
Research Article
An Accelerated Fixed-Point Algorithm Applied to Quadratic
Convex Separable Knapsack Problems

Atécio Alves ,1 Jônatas O. L. Silva ,2 Luiz C. Matioli ,3 Paulo S. M. Santos ,4

and Sissy S. Souza 4

1Programa de Pós-Graduação em Matemática, Federal University of Piauı́, Teresina, Brazil
2Programa de Pós-Graduação Doutorado em Ciência da Computação-Associação UFMA/UFPI,
Federal University of Maranhão, São Luı́s, Maranhão, Brazil
3Departamento de Matemática, Federal University of Paraná, Curitiba, Brazil
4Coordenação do Curso de Matemática, Federal University of Delta do Parnaı́ba, Parnaı́ba, Brazil

Correspondence should be addressed to Jônatas O. L. Silva; jonatas.iw@gmail.com

Received 3 May 2023; Revised 7 November 2023; Accepted 27 November 2023; Published 8 February 2024

Academic Editor: Radek Matušů

Copyright © 2024 Atécio Alves et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, we propose a root-fnding algorithm for solving a quadratic convex separable knapsack problem, which is more
straightforward than existing methods and competitive in practice. Besides, we also present an extension of the proposal, which
improves its computational time, and then we incorporate the accelerated Anderson’s and Aitken’s fxed-point algorithms to
obtain better results. Te algorithm only performs function evaluations. We present partial convergence results of the algorithm.
Moreover, we illustrate superior computational results in medium and large problems as well as the applicability of the algorithm
with real-life applications to show their efciency.

1. Introduction

We are interested in solving the quadratic convex separable
knapsack problem:

(QSKP):

Minimizef(x) ≔
n

i�1

1
2
pix

2
i − aixi ,

s.t.

n

i�1
bixi � c,

li ≤xi ≤ ui, i � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where pi, bi > 0 and li < ui for all i � 1, 2, . . . , n with c> 0
such that 〈b, l〉≤ c≤ 〈b, u〉.

Problem (1) has a variety of applications, including
among them, fnancial models, production and inventory
management, stratifed sampling, optimal design of queuing
network models in manufacturing, computer systems,
subgradient optimization, and health care (see[1–6] and
references therein).

Motivated by its extensive applications, a signifcant
amount of attention has been attracted to developing opti-
mization algorithms, and many iterative methods have been
proposed to solve this simple problem. See, for instance, an
excellent survey [4], which is complemented by [5]. In ad-
dition, they contribute to an improvement in the process of
fxing variables in the relaxation algorithm and a better way to
evaluate subsolutions. Finally, they provided a rigorous
numerical evaluation of several relaxations (primal) and
breakpoint (dual) algorithms, incorporating a variety of
pegging strategies as well as a Newton-type method.

Tis article aims to propose a fxed-point algorithm
(FPA) capable of solving the box-constrained quadratic
convex separable knapsack (QSKP) problem as efciently as
other state-of-the-art methods. We extend the FPA to apply
in the quadratic convex separable knapsack problem under
upper bound constraints (QSKPz). After reformulating the
QSKP problem, the new problem QSKPz is solved by an
extension of the FPA, called FPA2, which requires fewer
calculations than applying FPA directly in the QSKP

Hindawi
Journal of Control Science and Engineering
Volume 2024, Article ID 7602027, 17 pages
https://doi.org/10.1155/2024/7602027

https://orcid.org/0000-0001-8085-5321
https://orcid.org/0000-0002-3769-1322
https://orcid.org/0000-0002-6506-3550
https://orcid.org/0000-0002-1327-8779
https://orcid.org/0000-0002-2501-9571
mailto:jonatas.iw@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/7602027

problem. To obtain a better performance of the proposed
methods, we also incorporated the Anderson algorithm [7]
and a generalization of the Aitken algorithm [8] for fxed-
point methods to improve the proposal. Such acceleration
approaches are also explored in [9–11]. Below, we briefy
describe each section of this article.

First, in Section 2, we defne the proposedmethod, which
is based on [3]. While this article modifed the method to
solve quadratic convex separable knapsack problems, in [3],
the fxed-point method solves problems in stratifed sam-
pling under box constraints. In Section 3, we propose the
algorithm and establish its convergence. In Section 4, we
extend the proposed fxed-point algorithm to be applied to
quadratic convex separable knapsack problem under upper
bound constraints. We describe the strategy to accelerate the
fxed-point convergence in Section 5 and in Section 6 we
present the numerical experiments. We fnally present the
fnal remarks in Section 7.

2. Fixed-Point Method

Tis section provides the material necessary for article
comprehension. We start by proposing the existence and
uniqueness of the solution to problem (1). Here, we
rephrased x as a function dependent on λ. Tis reformu-
lation leads to a root-fnding problem for the Lagrange
multiplier of the equality constraint, which is needed to
formulate the fxed-point iteration as in [3].

Firstly, based on [1], we present an optimality condition
theorem.

Theorem 1. A vector x∗ ∈ Rn is a minimum of problem (1) if
and only if there exist Lagrange multipliers λ∗ ∈ R, v∗ ∈ Rn

+,
and w∗ ∈ Rn

+ such that

∇Lx x
∗
, λ∗, v
∗
, w
∗

(� ∇f x
∗

(+ λ∗∇g x
∗

(+ ∇r x
∗

((
′
v
∗

+ ∇s x
∗

((
′
w
∗

� 0, (2)

and furthermore,

viri x
∗
i(� 0, i � 1, · · · , n, (3)

wisi x
∗
i(� 0, i � 1, · · · , n, (4)

where g(x) � bTx − c, r(x) � l − x, and s(x) � x − u.

Lemma 2. Under the given assumptions of Teorem 1,
equation (2) is equivalent to

0≥
piui − ai

bi

+ λ∗, if x
∗
i � ui,

0 �
pix
∗
i − ai

bi

+ λ∗, if x
∗
i ∈ li, ui(,

0≤
pili − ai

bi

+ λ∗, if x
∗
i � li

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (5)

for all i � 1, 2, . . . , n.

Proof. Let x∗ ∈ Rn be a solution of problem (1). If x∗i � ui,
by (3), v∗i � 0 and w∗i ≥ 0. By (2) and for all i � 1, 2, . . . , n, we
have

0 � pix
∗
i − ai + biλ∗ − v

∗
i + w
∗
i

� piui − ai + biλ∗ + w
∗
i ≥piui − ai + biλ∗.

(6)

Ten,

0≥
piui − ai

bi

+ λ∗. (7)

If x∗i ∈ (li, ui), by (3) and (4), v∗i � 0 and w∗i � 0. By (2)
and for all i � 1, 2, . . . , n, we have

0 � pix
∗
i − ai + biλ∗ − v

∗
i + w
∗
i � pix

∗
i − ai + biλ∗. (8)

Ten,

0 �
pix
∗
i − ai

bi

+ λ∗. (9)

If x∗i � li, by (4), w∗i � 0 and v∗i ≥ 0. By (2) and for all
i � 1, 2, . . . , n, we have

0 � pix
∗
i − ai + biλ∗ − v

∗
i + w
∗
i

� pili − ai + biλ∗ − v
∗
i ≤pili − ai + biλ∗.

(10)

Ten,

0≤
pili − ai

bi

+ λ∗. (11)

Tus, we conclude the proof.
Motivated by (5), we will treat x as a function depending

on the variable λ. To achieve this, we set

x: R⟶ R
n
, λ⟼x(λ), (12)

with

xi(λ) �

li, if λ≥
ai − pili

bi

,

ai − λbi

pi

, if
ai − piui

bi

< λ<
ai − pili

bi

,

ui, if λ≤
ai − piui

bi

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

□

Theorem 3. A vector x∗ ∈ Rn is the unique solution of
optimization problem (1) if and only if there exists a multiplier
λ∗ ∈ R such thatx(λ∗) defned in (13) satisfes

2 Journal of Control Science and Engineering

g x λ∗((� 0. (14)

Proof. Let x∗ ∈ Rn be a solution of problem (1); then,
g(x∗) � 0. Considering(x∗, λ∗) so that it satisfes (5), we
defne x(λ∗) as in (6). Tus, if x∗i � li, we have

0≤
pili − ai

bi

+ λ∗ ⟺ λ∗ ≥
ai − pili

bi

, (15)

and then xi(λ∗) � li, i.e., x∗i � xi(λ∗). If x∗i ∈ (li, ui), we
have

0 �
pix
∗
i − ai

bi

+ λ∗⟺x
∗
i �

ai − biλ∗
pi

,

li <
ai − biλ∗

pi

< ui⟺
ai − piui

bi

< λ∗ <
ai − pili

bi

,

(16)

and then xi(λ∗) � ai − biλ∗/pi, i.e., x∗i � xi(λ∗). If x∗i � ui,
we have

0≥
piui − ai

bi

+ λ∗⟺ λ∗ ≤
ai − piui

bi

, (17)

and then xi(λ∗) � ui, i.e., x∗i � xi(λ∗). Tus, we conclude
that x∗ � x(λ∗). On the other hand, for some λ∗ the vector
x(λ∗) satisfes

g x λ∗((� 0. (18)

It is easy to check that (x(λ∗), λ∗) also satisfes (5). Te
proof is complete.

