crucial to
ensure the healthy operation of the system under unreliable
and inaccurate data transmission. In reference [17], for
uncertain fuzzy Markov switched afne systems, a com-
pensation scheme is adopted to deal with the quantized
measurement output loss intermittently, and sufcient
conditions are provided such that the fltering error system is
mean-square exponentially stable. In reference [18], the
nonstationary quantized controller design for the Markov
jump singularly perturbed systems with deception attacks is
studied, and sufcient criteria are established such that the
closed-loop system is stochastic mean-square exponential
ultimately bounded.

Diferent from the existing results with logarithmic
quantizer, we will adopt a time-varying uniform quantizer.
Due to the fact that a uniform quantizer does not always
assume that the quantizer is unsaturated such as a loga-
rithmic quantizer, we frst design the time-varying quanti-
zation radius and quantization center for diferent cases to
guarantee the unsaturation of the quantizer. Second,
a Lyapunov function is designed based on the quantization
radius and quantization center, and the upper bound of
which is obtained by using the lower bound of the triggered
instants and the probability of the switches occurring. On
this basis, sufcient conditions are given to ensure the ex-
ponential convergence in the mean sense of the closed-loop
system.

Summarized above, the innovations of this paper mainly
include the following three aspects: (i) an event-triggered
mechanism which is independent of triggered errors is
designed, which efectively avoids the Zeno behavior and
meanwhile guarantees the existence of the lower bound of
triggered instants; (ii) quantization rules are designed for
four cases, and the upper bound of Lyapunov function at the
triggered instants is obtained by combining the lower bound
of triggered instants and the probability of switches oc-
curring; and (iii) some sufcient conditions are obtained to
ensure exponential convergence in the mean sense of
Markov jump systems under deception attacks.

Te structure of this paper is as follows: Section 2
elaborates on the problem formula, which provides a de-
tailed description of Markov jump systems, event-triggered
scheme, quantization rules, deception attacks, control rules

and closed-loop systems, and themain purpose of this paper.
Section 3 mainly outlines the design of quantization rules for
diferent cases. Te increasing/decreasing rate of Lyapunov
function is analyzed in Section 4. On this basis, the stability
analysis of the system is carried out in Section 5. Simulation
and conclusions are provided in Sections 6 and 7,
respectively.

1.1. Notations. Te sets of nonnegative integers and non-
negative real numbers are denoted by N and R≥0. Let
Z � N∪ 0{ }. Te signal Rn represents n-dimensional Eu-
clidean space. Te ∞-norm is adopted by ‖ · ‖ unless oth-
erwise specifed. λ(·) and λ(·) denote the smallest and the
largest eigenvalues of a symmetric matrix, respectively.

2. Problem Formulation

Te system confguration studied in this paper is shown in
Figure 1. Te signal fow is as follows: at time t ∈ R≥0, the
sensor collects and transmits the system state x(t) and the
system mode r(t) to the event trigger. If the trigger con-
dition is satisfed (as shown in Section 2.2), the state x(tk)

and mode r(tk) are transmitted to the quantizer at the
triggered instant tk. Te quantizer quantizes the state x(tk)

to ck (the specifc quantization rules are provided in Section
3). Under the role of deception attacks, if the network is
attack-free, ck and r(tk) are received by the observer.
Otherwise, the tempered signals 􏽥ck and σ(tk) are adopted to
update the observer state. Ten, the controller designs the
control algorithm according to r(tk)/σ(tk) and the observer
state 􏽢x(t).

2.1. Markov Jump Systems. Te plant shown in Figure 1 can
be modeled by the following Markovian jump systems:

_x(t) � Ar(t)x(t) + Br(t)u(t), (1)

where x(t) ∈ Rn is the system state and u(t) ∈ Rm is the
control input. Te switch signal r(t) ∈M � 1, . . . , s{ } in-
dicates the systemmode at instant t. Ar(t) and Br(t) are known
matrices corresponding to diferent subsystems. Te
switching signal r satisfying the Markov jump process with
dwell time is described as follows: assuming that the p-th
subsystem is activated at pi, then no switching occurs for any
t ∈pi, pi + h), where h≥ 0 is called as the dwell time. For
t≥pi + h, the switching occurs according to the transition
probability matrix Π � [πpq], in which πpq denotes the
probability of the system transforming from mode p ∈M to
mode q ∈M, i.e., P(r(t + Δ) � q | r(t) � p) � πpqΔ + o(Δ)
for q≠p and P(r(t + Δ) � q | r(t) � p) � 1 + πppΔ + o(Δ)
for q � p with Δ> 0, πpq > 0, πpp � − 􏽐

s
q�1,q≠pπpq and

lim
Δ⟶ 0

� o(Δ)/Δ � 0.

Lemma 1 (see [19]). Let Nr(t) be the switching number of
r(t) on the interval (0, t), then we have

P Nr(t) � k( 􏼁≤ e
− πt(πt)

k

k!
,∀k≥ 0, (2)
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where π � max πpq: p, q ∈M􏽮 􏽯 and π � max |πpp|: p ∈M􏽮 􏽯.

Assumption 2 (see [20]) (stabilizability). For each p ∈M,
the subsystem (Ap, Bp) is stabilizable, i.e., there exists a state
feedback gain matrix Kp such that Ap + BpKp is Hurwitz,
i.e., all eigenvalues of Ap + BpKp have negative real parts.

2.2. Event-Triggered Scheme. Te triggered instants tk􏼈 􏼉k∈N
are determined by the following scheme:

tk+1 �
tk + h,

t � am + bm,∀m ∈ N,
􏼨 (3)

where t≥ tk and am + bm are the end instants of deception
attacks defned in Section 2.4.

Te frst condition is used to ensure that there is at most
one switch occurring within each triggered interval. Te
second one ensures that transmission occurs as soon as the
attack ends, which is to minimize the impact of attacks on
the system’s performance.

Remark 3. Although many papers have used triggered er-
rors to design event-triggered scheme, i.e., the data are
transmitted if e⊤tk

(t)Nr(t)etk
(t)≥ c2(tk) with etk

(t) � x(t) −

x(tk) [21–23], this paper does not adopt such condition for
two reasons. On the one hand, if the error-based triggered
condition is adopted, then the lower bound of tk, i.e., (73)
cannot be guaranteed, which makes it difcult to obtain the
upper bound of the Lyapunov function. On the other hand,
as shown in (23), the quantization rules designed in Section
2.3 have actually limited the range of x(t), which is similar to
the role of error-based triggered.