Now, to get a fxed-point based algorithm formulation,
we use (13) to defne

Il(λ) ≔ i ∈ 1, 2, . . . , n{ }: λ≥
ai − pili

bi

 ,

Iu(λ) ≔ i ∈ 1, 2, . . . , n{ }: λ≤
ai − piui

bi

 ,

Ieq(λ) ≔ 1, 2, . . . , n{ }\ Il(λ)∪ Iu(λ)(.

(19)

We have that

g(x(λ)) � b
T
x(λ) − c

�
i∈Il(λ)

bili +
i∈Iu(λ)

biui +
i∈Ieq(λ)

bi

ai − λbi

pi

− c

�
i∈Il(λ)

bili +
i∈Iu(λ)

biui +
i∈Ieq(λ)

biai

pi

−
λb

2
i

pi

 − c

�
i∈Il(λ)

bili +
i∈Iu(λ)

biui +
i∈Ieq(λ)

biai

pi

− λ
i∈Ieq(λ)

b
2
i

pi

− c.

(20)

Ten, g(x(λ)) � 0 if and only if

λ
i∈Ieq(λ)

b
2
i

pi

�
i∈Il(λ)

bili +
i∈Iu(λ)

biui +
i∈Ieq(λ)

biai

pi

− c, (21)

that is,

λ �
i∈Il(λ)bili + i∈Iu(λ)biui + i∈Ieq(λ) biai/pi(− c

i∈Ieq(λ)b
2
i /pi

. (22)

Ten, we defne the following function:

F: R⟶ R,

λ⟼F(λ) �
i∈Il(λ)bili + i∈Iu(λ)biui + i∈Ieq(λ) biai/pi(− c

i∈Ieq(λ)b
2
i /pi

.

(23)

It is easy to see that g(x(λ)) � 0 if, and only if,
λ � F(λ). □

Remark 4. Formula (22) appears in [12] as an intermediate
step in the variable-fxing algorithms. Moreover, following
[12], we can assume that for all k ∈ N, if Ieq(λk)≠∅, then
Ieq(λk+1)≠∅.

3. Statement of Fixed-Point Algorithm and Its
Convergence Results

Now, we formally describe the fxed-point-based
Algorithm 1 (abbreviated as FPA). For sake of simplicity, for
k ∈ N, we denote Il(λk) � Ik

l, Iu(λk) � Ik
u, and Ieq(λk) � Ik

eq.
Kim and Wu [6] proposed an improvement character-

ized by eliminating calculations of all primal variables in
every iteration as in [2, 12]. Te natural formulation of the
FPA algorithm (i.e., equation (13)) leads to the improvement
proposed in [6]. Besides, the FPA algorithm does not
necessarily need a variable fxing step as in the other state-of-
the-art methods, although we can implement it. We aim to
keep the FPA algorithm as simple as possible and apply an
extension capable of improving its performance, as the
acceleration step presented in the next section.

Below, the frst result concerns the algorithm’s stop
criteria.

Proposition 5. If the FPA generates a fnite sequence, then
the last point is a solution of problem (1).

Proof. Let us assume that λk+1 � λk ∈ R is the last point
obtained by the proposed algorithm. So, we have

λk �
i∈Ik

l
bili + i∈Ik

u
biui + i∈Ik

eq
biai/pi(− c

i∈Ik
eq

b
2
i /pi

,

i∈Ik
eq

b
2
i

pi

λk �

i∈Ik
l

bili +

i∈Ik
u

biui +

i∈Ik
eq

biai

pi

− c.

(24)

Journal of Control Science and Engineering 3

It implies that

0 �

i∈Ik
l

bili +

i∈Ik
u

biui +

i∈Ik
eq

biai

pi

−

i∈Ik
eq

b
2
i

pi

λk − c

� g x λk((.

(25)

Hence, our conclusion follows from Teorem 3.
From now on, we assume that the FPA algorithm

generates an infnite sequence denoted by λk , and we
present the following important properties. □

Proposition 6. Te sequence λk is bounded, that is, there
exists M> 0 such that |λk|≤M for all k ∈ N.

Proof. In fact, for all k ∈ N, we have

λk

 �

i∈Ik− 1
l

bili + i∈Ik− 1
u

biui + i∈Ik− 1
eq

biai/pi(− c

i∈Ik− 1
eq

b
2
i /pi

≤
i∈Ik− 1

l
bili + i∈Ik− 1

u
biui + i∈Ik− 1

eq
biai/pi(− c

min b
2
i /pi: 1≤ i≤ n

≤
‖b‖(‖l‖ +‖u‖) + n.max biai/pi(: 1≤ i≤ n

 + |c

min b
2
i /pi: 1≤ i≤ n

≕M.

(26)

As in [3], in the following result, we assume that the
inequalities used in the defnition of Il(λ) and Iu(λ) are
strict. Ten, we show that small perturbations of λ∗ do not
change these index sets. It means that if the fxed-point
iteration converges, then the iteration terminates after f-
nitely many steps with the exact solution λ∗ because the
index sets do not change anymore. □

Lemma 7. Consider λ∗ such that λ∗ ∉
ai − pili/bi, ai − piui/bi: i � 1, . . . , n . Ten, there exists ϵ> 0
such that if |λ − λ∗|< ϵ, we have

Il(λ) � Il λ∗(,

Iu(λ) � Iu λ∗(,

Ieq(λ) � Ieq λ∗(.

(27)

Proof. From our assumptions, we may rewrite

Il λ∗(� i ∈ 1, 2, . . . , n{ }: λ∗ >
ai − pili

bi

 ,

Iu λ∗(� i ∈ 1, 2, . . . , n{ }: λ∗ <
ai − piui

bi

 .

(28)

Hence, we get our aim by considering

ϵ ≔ min λ∗ −
ai − piui

bi

, λ∗ −

ai − pili

bi

: i � 1, . . . , n .

(29)

□

4. FPAExtended toQuadratic Convex Separable
Knapsack under Upper Bound Constraints

Tis section presents a variable substitution in problem (1) to
obtain a box constraint of the type 0≤ zi ≤ ui

′, i � 1, 2, . . . , n.
Besides speeding up the computational time of problem (1),
such formulation has direct applications in the continuous
relaxation of the sensor placement problem [13] and
problems arising in multicommodity network fow and
logistics, as presented in [14, 15].

Defning

xi � zi + li, (30)

and substituting in (1), we have

Step 0 (Initialization)
Set k� 0. Let λk ∈ R according to [2, 6, 12].
Step 1 (Calculating dual bounds)
For i ∈ 1, 2, . . . , n{ },
Compute [LRi,URi] � [ai − pili/bi, ai − piui/bi].
Step 2 (Calculating fxed-point sums)
SLRk �

n
i∈Ik

l

bili, where Ik
l � i: λk ≥ LRi, i ∈ 1, 2, . . . , n{ } .

SLUk �
n
i∈Ik

u
biui, where Ik

u � i: λk ≤URi, i ∈ 1, 2, . . . , n{ } .
SLEk

a �
n
i∈Ik

eq
biai/pi, where Ik

eq � i: URi < λ
k < LRi, i ∈ 1, 2, . . . , n{ } .

SLEk
b �

n
i∈Ik

eq
b2i /pi, where Ik

eq � i: URi < λ
k < LRi, i ∈ 1, 2, . . . , n{ } .

Step 3 (Update dual variable)
Compute λk+1 � SLRk + SLUk + SLEk

a − c/SLEk
b .

Step 4 (Check stopping criterion)
If abs(λk+1 − λk)< ϵ, then set xi according to equation (13) and STOP. Otherwise, set k � k + 1 and return to Step 2.

ALGORITHM 1: FPA algorithm.

4 Journal of Control Science and Engineering

1
2
pix

2
i − aixi �

1
2
pi zi + li(

2
− ai zi + li(

�
1
2
piz

2
i − ai − pili(zi +

1
2
pil

2
i − aili ,

n

i�1
xibi � c⟺

n

i�1
zi + li(bi � c⟺

n

i�1
zibi � c −

n

i�1
bili,

li ≤xi ≤ ui⟺ 0≤xi − li ≤ ui − li⟺ 0≤ zi ≤ ui − li,

(31)

and then problem (1) is equivalent to the following problem:

(QSKPz):

Minimizef1(x) ≔
n

i�1

1
2
piz

2
i − ai
′zi ,

s.t.
n

i�1
bizi � c′,

li′ ≤ zi ≤ ui
′, i � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

where zi � xi − li, ai
′ � ai − pili, c′ � c −

n
i�1bili, ui

′ � ui − li,
and l′ is a vector of zeros.

Now, through (13) we can write a function zi depending
on the variable λ as follows:

zi(λ) �

l
′
, if λ≥

ai
′

bi

,

ai
′ − λbi

pi

− li, if
ai
′ − piui
′

bi

< λ<
ai
′

bi

,

u
′
, if λ≤

ai
′ − piui
′

bi

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

To get the new fxed-point algorithm, we may have to
defne the sets Il

′(λ), Iu
′(λ), and I

′
eq(λ) according to (19).

Il′(λ) ≔ i ∈ 1, 2, . . . , n{ }: λ≥
ai
′

bi

 ,

Iu
′(λ) ≔ i ∈ 1, 2, . . . , n{ }: λ≤

ai
′ − piui
′

bi

 ,

I
′
eq(λ) ≔ 1, 2, . . . , n{ }\ Il′(λ)∪ Iu

′(λ)(.

(34)

Ten, by equations (20) and (22), since the lower bound
of the reformulated problem (32) is a vector of zeros, we can
assume that i∈Il′bili′ � 0. Terefore, we can defne the new λ
as

λ �
i∈Iu
′(λ)biui
′ +

i∈I′eq(λ)
biai
′/pi(− c

i∈I′eq(λ)

b
2
i /pi

. (35)

Defning the new function

F
′
: R⟶ R, (36)

we obtain

λ⟼F
′
(λ) �

i∈Iu
′(λ)biui
′ +

i∈I′eq(λ)
biai
′/pi(− c

i∈I′eq(λ)

b
2
i /pi

. (37)

According to the formulations above, we describe the
new fxed-point-based Algorithm 2 (FPA2) below.

Te main advantage of the FPA2 algorithm proposed
above is in Step 2, where a sum presented in the FPA al-
gorithm is no longer needed in this new algorithm. Tis
modifcation makes the algorithm even simpler and makes it
possible to improve its performance, as we will see in the
experiments section. Te convergence analysis of the FPA2
algorithm follows as shown in Section 3.

5. Fixed-Point Acceleration

As mentioned in [11], acceleration methods can alleviate
slow convergence. Our interest here is in two particular
acceleration methods. Te frst originated from the work of
[7], which we refer to as Anderson acceleration, and the
second one resulted from the work of [8], which we refer to
as Aitken acceleration. In the following subsections, we
describe both algorithms and defne the accelerated fxed-
point method incorporating the acceleration techniques.

5.1. Anderson Acceleration. Anderson’s acceleration defnes
a vector of weights α ∈ Rm. Tese weights are determined
using the following optimization problem:

minα Gkα
����

����2,

s.t.
m

i�0
αi � 1,

(38)

where G is found as follows. Let us consider λ � F(λ)

according to equation (23) and g � F(λ) − λ. Ten,
Gk � [gk− m, . . . , gi], where gk � F(λk) − λk.

With these weights, we are able to create the expression
of the next iteration as

λk+1 �

m

i�0
αiF λk− m+i(. (39)

To improve the fxed-point algorithm’s convergence rate,
we consider the Anderson acceleration algorithm formu-
lated as in [11]. Below, we describe the Anderson approach
incorporated into FPA2 Algorithm 3.

We see that we must solve a constrained minimization
problem at each iteration. In most references, the mini-
mization in equation (38) is recast as an unconstrained
minimization problem. We generally keep the number of
elements, m, in the Anderson history small to ensure we
have sufcient storage and make the optimization problem
less ill-conditioned. In our experiments, we defne m � 2.
More about Anderson’s acceleration theory and formula-
tions can be seen in [9–11].

Journal of Control Science and Engineering 5

5.2.AitkenAcceleration. As in [9], Aitken acceleration’s idea
is to change the relaxation factor (and, thus, the size of the
iteration step) based on the information from the previous
iteration.

Following [10], let us consider a sequence of scalars
λk
∞
k�0 that converges linearly to its fxed-point λ, which

implies that for a large k:

λ − λk+1
λ − λk

≈
λ − λk+2
λ − λk+1

. (40)

Below, we rearrange equation (40) to give a for-
mula predicting the fxed point used as the subsequent
iterate.

λk+1 � λk −
λk+1 − λk(

2

λk+2 − 2λk+1 + λk

. (41)

According to equation (41), we incorporate the Aitken
approach into the FPA2 Algorithm 4.

6. Numerical Experiments

Tis section presents several numerical experiments using
the FPA and FPA2 algorithms. Te proposed algorithm is
very simple and can be used to solve diferent forms of the
quadratic convex separable knapsack problem.

We split our experiments into three subsections de-
scribed as follows. In Subsection 6.1, we used randomly
generated problems to compare the FPA2 and FPA algo-
rithms with state-of-the-art solvers, the accelerated FPA2,
and some root-fnding methods. Ten, we show the per-
formance profle of the computational time for all algo-
rithms presented. In Subsection 6.2, we solve the problem of
fnding the lowest risk portfolio. In Subsection 6.3, we
perform the proposed algorithms with a continuous re-
laxation of the sensor placement problem presented in [13].

We implemented the methods in C and the compiler
used was gcc 12.2.0 with optimization fags march=native
-O3 -fast-math. All the experiments were performed on
a Desktop with an Intel Core i5-9400 CPU (2.9GHz). Te

Step 0 (Initialization)
Set k� 0. Let λk ∈ R according to [2, 6, 12].
Defne m> 0.
Step 1 (Calculating dual bounds)
For i ∈ 1, 2, . . . , n{ },
Compute [LRi,URi] � [ai

′/bi, ai
′ − piui
′/bi].

Step 2 (Compute G(λk))
Compute SLUk, SLEk

a and SLEk
b using λk according to FPA2 algorithm.

Compute G(λk) � SLUk + SLEk
a − c/SLEk

b .
Step 3 (Updating Anderson acceleration variables)
Set mk � min m, k{ }.
Let fk � G(λk) − λk.
Set Fk � (fk− mk

, . . . , fk).
Determine αk � αk

1, αk
2, . . . , αk

mk
 according to equation (38).

Set λk+1 �
mk

i�0G(λk+mk+i) according to equation (39).
Step 4 (Check stopping criterion)
If abs(fk)< ϵ, then set xi according to equations (30) and (33) and STOP. Otherwise, set k � k + 1 and return to Step 2.

ALGORITHM 3: FPA2-Anderson algorithm.

Step 0 (Initialization)
Set k� 0. Let λk ∈ R according to [2, 6, 12].
Step 1 (Calculating dual bounds)
For i ∈ 1, 2, . . . , n{ },
Compute [LRi,URi] � [ai

′/bi, ai
′ − piui
′/bi].

Step 2 (Calculating fxed-point sums)
SLUk �

n

i∈I′ku
biui
′, where I′ku � i: λk ≤URi, i ∈ 1, 2, . . . , n{ } .

SLEk
a �

n

i∈I′keq
biai
′/pi, where I′keq � i: URi < λ

k < LRi, i ∈ 1, 2, . . . , n{ } .
SLEk

b �
n

i∈I′keq
b2i /pi, where I′keq � i: URi < λ

k < LRi, i ∈ 1, 2, . . . , n{ } .
Step 3 (Update dual variable)
Compute λk+1 � SLUk + SLEk

a − c/SLEk
b .

Step 4 (Check stopping criterion)
If abs(λk+1 − λk)< ϵ, then set xi according to equations (30) and (33) and STOP. Otherwise, set k � k + 1 and return to Step 2.

ALGORITHM 2: FPA2 algorithm.

6 Journal of Control Science and Engineering

computer has 16 GB of memory and runs Ubuntu 20.04.6 64
bit .

Te tables in the following subsections have an error
column corresponding to the number of failed experiments.
An experiment that includes one of the following items is
considered a failure:

(i) Reach the maximum number of 100 iterations.
(ii) Te relative residual is not small enough (1e− 8).
(iii) Te optimal value, when the problem is viewed as

a D-projection, is not approximately equal to the
other solvers.

6.1. Random Generated Problems. In this section, we gen-
erate random problems into medium and large problems,
e.g., dimensions from n � 500, 000 to n � 50, 000, 000. As in
[2, 16], the problems were divided into four classes:

(1) Uncorrelated: ai, bi, pi ∈ [10, 25].
(2) Weakly correlated: bi ∈ [10, 25], ai, pi ∈

[bi − 5, bi + 5].
(3) Strongly correlated: bi ∈ [10, 25], ai � pi � bi + 5.
(4) Flow: p1 � 1, pn � 104, pi ∼U[d1, dn] for i �

2, . . . , n − 1, and ai ∼U[− 1000, 1000], bi � 1, li � 0,
ui ∼U[0, 1000] all for [i � 1, . . . , n] while r was se-
lected uniformly in [bTl, bTu].