2.3. Quantization Rules. At a general triggered instant
tk􏼈 􏼉k∈N, it is supposed that

x tk( 􏼁 − x
∗
k

����
����≤Ek, (4)

where x∗k is the quantization center and Ek is the half length
of the quantization area. Ten, we can divide the hypercube
Sk: � x ∈ Rn: ‖x − x∗k ‖≤Ek􏼈 􏼉 into Nn equal hypercubic
sub-boxes, N per each dimension. Let the center of the sub-
box containing x(tk) be the quantized value ck which is
transmitted to the controller side along with the system
mode r(tk).

Obviously, it holds the following:

x tk( 􏼁 − ck

����
����≤

Ek

N
, (5)

and

ck − x
∗
k

����
����≤

N − 1
N

Ek. (6)

Assumption 4 (see [20]) (data rate). We assume that N is
large enough such that Λp ≔ e‖Ap‖h <N,∀p ∈M.

2.4. Deception Attacks. For any m ∈ N, let Hm � [am,

am + bm) with am > 0 and bm > 0 indicating the m-th time
interval of deception attacks. Meanwhile, Wm � [am +

bm, am+1) indicates the m-th time interval of normal com-
munication. Obviously, for any interval [a, b), Ξ(a, b) �

∪
m∈N

Hm ∩ (a, b) represents the total time interval of de-

ception attacks on the system. Tus, in order to limit de-
ception attacks in terms of frequency and duration, the
following assumption is proposed.

Assumption 5 (see [9]). Tere exist α≥ 0, β≥ 0, ζ ≥ 0, and
T≥ 1 satisfying

n(a, b)≤ α +
b − a

β
, (7)

and

|Ξ(a, b)|≤ ζ +
b − a

T
, (8)

where n(a, b) and |Ξ(a, b)| represent the number and du-
ration of deception attack in [a, b), respectively. Te inverses
of β and T provide the upper bounds of the average number
and the average duration per unit time of deception attacks,
respectively. Under the efect of deception attack, the
transmitted ck and r(tk) may be tampered. To facilitate the
following analysis, a binary process ϕ(tk) ∈ 0, 1{ } is adopted
to characterize the attacked situations of the network at the
triggered instant tk. Specially, ϕ(tk) � 0 indicates that the
transmission is normal, and ϕ(tk) � 1 means that the net-
work is under deception attacks.

2.5. Control Rule and Closed-Loop System. Let σc(tk) be the
mode received by the controller, then the control rule is
designed as follows:

u(t) � Kσc tk( )􏽢x(t),∀t ∈ tk,􏼂 tk+1􏼁, (9)

where Kσc(tk) is the feedback matrix given in Assumption 2
and 􏽢x(t) is the observer state satisfying

_􏽢x(t) � Aσc tk( ) + Bσc tk( ))Kσc tk( ))􏼒 􏼓􏽢x tk( 􏼁, (10)

with

􏽢x tk( 􏼁 � 1 − ϕ tk( 􏼁( 􏼁ck + ϕ tk( 􏼁􏽥ck. (11)

Actuator Plant

Controller

Sensor

Event-
trigger unit

QuantizerNetworkObserver

u (t), At

(x (t), σc (t), tk)
(x (tk), σc (tk), tk) (ck,r (tk), tk)

(xk,r (tk), tk)

(x (t), r (t), t)[tk,tk+1)

Figure 1: System confguration.
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It is assumed that the tampered quantization value 􏽥ck is
also a center of sub-box to reduce the attack detection rate. It
is obvious that if x(tk) ∈ Sk, then 􏽥ck meets

x tk( 􏼁 − 􏽥ck

����
����≤

2N − 1
2N

Ek, (12)

and

􏽥ck − x
∗
k

����
����≤

N − 1
N

Ek. (13)

Note that the system mode r(tk) transmitted from the
system sidemay also be tampered. At the triggered instant tk,
we denote the tampered mode as σ(tk). Ten,

σc tk( 􏼁 � 1 − ϕ tk( 􏼁( 􏼁r tk( 􏼁 + ϕ tk( 􏼁σ tk( 􏼁. (14)

Hence, the control rule can be rewritten as

u(t) �
Kr tk( )e

Ar tk( )+Br tk( )Kr tk( )􏼐 􏼑 t− tk( )ck, if ϕ tk( 􏼁 � 0,

Kσ tk( )e
Aσ tk( )+Bσ tk( )Kσ tk( )􏼐 􏼑 t− tk( )􏽥ck, if ϕ tk( 􏼁 � 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

and the closed-loop system is written as

_x(t) �

Ar tk( )x(t) + Br tk( )Kr tk( )

×e
Ar tk( )+Br tk( )Kr tk( )􏼐 􏼑 t− tk( )ck, if ϕ tk( 􏼁 � 0,

Ar tk( )x(t) + Br tk( )Kσ tk( )

×e
Aσ tk( )+Bσ(t)Kσ tk( )􏼐 􏼑 t− tk( )􏽥ck, if ϕ tk( 􏼁 � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

2.6. Main Objective. Similar to the exponential convergence
defned in [20], the property of exponential convergence in
the mean sense is defned as follows.

Defnition 6. Te closed-loop system (16) is exponential
convergence in the mean sense that if there exist constants
η> 0 and ω> 0 and a function: (0,∞)⟶ (0,∞) such that

E(‖x(t)‖) ≤ ηe
− ωt

g(‖x(0)‖), ∀t≥ 0. (17)

Te control objective of this paper is designing the
suitable quantization rules and a controller with the feed-
back matrix defned in Assumption 2 such that the closed-
loop system (16) is the exponential convergence in the
mean sense.

3. The Design of Quantization Rules

From Section 2.3, we should guarantee that (4) always holds
for any triggered instant tk􏼈 􏼉k∈N. To achieve this purpose, we
frst pursue an initial instant t0 and an initial hypercubic box
S0 � x ∈ Rn: ‖x(t0) − x∗0 ‖≤E(t0)􏼈 􏼉with x∗0 � 0n∗n such that
x(t0) ∈ S0.