Furthermore, for the problem classes 1, 2, and 3, li, ui

were chosen uniformly as in [2], i ∈ N and c ∈ [bTl, bTu].

6.1.1. Comparison with State-of-the-Art Algorithms. In the
frst experiment, we consider the Newton-based method [2],
variable fxing [12], secant-based method [14], and median
search [17].

From Tables 1–4, we can see the results of FPA2, FPA,
Newton, secant, variable fxing, and median search algo-
rithms in milliseconds over 50 randomly generated tests for
each dimension and class. Each random test was repeated

20 times in a loop to obtain a reliable estimate for the
running time. We report the mean time of each random test.
Te stopping criterion used for the algorithms FPA2 and
FPA is according to the criteria

Step 0 (Initialization)
Set k� 0. Let λk ∈ R according to [2, 6, 12].
Step 1 (Calculating dual bounds)
For i ∈ 1, 2, . . . , n{ },
Compute [LRi,URi] � [ai

′/bi, ai
′ − piui
′/bi].

Step 2 (Calculating fxed-point sums and defning λk
1)

Compute SLUk
1, SLE

k
a1 and SLEk

b1 using λk according to FPA2 algorithm.
Compute λk

1 � SLUk
1 + SLEk

a1 − c/SLEk
b1.

Step 3 (Check stopping criterion)
If abs(λk

1 − λk)< ϵ, then set xi according to equations (30) and (33) and STOP.
Step 4 (Calculating fxed-point sums and defning λk

2)
Compute SLUk

2, SLE
k
a2 and SLEk

b2 using λk
1 according to FPA2 algorithm.

Compute λk
2 � SLUk

2 + SLEk
a2 − c/SLEk

b2.
Step 5 (Calculating Aitken acceleration procedure)
Compute λk+1 � λk − (λk

1 − λk)2/λk
2 − 2λk

1 + λk.
Step 7 (Check stopping criterion)
If abs(λk+1 − λk

2)< ϵ, then set xi according to equations (30) and (33) and STOP. Otherwise, set k � k + 1 and return to Step 2.

ALGORITHM 4: FPA2-Aitken algorithm.

Table 1: Uncorrelated tests for state-of-the-art algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2
500000 5.3 8 4 0.010 0.018 0.009 0
1000000 5.5 10 4 0.021 0.032 0.018 0
10000000 5.4 10 4 0.354 0.406 0.324 0
50000000 5.3 8 3 1.774 1.964 1.556 0
Newton
500000 5.3 8 4 0.018 0.023 0.015 0
1000000 5.5 10 4 0.038 0.047 0.030 0
10000000 5.2 10 4 0.434 0.535 0.346 0
50000000 5.2 7 3 2.181 2.649 1.555 0
Variable fxing
500000 8.8 11 8 0.022 0.025 0.021 0
1000000 9.0 12 7 0.047 0.053 0.041 0
10000000 9.3 12 8 0.539 0.622 0.468 0
50000000 9.5 11 8 2.718 3.065 2.377 0
FPA
500000 5.3 8 4 0.011 0.020 0.010 0
1000000 5.5 10 4 0.023 0.036 0.020 0
10000000 5.4 10 4 0.416 0.482 0.377 0
50000000 5.3 8 3 2.078 2.360 1.904 0
Secant
500000 8.7 14 7 0.020 0.028 0.014 0
1000000 8.6 13 6 0.041 0.059 0.029 0
10000000 8.5 14 7 0.443 0.658 0.285 0
50000000 8.5 12 6 2.323 3.254 1.426 0
Median search
500000 19.9 20 19 0.037 0.040 0.032 0
1000000 20.8 21 20 0.077 0.085 0.067 0
10000000 24.3 25 24 0.895 1.010 0.785 0
50000000 26.7 27 26 4.562 5.059 4.189 0

Journal of Control Science and Engineering 7

abs λk − λk− 1(≤ ϵ, (42)

where ϵ is a small positive number greater than 0 and its
value was chosen as ϵ � 10e− 12 as in [2].

Te results show that the computational time of the
FPA2 algorithm was superior in all experiments than the
other state-of-the-art methods. Te FPA algorithm was
superior to the other methods only for weakly correlated and
uncorrelated problems with a large number of variables, e.g.,
n� 10,000,000 and n� 50,000,000. For the other problems,
the FPA does not perform better than the Newton algorithm.

In the largest (n� 50,000,000) test, Tables 1–4 show the
following results:

(i) For the uncorrelated and weakly correlated prob-
lems, the FPA2 algorithmwas about 14%, 18%, 20%,
34%, and 154% faster than FPA, Newton, secant,
variable fxing, and median search algorithms,
respectively.

(ii) For the correlated problems, the FPA2 algorithm
was about 14%, 11%, 10%, 31%, and 152% faster
than FPA, Newton, secant, variable fxing, and
median search algorithms, respectively.

(iii) For the fow problems, the FPA2 algorithm was
about 15%, 8%, 10%, 2%, and 100% faster than FPA,

Newton, secant, variable fxing, and median search
algorithms, respectively.

Te results show yet that all algorithms solved all
problems correctly.

6.1.2. Comparison with Accelerated Algorithms. In this
subsection, we compare the performance of the FPA2 and
FPA algorithms with two new versions of the accelerated
FPA2 algorithm. We incorporated the Aitken and Anderson
acceleration approach in the FPA2 algorithm since the FPA2
presented a better performance in Subsection 6.1.

As in [9, 10], the fxed-point acceleration approach
performs better than the original fxed-point algorithm. Te
numerical experiments in [9] show that for a specifc en-
gineering problem, Anderson and Aitken’s acceleration has
similar performance depending on the parameters defned in
the algorithm. In [10], fxed-point accelerations are applied
in diferent scenarios. Te default acceleration approach for
the solver proposed in [10] is Anderson’s acceleration since
it shows better results in the numerical experiments.

Anderson’s acceleration-based algorithm, FPA2-
Anderson, presents slight improvement compared with
the FPA2 algorithm for the uncorrelated and correlated
problems when the problem size is larger. For the class of

Table 2: Weakly correlated test for state-of-the-art algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2
500000 5.2 8 4 0.010 0.018 0.009 0
1000000 5.2 9 4 0.021 0.038 0.018 0
10000000 5.2 10 3 0.360 0.407 0.321 0
50000000 5.3 7 4 1.786 1.951 1.649 0
Newton
500000 5.1 8 4 0.019 0.024 0.015 0
1000000 5.2 9 4 0.037 0.050 0.032 0
10000000 5.1 10 3 0.419 0.501 0.318 0
50000000 5.1 7 3 2.105 2.476 1.721 0
Variable fxing
500000 8.2 11 7 0.022 0.025 0.019 0
1000000 8.5 11 7 0.046 0.053 0.040 0
10000000 9.0 12 8 0.534 0.589 0.483 0
50000000 9.1 10 8 2.610 2.911 2.372 0
FPA
500000 5.2 8 4 0.011 0.021 0.010 0
1000000 5.2 9 4 0.023 0.043 0.020 0
10000000 5.2 10 3 0.419 0.483 0.369 0
50000000 5.3 7 4 2.085 2.434 1.927 0
Secant
500000 8.5 13 7 0.021 0.037 0.012 0
1000000 8.4 13 6 0.039 0.066 0.023 0
10000000 8.3 14 6 0.417 0.658 0.235 0
50000000 8.4 12 6 2.236 3.186 1.094 0
Median search
500000 19.9 20 19 0.039 0.049 0.033 0
1000000 20.9 21 20 0.078 0.098 0.066 0
10000000 24.2 25 24 0.916 1.049 0.787 0
50000000 26.8 27 26 4.478 4.891 4.031 0

Table 3: Correlated test for state-of-the-art algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2
500000 4.9 8 3 0.010 0.017 0.008 0
1000000 5.2 8 4 0.020 0.036 0.018 0
10000000 5.2 10 4 0.356 0.421 0.329 0
50000000 5.0 9 4 1.730 1.968 1.617 0
Newton
500000 4.9 8 3 0.017 0.021 0.013 0
1000000 5.1 8 4 0.036 0.045 0.031 0
10000000 5.0 10 4 0.407 0.494 0.359 0
50000000 4.9 9 4 1.961 2.345 1.757 0
Variable fxing
500000 8.2 10 7 0.021 0.024 0.019 0
1000000 8.4 10 7 0.045 0.049 0.040 0
10000000 8.9 12 8 0.517 0.573 0.482 0
50000000 9.0 12 8 2.542 2.695 2.338 0
FPA
500000 4.9 8 3 0.011 0.020 0.009 0
1000000 5.2 8 4 0.023 0.041 0.020 0
10000000 5.2 10 4 0.418 0.507 0.383 0
50000000 5.0 9 4 2.016 2.305 1.883 0
Secant
500000 8.1 12 6 0.018 0.032 0.012 0
1000000 8.5 11 7 0.037 0.064 0.025 0
10000000 8.3 12 6 0.382 0.637 0.239 0
50000000 7.9 11 6 1.927 3.082 1.016 0
Median search
500000 19.9 20 19 0.037 0.040 0.034 0
1000000 21.0 21 20 0.075 0.082 0.068 0
10000000 24.3 25 24 0.896 1.042 0.790 0
50000000 26.7 27 26 4.375 4.570 3.893 0

8 Journal of Control Science and Engineering

problems weakly correlated and fow, the FPA2 performed
better than the accelerated algorithms. Furthermore, the
FPA2-Anderson could only solve some of the problems of
each class correctly. Te FPA2-Aitken algorithm correctly
solves almost all the problems, as visualized in the column
Error. In our experiments, presented in Tables 5–8, in
comparison with computation time, Anderson’s accelera-
tion performed better than the Aitken acceleration.

6.1.3. Comparison with Root-Finding Algorithms. We also
compare our fxed-point approach with some root-fnding
algorithms, as in [3]. Tables 9–11 show the result for the
secant, bisection, and regula falsi methods, respectively. All
pseudocodes for these methods can be found in [3].

In this subsection, we do not perform the algorithms
with the fow problem because the root-fnding algorithms
need many iterations to reach good results with the estab-
lished ϵ value in the stop criterion. Furthermore, we can see
throughout column Error that the secant, regula falsi, and
bisection algorithms did not solve some problems well. Te
FPA2 algorithm reported here is the same as in Subsections
6.1.1 and 6.1.2, so the results are very similar.

We highlight the high superiority of the FPA2 algorithm
compared to other popular root-fnding algorithms.

6.1.4. Performance Profle Analysis of the Algorithms. Te
approach adopted to analyze and compare the performance
profle of the algorithms developed in this work was pro-
posed in [18]. Te authors created it intending to facilitate
the visualization and interpretation of the results obtained in
experiments, comparing a set of algorithms to identify the
one with the best performance applied to a set of problems.
Te method considers a set P of test problems pj, with
j � 1, 2, . . . , np, a set of algorithms ai, with i � 1, 2, . . . , na,
and a performancemetric tp,a (computation time, an average
of objective function values, and others).

Table 4: Flow test for state-of-the-art algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2
500000 6.2 8 5 0.010 0.018 0.008 0
1000000 6.5 9 5 0.021 0.040 0.017 0
10000000 6.4 11 4 0.372 0.446 0.311 0
50000000 6.5 9 5 1.813 2.027 1.628 0
Newton
500000 6.1 8 4 0.017 0.022 0.010 0
1000000 6.5 9 5 0.036 0.048 0.025 0
10000000 6.1 10 4 0.403 0.507 0.258 0
50000000 6.2 9 5 1.978 2.604 1.542 0
Variable fxing
500000 6.2 8 5 0.015 0.021 0.010 0
1000000 6.5 9 5 0.033 0.044 0.022 0
10000000 6.5 11 4 0.376 0.467 0.223 0
50000000 6.6 9 5 1.860 2.395 1.340 0
FPA
500000 6.2 8 5 0.011 0.021 0.009 0
1000000 6.5 9 5 0.024 0.046 0.020 0
10000000 6.4 11 4 0.438 0.531 0.369 0
50000000 6.5 9 5 2.135 2.351 1.925 0
Secant
500000 14.4 16 9 0.018 0.022 0.013 0
1000000 14.6 19 11 0.040 0.052 0.029 0
10000000 14.3 21 10 0.425 0.791 0.283 0
50000000 14.2 17 9 2.026 3.088 1.511 0
Median search
500000 20.0 20 19 0.030 0.034 0.028 0
1000000 20.9 21 20 0.061 0.068 0.057 0
10000000 24.3 25 24 0.750 0.825 0.715 0
50000000 26.6 27 26 3.657 4.012 3.507 0

Table 5: Uncorrelated test for accelerated algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2-Aitken
500000 2.5 6 2 0.017 0.022 0.016 1
1000000 2.4 4 1 0.035 0.039 0.031 1
10000000 2.3 5 2 0.363 0.474 0.333 1
50000000 2.5 4 2 1.749 1.957 1.612 0
FPA2
500000 5.5 8 4 0.016 0.018 0.015 0
1000000 5.4 10 4 0.034 0.040 0.031 0
10000000 5.3 10 4 0.355 0.406 0.325 0
50000000 5.3 8 4 1.681 1.864 1.585 0
FPA2-Anderson
500000 4.4 16 2 0.017 0.026 0.015 2
1000000 4.3 11 2 0.036 0.046 0.031 1
10000000 3.3 5 2 0.358 0.417 0.323 9
50000000 3.2 5 2 1.676 1.839 1.568 10
FPA
500000 5.5 8 4 0.019 0.022 0.018 0
1000000 5.4 10 4 0.040 0.047 0.037 0
10000000 5.3 10 4 0.418 0.487 0.378 0
50000000 5.3 8 4 1.982 2.206 1.855 0

Table 6: Weakly correlated test for accelerated algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2-Aitken
500000 2.3 4 1 0.019 0.022 0.017 0
1000000 2.2 5 1 0.037 0.048 0.031 0
10000000 2.1 5 1 0.368 0.456 0.318 0
50000000 2.1 3 1 1.820 2.159 1.624 0
FPA2
500000 5.2 8 4 0.019 0.021 0.018 0
1000000 5.2 9 4 0.036 0.042 0.032 0
10000000 5.3 10 4 0.362 0.416 0.329 0
50000000 5.2 7 4 1.841 2.045 1.642 0
FPA2-Anderson
500000 5.3 57 2 0.021 0.064 0.017 0
1000000 3.7 8 2 0.037 0.042 0.031 1
10000000 3.2 5 2 0.367 0.427 0.325 7
50000000 3.5 5 2 1.848 2.056 1.633 5
FPA
500000 5.2 8 4 0.023 0.026 0.021 0
1000000 5.2 9 4 0.042 0.050 0.037 0
10000000 5.3 10 4 0.429 0.496 0.389 0
50000000 5.2 7 4 2.137 2.470 1.930 0

Journal of Control Science and Engineering 9

Te performance ratio (always greater than or equal to 1)
is defned as

rp,a �
tp,a

min tp,a: a ∈ A
. (43)

Te algorithm performance profle is given by

ρa(τ) �
1
np

p ∈ P: rp,a ≤ τ, (44)

where ρa(τ) is the fraction of problems solved by the al-
gorithm with performance within a factor of the best per-
formance obtained, considering all algorithms.

In Figure 1, we display the graphs regarding the perfor-
mance profle of [18] concerning computational time for the
problems correlated, uncorrelated, weakly correlated, and fow
with size n � 2, 000, 000. In this experiment, we use the same
data to generate the tables presented in Subsections 6.1 and 6.2.

Table 7: Correlated test for accelerated algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2-Aitken
500000 2.2 4 1 0.017 0.019 0.015 0
1000000 2.3 4 1 0.036 0.042 0.031 0
10000000 2.2 4 1 0.375 0.440 0.317 0
50000000 2.1 4 1 1.834 2.001 1.646 0
FPA2
500000 5.0 8 3 0.016 0.018 0.015 0
1000000 5.3 8 4 0.035 0.042 0.032 0
10000000 5.2 10 4 0.367 0.459 0.329 0
50000000 5.1 9 4 1.807 1.983 1.657 0
FPA2-Anderson
500000 3.5 10 1 0.017 0.021 0.012 0
1000000 4.0 9 2 0.037 0.043 0.032 0
10000000 3.3 5 2 0.371 0.412 0.326 5
50000000 3.2 5 2 1.802 2.102 1.609 5
FPA
500000 5.0 8 3 0.020 0.021 0.018 0
1000000 5.3 8 4 0.042 0.051 0.037 0
10000000 5.2 10 4 0.434 0.547 0.388 0
50000000 5.1 9 4 2.115 2.385 1.918 0