Let u(t) � 0, then system (1) is operated in an open-loop.
For any given constants E0 > 0 and δ > 0, it defnes an in-
creasing function as follows:

E(t) ≔ e
(1+δ)maxp∈M Ap

����
����t

E0.
(18)

Due to that E(t) grows fast to dominate the growth rate
of the open-loop dynamics. It must be a fnite time t0 such
that ‖x(t0)‖≤E(t0), i.e., x(t0) ∈ S0. Denote t0 as the initial
triggered instant, and turn the system (1) to the closed-loop
form for any t≥ t0.

Next, we will give an iterative design method for
quantization rules. Assuming that (4) holds, Ek+1 and x∗k+1
will be designed such that

x tk+1( 􏼁 − x
∗
k+1

����
����≤Ek+1, (19)

is satisfed for diferent cases.

3.1. Triggered Interval with No Switch. To facilitate the fol-
lowing analysis, for any system mode r(t) � 􏽥p∈M and the
controller mode σc(tk) � 􏽥q ∈M, we defne thematrixA􏽥q􏽥p as
follows:

A􏽥q􏽥p �
A􏽥p B􏽥pK􏽥q

0 A􏽥q + B􏽥qK􏽥q

⎡⎣ ⎤⎦. (20)

3.1.1. No Attack Occurs at tk. If r(tk) � r(tk+1) � p ∈M and
ϕ(tk) � 0, the error e: � x − 􏽢x satisfes _e(t) � Ape(t),

∀t ∈[tk, tk+1). Due to ‖e(tk)‖≤Ek/N by recalling (5) and (11),
one has

e t
−
k+1( 􏼁

����
����≤Λp

Ek

N
≕Ek+1, (21)

with Λp defned in Assumption 4. To ensure (19), we can let

x
∗
k+1 ≔ 􏽢x t

−
k+1( 􏼁 � e

Ap+BpKp( 􏼁 tk+1 − tk( )ck. (22)

3.1.2. An Attack Occurs at tk. For ϕ(tk) � 1, we denote the
system mode as r(tk) � r(tk+1) � p ∈M and the tampered
mode as σ(tk) � m ∈M. On the triggered interval [tk, tk+1),
the close-loop dynamics are

_x(t)

_􏽢x(t)
􏼢 􏼣 �

Ap BpKm

0 Am + BmKm

􏼢 􏼣
x(t)

􏽢x(t)
􏼢 􏼣. (23)

Lety ≔ x

􏽢x
􏼢 􏼣, (23) can be rewritten as

_y(t) � Ampy(t). (24)

By (11) and (12), we can easily get

y tk( 􏼁 −

􏽢x tk( 􏼁

􏽢x tk( 􏼁

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�����������

�����������
≤ x tk( 􏼁 − 􏽢x tk( 􏼁

����
����≤

2N − 1
2N

Ek. (25)

By introducing an auxiliary system
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_y(t) � Ampy(t), y(0) �
􏽢x tk( 􏼁

􏽢x tk( 􏼁
􏼢 􏼣, (26)

we know that

y tk+1( 􏼁 − y tk+1 − tk( 􏼁
����

����

≤ e
Amp tk+1 − tk( )

������

������
2N − 1
2N

Ek ≔ Ek+1.

(27)

Moreover, x∗k+1 is designed by projecting y(tk+1 − tk)

onto the x component

x
∗
k+1 ≔ In∗n 0n∗n􏼂 􏼃y tk+1 − tk( 􏼁( 􏼁

� In∗n 0n∗n􏼂 􏼃e
Amp tk+1− tk( ) In∗n

In∗n
􏼢 􏼣􏽥ck.

(28)

3.2. Triggered Interval with a Switch

3.2.1. No Attack Occurs at tk. Suppose that r(tk) � p and
r(tk+1) � q≠p. Similar to the analysis in Section 4.2 of [20],
Ek+1 and x∗k+1 can be designed as follows:

Ek+1 � e
Apq

����
����max t″ ,tk+1− tk− t″{ } + 1􏼒 􏼓 e

Apqt″
������

������ e
Ap+BpKp( 􏼁t′

������

������

× x
∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓 + e
Apq

����
���� tk+1 − tk( )

× e
Ap+BpKp

����
����max t′ ,tk+1 − tk− t′{ } + 1􏼒 􏼓 e

Ap+BpKp( 􏼁t′
������

������􏼒

× x
∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓 + e
Ap

����
���� tk+1 − tk( )Ek

N
􏼓,

(29)

and

x
∗
k+1 ≔ In∗n 0n∗n􏼂 􏼃e

Apqt″
In∗n

In∗n
􏼢 􏼣e

Ap+BpKp( 􏼁t′
ck, (30)

where t′ and t″ are any given constants belonging to
[0, tk+1 − tk].

3.2.2. An Attack Occurs at tk. Let r(tk) � p, r(tk+1) � q≠p,
and σ(tk) � m. Obviously, there is an unknown instant tk + t

such that r(t) � p, ∀t ∈[tk, tk + t) and r(t) � q,∀t ∈[tk+

t, tk+1).

(a) Analysis before the Switch. On [tk, tk + t), similar to the
analysis of (23)–(27), we have

y tk + t( 􏼁 − y(t)
����

����≤ e
Ampt

������

������
2N − 1
2N

Ek. (31)

For any t′ ∈ [0, tk+1 − tk], it is easy to see that

y(t) − y t
′

􏼒 􏼓

������

������

≤ e
Amp t− t′( )

������

������ e
Ampt′

������

������‖y(0)‖

≤ e
Amp t− t′( )

������

������ e
Ampt′

������

������ 􏽥ck

����
����

≤ e
Amp t− t′( )

������

������ e
Ampt′

������

������ x
∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓.

(32)

By recalling (13), the triangle inequality, it obtains

y tk + t( 􏼁 − y t
′

􏼒 􏼓

������

������

≤ e
Amp t− t′( )

������

������ e
Ampt′

������

������ x
∗
k +

N − 1
N

Ek􏼒 􏼓

+ e
Ampt

������

������
2N − 1
2N

Ek

≕Dk+1(t).

(33)

(b) Analysis after the Switch. On the interval [tk + t, tk+1), the
closed-loop dynamic is as follows:

_y � Amqy. (34)

Considering the second auxiliary system as follows:

_􏽥y � Amq 􏽥y, 􏽥y(0) � y t
′

􏼒 􏼓, (35)

one can see that

y t
−
k+1( 􏼁 − 􏽥y tk+1 − tk − t( 􏼁

����
����≤ e

Amq tk+1− tk− t( )
������

������Dk+1(t).

(36)

To eliminate the dependence of the quantization center
on the unknown time t, we pick a t″ ∈ [0, tk+1 − tk]. Ten, it
yields

􏽥y tk+1 − tk − t( 􏼁 − 􏽥y t
″

􏼒 􏼓

������

������

≤ e
Amq tk+1− tk− t− t″( ) − I

������

������ 􏽥y t
″

􏼒 􏼓

������

������

≤ e
Amq tk+1− tk− t− t″( ) − I

������

������ e
Amqt″

������

������‖􏽥y(0)‖

� e
Amq tk+1− tk− t− t″( ) − I

������

������ e
Amqt″

������

������ e
Ampt′

������

������‖y(0)‖

≤ e
Amq tk+1− tk− t− t″( ) − I e

Amqt″
������

������

������

������ e
Ampt′

������

������

× x
∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓.

(37)

Combined with the above inequalities, one has
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y t
−
k+1( 􏼁 − 􏽥y t

″
􏼒 􏼓

������

������

≤ e
Amq tk+1− tk− t− t″( ) − I

������

������ e
Amqt″

������

������ e
Ampt′

������

������

× x
∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓 + e
Amq tk+1 − tk− t( )

������

������Dk+1(t)

≤ e
Amq

����
���� tk+1 − tk− t″( ) + 1􏼒 􏼓 e

Amqt″
������

������ e
Ampt′

������

������

× x
∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓 + e
Amq

����
���� tk+1 − tk( )

× e
Amp

����
���� tk+1 − tk( ) x

∗
k

����
���� +

4N − 3
2N

Ek􏼒 􏼓 ≔ Ek+1,

(38)

by using the properties ‖M − I‖≤ ‖M‖ + 1 and ‖eAs‖≤
e‖A‖|s|. Moreover, x∗k+1 can be defned as follows:

x
∗
k+1 ≔ In∗n 0n∗n􏼂 􏼃􏽥y t

″
􏼒 􏼓

� In∗n 0n∗n􏼂 􏼃e
Amqt″

e
Ampt′

􏽥ck.

(39)

4. Increasing/Decreasing Rate of
Lyapunov Function

Let r(tk) � p denote τk � tk+1 − tk ∈(0, h). According to
Assumption 2, there exist positive-defnite matrices Pp(τk)

and Qp(τk) such that Sp(τk)TPp(τk)Sp(τk) − Pp(τk) �

− Qp(τk)< 0, with Sp(τk) � e(Ap+BpKp)τk . Defning

β1,p ≔
2n

2􏽥S
2
p

Qp

+ n􏽥Sp
⎛⎝ ⎞⎠

N − 1
N

􏼒 􏼓
2
, (40)

where 􏽥Sp � maxτk∈(0,h]‖Sp(τk)TPp(τk)Sp(τk)‖ and Qp �

minτk∈(0,h] λ(Qp(τk)), there must exist a large enough
positive constant ρp such that

β1,p

ρp

+
Λ2p
N

2 < 1, (41)

by recalling Assumption 5. Obviously, such defned β1,p

can eliminate the dependency of ρp on τk. However, the
matrix Pp that satisfes Sp(τk)TPp(τk)Sp(τk) − Pp (τk) �

− Qp(τk) < 0 solved by linear matrix inequality always
changes with the value of τk. Ten, we defne Lyapunov
function as

Vp x
∗
k , Ek( 􏼁 ≔ x

∗
k( 􏼁
⊤

Pp τk( 􏼁x
∗
k + ρpE

2
k. (42)

Tis section will provide the increasing/decreasing rate
of such Lyapunov function for diferent cases, which is the
basis of stability analysis.

4.1. Triggered Interval with No Switch

4.1.1. No Attack Occurs at tk. If r(tk) � r(tk+1) � p ∈M and
ϕ(tk) � 0, one has Ek+1 � ΛpEk/N and x∗k+1 � Sp(τk)ck by
recalling (21) and (22).

Similar to the analysis in [20], one gets the following:

Vp x
∗
k+1, Ek+1( 􏼁≤ μ1Vp x

∗
k , Ek( 􏼁, (43)

where

μ1 � maxp∈Mμ1p,

μ1p � max 1 −
0.5Qp

n􏽥Pp

,
β1,p

ρp

+
Λp

N
􏼠 􏼡

2⎧⎨

⎩

⎫⎬

⎭ < 1,

(44)

with 􏽥Pp � maxτk∈(0,h]λ(Pp(τk)).

4.1.2. An Attack Occurs at tk. If ϕ(tk) � 1, let r(tk) �

r(tk+1) � p ∈M and σ(tk) � m ∈M. It follows from (28)
that x∗k+1 � Hmp(τk)􏽥ck with Hmp(τk) defned by the
following:

Hmp τk( 􏼁 ≔ In∗n 0n∗n􏼂 􏼃e
Amp τk( ) In∗n

In∗n
􏼢 􏼣. (45)

It gives that

x
∗
k+1

����
����≤ hmp x

∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓, (46)

with hmp:� maxτk∈(0,h]‖Hmp(τk)‖. Moreover, we know from
(27) that

Ek+1 ≤ e
Amp

����
����h

Ek ≔ β2,mpEk. (47)