Table 8: Flow test for accelerated algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2-Aitken
500000 3.2 6 2 0.019 0.022 0.015 0
1000000 3.5 6 2 0.039 0.050 0.032 2
10000000 3.2 6 2 0.404 0.492 0.334 0
50000000 3.2 5 2 1.978 2.266 1.690 2
FPA2
500000 6.2 8 5 0.018 0.021 0.015 0
1000000 6.6 9 5 0.036 0.043 0.031 0
10000000 6.3 8 4 0.390 0.433 0.329 0
50000000 6.5 9 5 1.871 2.109 1.675 0
FPA2-Anderson
500000 6.2 24 3 0.019 0.034 0.015 2
1000000 6.5 23 3 0.040 0.074 0.032 9
10000000 4.2 5 2 0.380 0.422 0.321 24
50000000 4.6 5 3 1.874 2.004 1.678 23
FPA
500000 6.2 8 5 0.021 0.027 0.018 0
1000000 6.6 9 5 0.043 0.054 0.037 0
10000000 6.3 8 4 0.460 0.517 0.379 0
50000000 6.5 9 5 2.197 2.502 1.953 0

Table 9: Uncorrelated test for root-fnding algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2
500000 5.3 8 4 0.016 0.018 0.015 0
1000000 5.5 10 4 0.034 0.039 0.031 0
10000000 5.4 10 4 0.347 0.408 0.323 0
50000000 5.3 8 3 1.693 1.860 1.529 0
Regula falsi
500000 14.3 78 6 0.094 0.220 0.054 8
1000000 18.2 90 5 0.200 0.515 0.106 6
10000000 11.9 32 5 1.791 2.721 1.199 4
50000000 12.9 51 6 9.064 17.161 4.563 1
Secant
500000 8.4 13 3 0.066 0.094 0.043 15
1000000 8.6 14 5 0.140 0.200 0.098 8
10000000 9.0 13 6 1.499 2.007 1.007 16
50000000 8.7 12 5 7.126 10.222 4.061 10
Bisection
500000 49.8 53 45 0.134 0.201 0.065 6
1000000 49.4 53 43 0.274 0.409 0.135 4
10000000 49.8 53 47 2.851 4.021 1.538 1
50000000 50.0 53 46 14.283 20.306 7.665 1

Table 10: Weakly correlated test for root-fnding algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2
500000 5.2 8 4 0.016 0.017 0.015 0
1000000 5.2 9 4 0.033 0.038 0.031 0
10000000 5.2 10 3 0.343 0.411 0.306 0
50000000 5.3 7 4 1.685 1.829 1.574 0
Regula falsi
500000 14.9 94 4 0.088 0.240 0.048 5
1000000 12.8 39 6 0.166 0.277 0.109 6
10000000 12.7 72 6 1.757 4.307 1.043 5
50000000 12.3 29 5 9.087 15.780 5.568 7
Secant
500000 8.7 15 5 0.066 0.096 0.047 13
1000000 9.1 16 6 0.134 0.212 0.100 13
10000000 9.1 12 7 1.413 1.814 1.071 14
50000000 9.0 11 6 7.054 10.166 5.133 18
Bisection
500000 50.1 53 43 0.128 0.196 0.066 4
1000000 49.5 53 46 0.254 0.408 0.138 4
10000000 49.7 53 45 2.760 4.080 1.549 3
50000000 50.3 53 46 14.097 20.289 8.536 7

10 Journal of Control Science and Engineering

Figure 1 shows that although the average time of the
FPA2-Aitken algorithm is faster than all other algorithms,
for some of the 50 samples generated in each experiment, the
other algorithms performed better. Below we describe
Figure 1 based on the individual results of the 50 generated
samples for each problem type.

(i) Uncorrelated: FPA2-Aitken and Newton solved
about 46% and 30% of the samples faster, re-
spectively, while the variable fxing method solved
about 20% of the samples faster;

(ii) Correlated: the variable fxing method and FPA2-
Aitken solved about 54% and 34% of the samples
faster, respectively. Newton and FPA2-Anderson
together solved about 12% of the samples faster.

(iii) Weakly correlated: FPA2-Aitken and variable fxing
method solved about 52% and 36% of the samples
faster, respectively, while Newton, FPA2-Anderson,
secant, and median search together summed solved
about 12% of the problems faster.

(iv) Flow: secant and FPA2-Aitken solved about 60%
and 40% of the samples faster, respectively.

Te results presented in Subsections 6.1–6.3 and 6.1.4
reinforce the competitiveness of the method proposed in this
article. Simplicity and easy implementation contribute to
placing the FPA2 and FPA algorithms, as well as their
accelerated versions, as excellent options for solving
problem (1).

6.2.TePortfolioOptimization. In this subsection, following
the experiments presented in [19], we apply the FPA al-
gorithm to the portfolio optimization problem based on the

mean-variance model [20]. Knowing that there is a trade-of
between reward and risk in investment portfolios, the in-
vestor must be willing to tolerate risk to obtain ever-
increasing returns.

An investment portfolio is defned by the vector
x � (x1, x2, . . . , xn)T, where xi denotes the proportion of
the investment to be invested in asset i. Assuming that all
available assets are invested, then the problem should
satisfy the constraints

n
i�1xi � 1 and xi ≥ 0, for

i � 1, 2, . . . , n. So, the portfolio optimization problem can
be written as

Minimize f(x) � x
T
Qx,

s.t.
e

x
� 1,

x≥ 0,

(45)

where Q ∈ Rn×n is the covariance matrix and
e � (1, 1, . . . , 1)T ∈ Rn.

As it can be seen, model (45) is a special case of
problem (1) with f(x) � xTQx and Q ∈ Rn×n,
a � (0, 0, . . . , 0)T, b � 1 � (1, 1, . . . , 1)T, c � 1, and
l � (0, 0, . . . , 0)T. As eTx � 1 and x≥ 0, these constraints
are equivalent to eTx � 1 and 0≤ xi ≤ 1, for all
i � 1, 2, . . . , n, and thus u � (1, 1, . . . , 1)T.

Since the FPA algorithm solves a separable problem, we
must reformulate model (45). In this case, we can use
a framework proposed in [21] to solve nonseparable opti-
mization problems in the form of problem (45). Tis
framework was frst proposed for training SVM, but it can
also be applied to portfolio optimization.

Te framework comprises two main stages: the frst
consists of approximating the objective function of the main
problem into a separable objective function with a diagonal
Hessian matrix, and the second stage consists of solving the
subproblem with the FPA algorithm.

In [21], the authors use a separable quadratic approxi-
mation, defned frstly in [22], to obtain a diagonal ap-
proximation of f at the point xk, named fk(x).Te function
fk has the following formula:

fk(x) �
1
2

x
k− 1

− x
k

T
Zk x

k− 1
− x

k

+ ∇f x
k

T

x
k− 1

− x
k

 + f x
k

 ,

(46)

where Zk � diag(zk, zk, . . . , zk) � zkI and k is the current
iteration. Snyman and Hay [22] declare that forcing
fk(xk− 1) � f(xk− 1), it is possible to obtain zk+1 as follows:

zk+1 �
2 f x

k− 1
 − f x

k
 − ∇f x

k

T
x

k− 1
− x

k

x
k− 1

− x
k

�����

�����
2 .

(47)

As a result of the separable approximation in the frst
stage of the framework and after reformulating objective
function (46) to the format we are looking for in (45), the
following problem is obtained:

Table 11: Correlated test for root-fnding algorithms.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2
500000 4.9 8 3 0.015 0.017 0.014 0
1000000 5.2 8 4 0.033 0.036 0.031 0
10000000 5.2 10 4 0.343 0.410 0.322 0
50000000 5.0 9 4 1.633 1.878 1.544 0
Regula falsi
500000 11.2 40 6 0.086 0.132 0.059 5
1000000 11.9 77 4 0.169 0.443 0.113 6
10000000 13.3 96 6 1.861 6.058 1.224 11
50000000 11.5 66 4 9.078 21.548 5.451 5
Secant
500000 8.7 12 6 0.072 0.109 0.058 15
1000000 8.6 11 6 0.143 0.201 0.113 12
10000000 8.5 12 6 1.466 2.178 1.172 17
50000000 8.6 15 6 7.598 10.430 5.978 13
Bisection
500000 50.1 53 45 0.135 0.206 0.056 4
1000000 49.9 53 45 0.258 0.393 0.186 6
10000000 49.8 53 42 2.692 4.051 1.162 8
50000000 50.5 53 44 14.889 20.946 6.336 4

Journal of Control Science and Engineering 11

Minimize f(x) �
1
2
x

T
Zkx,

s.t
e

T
x � 1,

0≤x≤ e.

(48)

Tus, the FPA algorithm solves problem (48) in each
iteration of the framework until the stopping criterion in the
FPA algorithm is achieved.

We use asset data from the Brazilian stock exchange to
apply our algorithm to model (48). More specifcally, we
searched the returns of the shares that were part of the
Ibovespa Index during the trading sessions of fve years,
namely, from 01-01-2020 to 30-12-2022. For that, we used
Yahoo Finance and 58 assets, all with all returns in the

period.Te period considered produced 745 trading sessions
on the stock exchange, and the dimension of the covariance
matrix is 58 lines by 58 columns. Terefore, a total of 58
assets will compose the portfolio, listed in Table 12.