Since ‖x‖≤ |x|≤
�
n

√
‖x‖, where |x| denotes the Euclidean

norm of the vector x, it yields

Vp x
∗
k+1, Ek+1( 􏼁

� x
∗
k+1( 􏼁
⊤

Pp τk+1( 􏼁x
∗
k+1 + ρpE

2
k+1

≤ nλ Pp τk+1( 􏼁􏼐 􏼑 x
∗
k+1

����
����
2

+ ρpE
2
k+1

≤ n􏽥Pph
2
mp x

∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓
2

+ ρp β2,mpEk􏼐 􏼑
2

≤ 2n􏽥Pph
2
mp x
∗
k

����
����
2

+ 2n􏽥Pph
2
mp

N − 1
N

􏼒 􏼓
2
E
2
k + ρpβ

2
2,mpE

2
k

� 2n􏽥Pph
2
mp􏼐 􏼑 x

∗
k

����
����
2

+ 2n􏽥Pph
2
mp

N − 1
N

􏼒 􏼓
2

+ ρpβ
2
2,mp􏼠 􏼡E

2
k

≤
2n􏽥Pph

2
mp

λ Pp τk( 􏼁􏼐 􏼑
x
∗
k( 􏼁
⊤

Pp τk( 􏼁x
∗
k

+
2n􏽥Pph

2
mp

ρp

N − 1
N

􏼒 􏼓
2

+ β22,mp
⎛⎝ ⎞⎠ρpE

2
k

≤ μ2Vp x
∗
k , Ek( 􏼁,

(48)
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where

μ2 � maxp,m∈Mμ2mp,

μ2mp � max
2n􏽥Pph

2
mp

Pp

,
2n􏽥Pph

2
mp

ρp

N − 1
N

􏼒 􏼓
2

+ β22,mp

⎧⎨

⎩

⎫⎬

⎭,

(49)

with Pp � minτk∈(0,h] λ(Pp(τk)).

4.2. Triggered Interval with a Switch

4.2.1. No Attack Occurs at tk. When r(tk) � p, r(tk+1) �

q≠p and ϕ(tk) � 0, (29) and (30) yield

Ek+1 ≤ α3,pq x
∗
k

����
���� + β3,pqEk, (50)

where

α3,pq � e
Apq

����
����max t″ ,h− t″{ } + 1􏼒 􏼓 e

Apqt″
������

������ e
Ap+BpKp( 􏼁t′

������

������

+ e
Apq

����
����h

e
Ap+BpKp

����
����max t′ ,h− t′{ } + 1􏼒 􏼓

× e
Ap+BpKp( 􏼁t′

������

������,

β3,pq � α3,pq

N − 1
N

+ e
Apq

����
����h

e
Ap

����
����h 1

N
,

x
∗
k+1

����
����≤ 􏽥hpq x

∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓,

(51)

with 􏽥hpq � ‖ 􏽥Hpq‖ and

􏽥Hpq ≔ In∗n 0n∗n􏼂 􏼃e
Apqt″

In∗n

In∗n
􏼢 􏼣e

Ap+BpKp( 􏼁t′
. (52)

Similar to the proof of Lemma 7 in [20], one gets

Vq x
∗
k+1, Ek+1( 􏼁≤ μ3Vp x

∗
k , Ek( 􏼁, (53)

with

μ3 � maxM∋p≠q∈M μ3pq,

μ3pq � max
2n􏽥Pqh

2
pq + 2ρqα

2
3,pq

Pp

⎧⎨

⎩ ,

·
2n􏽥Pq

􏽥h
2
pq

ρp

N − 1
N

􏼒 􏼓
2

+
2ρqβ

2
3,pq

ρp

⎫⎪⎬

⎪⎭
.

(54)

4.2.2. An Attack Occurs at tk. Let r(tk) � p, r(tk+1) � q≠p,
and σ(tk) � m, it follows from (38) and (39) that

Ek+1 ≤ α4,mpq x
∗
k

����
���� + β4,mpqEk, (55)

where

α4,mpq � e
Amq

����
���� h− t″( ) + 1􏼒 􏼓 e

Amqt″
������

������ e
Ampt′

������

������

+ e
Amq

����
����h

e
Amp

����
����h

,

β4,mpq � α4,mpq

N − 1
N

+ e
Amq

����
����h

e
Amp

����
����h2N − 1

2N
,

x
∗
k+1

����
����≤ hmpq x

∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓,

(56)

with hmpq � ‖Hmpq‖, Hmpq � [In∗n 0n∗n]eAmqt″eAmpt′.

Ten, one gets the following:

Vq x
∗
k+1, Ek+1( 􏼁

� x
∗
k+1( 􏼁
⊤

Pq τk+1( 􏼁x
∗
k+1 + ρqE

2
k+1

≤ n􏽥Pq x
∗
k+1

����
����
2

+ ρqE
2
k+1

≤ n􏽥Pqh
2
mpq x

∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓
2

+ ρq α4,mpq x
∗
k

����
���� + β4,mpqEk􏼐 􏼑

2

≤ 2n􏽥Pqh
2
mpq x

∗
k

����
����
2

+ 2n􏽥Pqh
2
mpq

N − 1
N

􏼒 􏼓
2
E
2
k

+ 2ρqα
2
4,mpq x

∗
k

����
����
2

+ 2ρqβ
2
4,mpqE

2
k

� 2n􏽥Pqh
2
mpq + 2ρqα

2
4,mpq􏼒 􏼓 x

∗
k

����
����
2

+ 2n􏽥Pqh
2
mpq

N − 1
N

􏼒 􏼓
2

+ 2ρqβ
2
4,mpq􏼠 􏼡E

2
k

≤
2n􏽥Pqh

2
mpq + 2ρqα

2
4,mpq

Pp

x
∗
k( 􏼁
⊤

Ppx
∗
k

+
2n􏽥Pqh

2
mpq

ρp

N − 1
N

􏼒 􏼓
2

+
2ρqβ

2
4,mpq

ρp

⎛⎝ ⎞⎠ρpE
2
k

≤ μ4Vp x
∗
k , Ek( 􏼁,

(57)

where

μ4 � maxm∈M,M∋p≠q∈M μ4mpq,

μ4mpq � max
2n􏽥Pqh

2
mpq + 2ρqα

2
4,mpq

Pp

⎧⎪⎨

⎪⎩
,

·
2n􏽥Pqh

2
mpq

ρp

N − 1
N

􏼒 􏼓
2

+
2ρqβ

2
4,mpq

ρp

⎫⎪⎬

⎪⎭
.

(58)
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5. Stability Analysis

To establish the stability of the closed-loop system (16), we
frst pursue the upper bound of Lyapunov function at tk

based on the analysis in Section 4. On this basis, the sufcient
conditions ensuring exponential convergence in the mean
sense of the closed-loop system are provided.