In Figure 2, MR is the optimal portfolio determined by
our algorithm applied to model (48), which has a return of
0.0502 and risk of 1.3818 by day. Te other points are
portfolios investing 100% in each asset. Te portfolio
WEGE3 is determined by investing 100% in companyWEG;
this is the portfolio with the highest return, which is 0.1497.
Te portfolio PETR4 is determined by investing 100% in
company PETROBRAS, and it has the lowest return among
all portfolios. Besides, it is negative, and its value is − 0.1782.

As in [19], we also consider the diversifcation of the
assets. All portfolios formed by investing 100% in any of the
individual assets have a greater risk than the optimal

correlated uncorrelated

weakly_correlated flow

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
ρ a (

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ρ a (
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
ρ a (

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ρ a (
)

1 1.5 2 2.5 3 3.5 4 1 2 3 4 5 6

1 1.5 2 2.5 3 3.5 4 1 2 3 4 5 6

FPA2-Aitken
FPA2-Anderson
FPA
Newton

Fixing Variable
Secant
Search median

FPA2-Aitken
FPA2-Anderson
FPA
Newton

Fixing Variable
Secant
Search median

FPA2-Aitken
FPA2-Anderson
FPA
Newton

Fixing Variable
Secant
Search median

FPA2-Aitken
FPA2-Anderson
FPA
Newton

Fixing Variable
Secant
Search median

Figure 1: Performance profle of the algorithms applied to the correlated, uncorrelated, weakly correlated, and fow test problems with size
n� 2,000,000.

12 Journal of Control Science and Engineering

portfolio, which is formed by combining several assets, as in
the MR portfolio. We highlight this in Table 13 , which
shows the optimal MR portfolio.

In Table 13, the order is the order of the assets, prop is the
proportion of the assets in theMR portfolio,Ri is the expected
return of asset i, and σi is the risk of asset i. For example, order
1 is asset 1, which, according to Table 12, is AMBEV S/A.Te
proportion of this asset to the optimal MR portfolio is 1.2243,
whose expected return and risk are 0.0029 and 4.8227, re-
spectively, similar to the other assets in orders 2 to 58. In
addition, we highlight the assets WEG in order 57 and
PETROBRAS in order 45, with a proportion equal to 0 in the
optimal MR portfolio.

In the following portfolio formulation, we incorporate
a risk tolerance parameter denoted by ρ, and model (45)
becomes

Minimize f(x) � x
T
Qx −

1
ρ
R

T
x,

s.t
e

T
x � 1,

0≤ x≤ e,

(49)

where R � (R1, R2, . . . , Rn)T is the vector of the expected
returns of the n assets and ρ ∈ (0,∞) is the preference of the
individual investor which is also known as a risk aversion
parameter.

To use the FPA algorithm in problem (49), we need to
apply the framework as shown previously. In this case, we
reformulate the objective function (46) according to the
objective function in (49), resulting in the following
subproblem:

Minimize f(x) �
1
2
x

T
Zkx −

1
ρ

− ∇f x
k

 + Zkx
k

T

x,

s.t.
e

T
x � 1,

0≤ x≤ e.

(50)

Similar to problem (48), the FPA algorithm
solves problem (50) in each iteration of the framework until
the stopping criterion in the FPA algorithm is achieved.

We run our algorithm to solve problem (50) with the
same data used in the frst example, and the assets are
given in Table 12. For each fxed value of ρ in problem
(50), we will have an optimal portfolio determined by the
algorithm. If an investor is risk averse, he will choose
a considerable value for ρ, meaning he wants to minimize
the risk. On the other hand, if the investor is more tolerant
of risk, he will choose a small ρ, giving more weight to
the return.

Figure 3 shows 200 portfolios determined by our al-
gorithm varying ρ from 0.5 to 100 by steps of the size of 0.5,
that is, the frst portfolio was determined by taking ρ � 0.5,

Table 12: Assets in the portfolio and their names.

Order Tickers Name
1 ABEV3 AMBEV S/A
2 B3SA3 B3
3 BBAS3 BRASIL
4 BBDC3 BRADESCO
5 BBDC4 BRADESCO
6 BBSE3 BBSEGURIDADE
7 BEEF3 MINERVA
8 BRAP4 BRADESPAR
9 BRFS3 RF SA
10 BRKM5 BRASKEM
11 CCRO3 CCR SA
12 CIEL3 CIELO
13 CMIG4 CEMIG
14 COGN3 COGNA ON
15 CPFE3 CPFL ENERGIA
16 CSAN3 COSAN
17 CSNA3 SID NACIONAL
18 CVCB3 CVC BRASIL
19 CYRE3 CYRELA REALT
20 ECOR3 ECORODOVIAS
21 EGIE3 ENGIE BRASIL
22 ELET3 ELETROBRAS
23 ELET6 ELETROBRAS
24 EMBR3 EMBRAER
25 ENBR3 ENERGIAS BR
26 ENGI11 ENERGISA
27 EQTL3 EQUATORIAL
28 FLRY3 FLEURY
29 GGBR4 GERDAU
30 GOAU4 GERDAU MET
31 GOLL4 GOL
32 HYPE3 HYPERA
33 ITSA4 ITAUSA
34 ITUB4 ITAUUNIBANCO
35 JBSS3 JBS
36 KLBN11 KLABIN S/A
37 LREN3 LOJAS RENNER
38 MGLU3 MAGAZINE LUIZA
39 MRFG3 MARFRIG
40 MRVE3 MRV
41 MULT3 MULTIPLAN
42 QUAL3 QUALICORP
43 PCAR3 P.ACUCAR-CBD
44 PETR3 PETROBRAS
45 PETR4 PETROBRAS
46 RADL3 RAIADROGASIL
47 RAIL3 RUMO S.A.
48 RENT3 LOCALIZA
49 SANB11 SANTANDER BR
50 SBSP3 SABESP
51 SUZB3 SUZANO S.A.
52 TAEE11 TAESA
53 TOTS3 TOTVS
54 UGPA3 ULTRAPAR
55 USIM5 USIMINAS
56 VALE3 VALE
57 WEGE3 WEG
58 YDUQ3 YDUQS PART

Journal of Control Science and Engineering 13

which is the portfolio in the right corner of Figure 3 and it
has expected return of 0.1473 and the risk of 5.1151.Te next
one is determined by taking ρ � 1.0 until ρ � 100, which is
the portfolio in the left corner of Figure 3 with an expected
return of 0.0538 and the risk of 1.3854. It is almost identical
to the MR portfolio determined by problem (48).

6.3. Sensor Placement Problem. In this section, we address
the FPA algorithm to a type of trafc problem named sensor
placement problem. Te model used in our experiments is
addressed to optimization problems according to [23], where
there is a single commodity demand that has to be satisfed,
a set of potential resources, and a fxed activation cost for each
resource, and the congestion heavily infuences the cost of
a resource. Such model is formulated as a mixed integer
nonlinear programming problem (MINLP). Following [13], we
consider the problem of optimally placing a set N � 1, . . . , n{ }

of sensors to cover a given area, where deploying one sensor has
a fxed cost plus a cost that is quadratic in the radius of the
surface covered. Te problem can be written as

min
i∈N

dx
2
i +

i∈N
yiai,

s.t.
i∈N

xi � 1,

0≤ xi ≤yi,∀ i ∈ N,

yi ∈ 0, 1{ },∀ i ∈ N,

(51)

where xi indicates the fraction of demand allocated to re-
source i and yi is a binary variable indicating whether re-
source i is active (xi > 0⟹yi � 1) or not (xi � 0⟹yi � 0).

Now, in the continuous relaxation of problem (51),
Reference [23] relaxes the integrality constraint on the y

variables. Since we can assume ai > 0 (for otherwise yi can
surely be fxed to 1), the “design” variables yi can be
“projected” onto xi. Te problem is now the following:

min
i∈N

dx
2
i +

i∈N
axi,

s.t.
i∈N

xi � 1,

xi ≥ 0,∀i ∈ N.

(52)

Problem (52) is a representative case of the continuous
nonlinear resource allocation problem that, in addition to
the sensor placement problem, has many applications, see
reference [5].

In [13, 23], some complexity issues were proved for
problems (51) and (52). Te instances of the sensor place-
ment problem were generated with the generator freely
available at https://groups.di.unipi.it/optimize/Data/RDR.
html.

We generated fve types of random problems based on
their length: n � 100, n � 1, 000, n � 10, 000, n � 100, 000
and n � 1, 000, 000.