5.1. Te Upper Bound of Lyapunov Function at tk

Lemma 7. Let 􏽥μ � max μ2, μ3, μ4􏼈 􏼉> 1. If dwell time h and β
defned in (7) meet

1
h

−
1
β
>

ln 􏽥μ
ln 􏽥μ − ln μ1

> 0, (59)

and π, π defned in Lemma 1 and α, ζ, T defned in As-
sumption 5 satisfy

π ≤ π <
(1/β − 1/h)ln μ1/􏽥μ( 􏼁 − ln 􏽥μ

1 + h/β
+ π􏼠 􏼡

μ1
μ3

, (60a)

T> max
β

β − h
,

1
1 + πμ3/μ1 − π( 􏼁(1 + h/β) + ln 􏽥μ/ln μ1/􏽥μ( 􏼁h − h/β

􏼨 􏼩, (60b)

then the Lyapunov function follows the following property:

E Vσ tk( ) x
∗
k , Ek( 􏼁􏼚 􏼛≤ cθ􏽥ωk maxp∈Mρp􏼐 􏼑E

2
0, (61)

where

c � e
π μ3/μ1( )− π( ) hα− (h/β)t0( ) μ1

􏽥μ
􏼠 􏼡

t0/T( )− ζ/h+ t0/β( )

× e
π μ3/μ1( )− π( ) t0/β− α( )h μ1

􏽥μ
􏼠 􏼡

(1− (1/T)/h− 1/β) t0/β( )− α( )h/1+h/β( )

,

θ � 􏽥μe
μ3/μ1( )π− π( )(1+h/β) μ1

􏽥μ
􏼠 􏼡

(1− (1/T)/h− 1/β)

< 1,

􏽥ω � 1 +
h

β
.

(62)

Proof. Assume that there are 􏽥m time attacks that occur
within the interval [t0, tk). Denote a1, a2, . . . , a􏽥m and a1 +

b1, a2 + b2, . . . , a􏽥m + b􏽥m as the beginning and ending instants
of these attacks. Let 􏽥ai,∀i ∈ 1, 2, . . . , 􏽥m{ } be the frst triggered
instant after ai.

Denote F1 as the increasing/decreasing rate of the
Lyapunov function during the interval ∪ 􏽥m

i�1 [􏽥ai, ai + bi) and
F2 as the one corresponding to [t0, tk)/∪ 􏽥m

i�1[􏽥ai, ai + bi). It is
obvious that the increasing/decreasing rate of Lyapunov
function from t0 to tk, denoted by F, meets F � F1F2.

First, by recalling Lemma 1, (48), and (57), one has

F1 ≤P Nr(t) � 0( 􏼁μk1
2 μ

0
4 + P Nr(t) � 1( 􏼁μk1− 1

2 μ14

+ . . . + P Nr(t) � k1( 􏼁μ02μ
k1
4

≤ e
− πχ1 πχ1( 􏼁

0

0!
􏽥μk1 +

πχ1( 􏼁
1

1!
􏽥μk1 + . . . +

πχ1( 􏼁
k1

k1!
􏽥μk1⎛⎝ ⎞⎠

≤ e
− πχ1 􏽘

k1

i�0

πχ1( 􏼁
i

i!
􏽥μk1

≤ e
(π− π)χ1􏽥μk1 ,

(63)
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where k1 represents the number of triggers within the in-
terval ∪ 􏽥m

i�1 [􏽥ai, ai + bi) and χ1 denotes the length of ∪ 􏽥m
i�1

[􏽥ai, ai + bi). Obviously, χ1 meets χ1 ≤ |Ξ(t0, tk)|.
Second, let k2 represent the number of triggers during

[t0, tk)/∪ 􏽥m
i�1 [􏽥ai, ai + bi) and χ2 denote the length of

[t0, tk)/∪ 􏽥m
i�1 [􏽥ai, ai + bi). Ten, we have

χ2 ≤ tk − Ξ t0, tk( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + hn t0, tk( 􏼁. (64)

Similarly, one has

F2 ≤P Nr(t) � 0( 􏼁μk2
1 μ

0
2 + P Nr(t) � 1( 􏼁μk2− 1

1 μ13

+ . . . + P Nr(t) � k2( 􏼁μ01μ
k2
3

≤ e
− πχ2 πχ2( 􏼁

0

0!
μk2
1 μ

0
3 +

πχ2( 􏼁
1

1!
μk2− 1
1 μ13􏼠

+. . . . +
πχ2( 􏼁

k2

k2!
μ01μ

k2
3

⎞⎠

≤ e
− πχ2 πχ2( 􏼁

0

0!

μ3
μ1

􏼠 􏼡

0

+
πχ2( 􏼁

1

1!

μ3
μ1

􏼠 􏼡

1
⎛⎝

+. . . +
πχ2( 􏼁

k2

k2!

μ3
μ1

􏼠 􏼡

k2

⎞⎠μk2
1

≤ e
− πχ2 􏽘

k2

j�0

μ3/μ1( 􏼁πχ2( 􏼁
j

j!
μk2
1

≤ e
μ3/μ1π− π( )χ2μk2

1 .

(65)

Combining the above two inequalities, one gets

F≤ e
(π− π)χ1􏽥μk1e

μ3/μ1π− π( )χ2μk2
1 . (66)

If π ≥ π as shown in (60a), then π − π ≥ 0 and
πμ3/μ1 − π ≥ 0. Recalling χ1 ≤ |Ξ(t0, tk)| and (64), one gets

F≤ e
(π− π) Ξ t0 ,tk( )| |e

μ3/μ1π− π( ) tk− Ξ t0 ,tk( )| |+hn t0 ,tk( )( )􏽥μk1μk2
1

� e
1− μ3/μ1( )π Ξ t0 ,tk( )| |e

μ3/μ1π− π( ) tk+hn t0 ,tk( )( )􏽥μk1μk2
1

≤ e
μ3/μ1π− π( ) tk+h α+tk− t0/β( )( )􏽥μk1μk2

1

� e
μ3/μ1π− π( ) hα−

h

β
t0􏼠 􏼡

e
μ3/μ1π− π( )(1+h/β)tk 􏽥μk1μk2

1 ,

(67)

where the second inequality is based on μ1 ≤ μ3 and (7).
Considering that k2 satisfes the following:

k2 ≥
tk − Ξ t0, tk( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

h
− n t0, tk( 􏼁

≥
tk − ζ + tk − t0/T( 􏼁

h
− α +

tk − t0

β
􏼠 􏼡

�
t0/T − ζ

h
+

t0

β
􏼠 􏼡 +

1 − 1/T
h

−
1
β

􏼠 􏼡tk,

(68)

we can obtain

􏽥μk1μk2
1 � 􏽥μk− k2μk2

1 � 􏽥μk μ1
􏽥μ

􏼠 􏼡

k2

≤ 􏽥μk μ1
􏽥μ

􏼠 􏼡

t0/T( )− ζ/h+ t0/β( ) μ1
􏽥μ

􏼠 􏼡

(1− (1/T)/h− 1/β)tk

.

(69)

Because μ1 ≤ 􏽥μ, we combined (67) and (69), which yields

F≤ e
μ3/μ1( )π− π( ) hα− h/βt0( ) μ1

􏽥μ
􏼠 􏼡

t0/T( )− ζ/h+ t0/β( )

× e
μ3/μ1( )π− π( )(1+(h/β))tk 􏽥μk μ1

􏽥μ
􏼠 􏼡

(1− 1/T/h− 1/β)tk

.

(70)

On the one hand, by recalling 1/h> 1/β according to
(59), there exists a large enough T such that

1 − (1/T)

h
−
1
β
> 0. (71)

On the other hand, based on the event-triggered scheme
(3), it is easy to see that

tk ≥ k − n t0, tk( 􏼁( 􏼁h≥ k − α +
tk − t0

β
􏼠 􏼡􏼠 􏼡h, (72)

i.e.,

tk ≥
kh

1 + h/β
+

t0/β − α( 􏼁h

1 + h/β
. (73)

If θ defned in (62) meets θ< 1, one has

e
μ3/μ1( )π− π( )(1+h/β) μ1

􏽥μ
􏼠 􏼡

(1− (1/T)/h− 1/β)

< θ< 1. (74)

We summarized (70)–(74), which indicates that

F≤ e
πμ3/μ1− π( ) hα− h/βt0( ) μ1

􏽥μ
􏼠 􏼡

t0/T( )− ζ/h+ t0/β( )

· e
π μ3/μ1( )− π( ) t0/β( )− α( )h

×
μ1
􏽥μ

􏼠 􏼡

(1− (1/T)/h− 1/β) t0/β( )− α( )h/1+h/β

× 􏽥μe
μ3/μ1π− π( )(1+h/β) μ1

􏽥μ
􏼠 􏼡

((1− 1/T/h)− 1/β)

⎛⎝ ⎞⎠

h/(1+h/β)k

� cθ􏽥ωk
,

(75)
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with c, θ, and 􏽥ω defned in (62). By considering x∗0 � 0, one
gets

E Vσ tk( ) x
∗
k , Ek( 􏼁􏼚 􏼛≤ cθ􏽥ωk maxp∈Mρp􏼐 􏼑E t0( 􏼁

2
. (76)

To ensure θ< 1, i.e.,

μ3
μ1

π − π􏼠 􏼡 1 +
h

β
􏼠 􏼡 + ln 􏽥μ +

1 − 1/T
h

−
1
β

􏼠 􏼡ln
μ1
􏽥μ
< 0,

(77)

T should satisfy

T>
1

1 + μ3/μ1( 􏼁π − π( 􏼁(1 + h/β) + ln 􏽥μ/ln μ1/􏽥μ( 􏼁h − h/β
.

(78)

Moreover, (60a) is used to guarantee that the de-
nominator of lower bound of T is greater than 0 and (59) can
ensure that the upper bound of π is a positive number.

From Lemma 7, we can get the following:

E x
∗
k

����
����􏽮 􏽯≤

������������

E V x
∗
k , Ek( 􏼁( 􏼁

min
p∈M

λ Pp􏼐 􏼑

􏽶
􏽴

≤ c

1
2θ

􏽥ω
2

k

���������
max
p∈M

ρp

min
p∈M

λ Pp􏼐 􏼑

􏽶
􏽴

E t0( 􏼁,

(79)

and

E Ek􏼈 􏼉≤ c
1/2θ(􏽥ω/2)k

������
max
p∈M

ρp

min
p∈M

ρp

􏽶
􏽴

E t0( 􏼁. (80)

5.2. Exponential Convergence in the Mean Sense of Closed-
Loop System. Tis section will provide a structural proof for
the following theorem. To achieve this, we modify the rel-
evant calculations in Section 3.2.2, which is corresponding to
the worst case, to derive simpler and more conservative
boundaries.

Theorem  . Suppose that Assumptions 2, 4, and 5 hold. If the
conditions in Lemma 7 are satisfed, there exists a coding and
control strategy such that the closed-loopMarkov jump system
(16) achieves exponential convergence in the mean sense, i.e.,

E(‖x(t)‖) ≤ ηe
− ωt

g(‖x(0)‖), ∀t≥ 0, (81)

holds for every initial condition x0, where ω � 􏽥ω/2h log1/θ,
η � 􏽥ηθ− (􏽥ω/2), and

􏽥η � c
1/2

􏽥α

���������
max
p∈M

ρp

min
p∈M

λ Pp􏼐 􏼑

􏽶
􏽴

+ 􏽥β

������
max
p∈M

ρp

min
p∈M

ρp

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (82)

with 􏽥α and 􏽥β defned in (90).

Proof. For all t ∈(tk, tk + t), by (25), one has

y(t) − y t − tk( 􏼁
����

����≤max0≤s≤t− tk
e

Amps
������

������
2N − 1
2N

Ek. (83)

Because y(t − tk) � eAmp(t− tk)y(0) and 􏽢x(tk) � 􏽥ck, it
yields

y t − tk( 􏼁 − y(0)
����

����

≤max0≤s≤t− tk
e

Amps
− I

������

������ 􏽥ck

����
����

≤max0≤s≤t− tk
e

Amps
− I

������

������ x
∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓.

(84)

By the triangle inequality, one gets

‖y(t) − y(0)‖

≤max0≤s≤t− tk
e

Amps
− I

������

������ x
∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓

+ max0≤s≤t− tk
e

Amps
������

������
2N − 1
2N

Ek

≔ Dk+1 t − tk( 􏼁.

(85)

Specially, one has ‖y(tk + t) − y(0)‖≤Dk+1(t).
Consider that the closed-loop dynamic is _y � Amqy

during the interval [tk + t, tk+1). If we rewrite the second
auxiliary system as

_􏽥y � Amq􏽥y, 􏽥y(0) � y(0), (86)

it is easy to see that

y(t) − y t − tk − t( 􏼁
����

����≤max0≤s≤t− tk− t e
Amqs

������

������Dk+1(t), (87)

holds for any t ∈[tk + t, tk+1). Because y(t − tk − t) �

eAmq(t− tk− t)y(0), one gets

y t − tk − t( 􏼁 − y(0)
����

����

≤max0≤s≤t− tk− t e
Amqs

− I

������

������‖y(0)‖

≤max0≤s≤t− tk− t e
Amqs

− I

������

������ 􏽥ck

����
����

≤max0≤s≤t− tk− t e
Amqs

− I

������

������ x
∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓.

(88)

Hence, we have

‖y(t) − y(0)‖

≤max0≤s≤h e
Amqs

������

������Dk+1(h)

+ max0≤s≤h e
Amqs

− I

������

������ x
∗
k

����
���� +

N − 1
N

Ek􏼒 􏼓

≔ Ek+1.

(89)

Projecting onto the x-component, we deduce
‖x(t) − 􏽥ck‖≤Ek+1, which implies that

10 Journal of Control Science and Engineering



‖x(t)‖ ≤ 􏽥ck

����
���� + x(t) − 􏽥ck

����
����≤ x

∗
k

����
���� +

N − 1
N

Ek + Ek+1

≔ 􏽥α x
∗
k

����
���� + 􏽥βEk,

(90)

with 􏽥α � maxm,p,q∈M􏽥αmpq, 􏽥β � maxm,p,q∈M
􏽥βmpq, and

􏽥αmpq � 1 + max0≤s≤h e
Amqs

������

������ e
Amps

− I

������

������

+ max0≤s≤h e
Amqs

− I

������

������

􏽥βmpq � 􏽥αmpq

N − 1
N

+ max0≤s≤h e
Amqs

������

������ e
Amps

������

������􏼚 􏼛
2N − 1
2N

.

(91)

Combined (79) and (80) induces that

E(‖x(t)‖) ≤ 􏽥ηθ􏽥ωk/2
E t0( 􏼁. (92)

Based on the analysis in Section 3, one knows that the
design of E(t0) relies on ‖x(0)‖. Hence, there exists
a function g(·) such that E(t0) � g(‖x(0)‖).

By defning ω � 􏽥ω/2h log1/θ and η � 􏽥ηθ− 􏽥ω/2, (92) implies
that

E(‖x(t)‖) ≤ ηe
− ωt

g(‖x(0)‖). (93)

Te proof is completed.

6. Simulation Example

Te two-tank system borrowed from [24] is used to verify
the efectiveness of the control strategy, which can be
modeled as system (1) with M � 1, 2{ } and

A1 � A2 �
− 1 − 2

1 0
􏼢 􏼣,

B1 �
− 2

0
􏼢 􏼣,

B2 �
0

− 1
􏼢 􏼣,

(94)

where the system states represent the deviations from the
nominal reservoir levels. Te fow between two tanks is
proportional to the diference of the reservoir levels, and the
fow control can be switched arbitrarily.

Let x0 � [3, 2]⊤, δ � 0.01, N � 5, E0 � 0.1, α � 1, and
ζ � 1. Select K1 � [1 0], K2 � [0 2], and h � 0.2. To ensure
(59) and ((60a) and (60b)), we set β � 3, T � 3, π12 � 0.015,
and π21 � 0.02.

From Figure 2, it is obvious that t0 � 6 can be selected as
the initial triggered instant. Te mean values of the system
states are shown as the red lines in Figure 3, from which we
can see that the closed-loop system is exponential conver-
gence in the mean sense under the quantization control
algorithm designed in this paper.

Moreover, Ek and ‖x(tk) − x∗k ‖ are displayed in Fig-
ure 4, which illustrates that the quantizer is unsaturated
after t0. In such fgure, the blue vertical dotted lines

indicate the switching instants, which are randomly
generated according to r(0) � 1 and πpq,∀p, q ∈M, and
the red vertical dotted lines denote the beginning in-
stants of deception attacks, which are assumed to be
random variables following the independent and iden-
tically distributed variables with a probability of 23%.
Obviously, both switches and attacks result in an in-
crease in Ek and ‖x(tk) − x∗k ‖. It is worth mentioning that
the growth rate of Ek is much greater than that of
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Figure 2: Selection of k0.
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Figure 3: Comparison of the state trajectories of this paper and
[25].
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‖x(tk) − x∗k ‖. Tis is because Ek is designed from the worst
case in order to ensure the unsaturation of the quantizer
in all cases.

6.1. Comparison. As shown in Figure 3, by comparing the
state trajectories of this paper and [25], where the triggered
mechanism is designed without considering deception at-
tacks, it can be seen that the convergence speed of this paper
is slower than that of [25], and the oscillation amplitude of
the state trajectories in this paper is greater than that of [25]
under the infuence of deception attacks. It means that the
deception attacks inevitably reduce the system’s perfor-
mance. However, Figure 5 shows that the number of triggers
within 50 seconds is 28 under the triggered mechanism
proposed in this paper, but the one under the triggered

mechanism in [25] is 31 as shown in Figure 6. Hence, the
algorithm proposed in this paper has certain advantages
from the perspective of saving network resources.

7. Conclusions

Te stabilization problem of the Markov jump systems with
data quantization and deception attacks has been studied. By
designing a suitable event-triggered scheme and quantiza-
tion coding rules, the unsaturation of the quantizer at the
triggered instants has been guaranteed. By analyzing the
upper bound of the Lyapunov function, sufcient conditions
ensuring the stability of the closed-loop system have been
provided.

To simplify the analysis, this paper only considered
a single channel. In fact, if the dual channel is executed, it
means that the signal transmitted from the controller to the
system has also sufered deception attacks, which brings
challenges to the quantizer design. Te quantized feedback
control under bilateral network sufered deception attacks is
one of our future research directions. Moreover, the trig-
gered condition tk+1 � tk + h proposed in this paper is rel-
atively conservative, which may result in more triggered
times. How to remove such condition is another research
direction in the future.
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