WEGE3

MR

PETR4

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Re
tu
rn

0 35105 3020 25 4015
Risk

Figure 2: Ibovespa stocks and portfolios.

14 Journal of Control Science and Engineering

https://groups.di.unipi.it/optimize/Data/RDR.html
https://groups.di.unipi.it/optimize/Data/RDR.html

Table 14 presents the computational time necessary to
solve each problem instance and the total number of iter-
ations for the convergence of each method. As presented in
Subsection 6.1.1, we choose to compare with the FPA and
FPA2 the following methods: the Newton-based method [2],
variable fxing [12], secant-based method [14], and median
search [17].

We report the mean time of each random test. 10
randomly generated tests for each dimension were repeated
10 times in a loop to obtain a reliable estimate of the
computational time, which is presented in milliseconds. Te
stopping criterion used for the algorithms is the same
presented in Section 6.1.

Te results in Table 14 show that all the algorithms solve
the problem well except the secant method. For the gen-
erated problems with n � 10, 000, the secant method could
not solve four random tests before the maximum number of
iterations. For the problems with n � 100, 000 and
n � 1, 000, 000, the secant method could not solve any
random tests before the maximum number of iterations.

Te FPA2 and FPA solved all the random problems with
less computational time than the other algorithms and the
number of iterations similar to Newton’s method. Te
variable fxing method presented fewer iterations than
FPA2, and the median search method presented fewer it-
erations than all algorithms.

7. Final Remarks

Tis article presents a straightforward root-fnding nu-
merical scheme for solving a quadratic convex separable
knapsack problem based on a fxed-point algorithm studied
in [3]. We named our algorithm as FPA. Ten, we in-
corporate acceleration techniques as an alternative to im-
prove the performance of the proposed algorithm.

To obtain better results in our experiments, we also
reformulated the quadratic convex separable knapsack
problem. Such reformulation allows for a new constraint
format, and we named this new algorithm FPA2. We tested
our algorithm by performing three diferent problems:
randomly generated problems, portfolio optimization
problem, and sensor placement problem. In the frst ex-
periment, we compared the FPA and FPA2 with some
popular methods in the literature: Newton-based method
[2], variable fxing [12], secant-based method [14], and
median search [17]. For all random problems, the FPA2
obtained the best computational time in all problem sizes.
Te acceleration technique was applied to the FPA2 since it
presented the best results in the previous experiments.
Although the accelerated algorithms presented fewer it-
erations to converge, the computational time showed
little gains.

Since the FPA algorithm solves a separable problem,
we used a framework proposed in [21] to solve non-
separable optimization problems in the form of the
portfolio optimization problem presented in our exper-
iments. Te results are similar to those presented in [19].
Finally, we performed the FPA and FPA2 with the sensor

Table 13: Te optimal portfolio determined by our algorithm
applied to problem (29).

Order Prop Rp σp

1 1.2243 0.0029 4.8227
2 0.0000 0.0423 8.6283
3 0.0000 0.0050 7.8293
4 0.0000 − 0.0446 6.6740
5 0.0000 − 0.0352 7.0525
6 10.5258 0.0341 3.8142
7 0.0000 0.0765 9.3015
8 2.4055 0.1013 9.9341
9 0.0000 − 0.1412 11.0816
10 0.0000 0.0784 17.2383
11 0.0000 − 0.0213 8.8191
12 0.0000 0.0190 13.5723
13 0.0000 0.1030 6.9312
14 0.0000 − 0.1522 16.4183
15 0.0000 0.0619 4.6405
16 0.0000 0.0439 7.4761
17 0.0000 0.1035 15.5176
18 0.0000 − 0.1670 27.7026
19 0.0000 − 0.0216 14.4657
20 0.0000 − 0.1168 11.4480
21 13.4308 − 0.0009 2.7134
22 0.0000 0.0960 11.0521
23 0.0000 0.0886 8.5247
24 0.0000 0.0297 15.1808
25 0.0000 0.0314 3.3106
26 0.0000 0.0178 5.1229
27 0.0000 0.0520 4.5364
28 0.0000 − 0.0459 6.0490
29 0.0000 0.1303 9.6479
30 0.0000 0.1310 9.4398
31 0.0000 − 0.0810 26.9398
32 0.0000 0.0751 6.1179
33 0.0000 − 0.0088 4.3083
34 0.0000 − 0.0145 5.6327
35 0.0000 0.0367 7.5923
36 2.6346 0.0496 5.1736
37 0.0000 − 0.0786 10.0993
38 0.0000 − 0.0992 19.8807
39 0.0000 0.0930 11.2444
40 0.0000 − 0.0700 12.0619
41 0.0000 0.0009 9.5446
42 0.2759 0.0338 36.1665
43 0.0000 0.1378 11.7048
44 0.0000 0.1263 10.8888
45 0.0000 − 0.1782 12.4063
46 7.9233 0.0322 4.8360
47 0.0000 − 0.0076 7.9057
48 0.0000 0.0717 11.4650
49 0.0000 − 0.0185 6.5744
50 0.0000 0.0398 7.8622
51 13.8906 0.0653 6.8785
52 47.6893 0.0656 1.9194
53 0.0000 0.0741 9.3250
54 0.0000 − 0.0264 11.7549
55 0.0000 0.0459 13.5631
56 0.0000 0.1439 7.7052
57 0.0000 0.1497 7.8649
58 0.0000 − 0.1201 15.8680
59 0.0502 1.3 1
Te bold values represents the expected return and risk of the optimal MR
portfolio.

Journal of Control Science and Engineering 15

54.5 5.543.51 32 2.51.5
Risk

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Re
tu
rn

Figure 3: Ibovespa stocks.

Table 14: Results of the sensor placement problem.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
FPA2
100 11.4 13 10 0.0 0.0 0.0 0
1000 16.5 18 15 0.1 0.1 0.0 0
10000 20.4 23 19 0.7 0.8 0.5 0
100000 24.3 25 23 7.2 9.5 6.6 0
1000000 28.8 30 28 87.9 103.2 83.6 0
Newton
100 11.4 13 10 0.0 0.0 0.0 0
1000 16.5 18 15 0.1 0.1 0.1 0
10000 20.7 23 19 1.0 1.2 0.8 0
100000 24.3 25 23 10.3 13.3 9.5 0
1000000 28.8 30 28 123.2 192.3 109.7 0
Variable fxing
100 11.4 13 10 0.0 0.0 0.0 0
1000 16.5 18 15 0.1 0.1 0.0 0
10000 20.7 22 19 0.8 1.0 0.6 0
100000 22.7 24 20 9.2 9.9 8.7 0
1000000 21.9 23 20 113.0 185.2 99.6 0
FPA
100 11.4 13 10 0.0 0.0 0.0 0
1000 16.5 18 15 0.1 0.1 0.1 0
10000 20.4 23 19 1.0 1.1 0.8 0
100000 24.3 25 23 10.8 13.6 10.1 0
1000000 28.8 30 28 133.9 154.6 126.7 0
Secant
100 37.2 61 28 0.0 0.0 0.0 0
1000 68.4 122 40 0.3 0.6 0.2 0
10000 442.7 1001 53 15.8 35.0 2.4 4

16 Journal of Control Science and Engineering

placement problem, and the proposed algorithm could
solve all the generated problems faster than all compared
algorithms.

Other acceleration techniques, as well as improvements
in convergence analysis, are ongoing research.

Data Availability

Te code and data used to support the fndings of this study
have been deposited in the GitHub repository and are
available at https://github.com/jona04/scripts-fpa.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] K. M. Bretthauer and B. Shetty, “Te nonlinear knapsack
problem–algorithms and applications,” European Journal of
Operational Research, vol. 138, no. 3, pp. 459–472, 2002.

[2] R. Cominetti, W. F. Mascarenhas, and P. J. S. Silva, “A
Newton’s method for the continuous quadratic knapsack
problem,” Mathematical Programming Computation, vol. 6,
no. 2, pp. 151–169, 2014.

[3] R. T. Münnich, E. W. Sachs, and M. Wagner, “Numerical
solution of optimal allocation problems in stratifed sampling
under box constraints,”ASTAAdvances in Statistical Analysis,
vol. 96, no. 3, pp. 435–450, 2012.

[4] M. Patriksson, “A survey on the continuous nonlinear re-
source allocation problem,” European Journal of Operational
Research, vol. 185, no. 1, pp. 1–46, 2008.

[5] M. Patriksson and C. Strömberg, “Algorithms for the con-
tinuous nonlinear resource allocation problem: new imple-
mentations and numerical studies,” European Journal of
Operational Research, vol. 243, no. 3, pp. 703–722, 2015.

[6] G. Kim and C. H. Wu, “A pegging algorithm for separable
continuous nonlinear knapsack problems with box con-
straints,” Engineering Optimization, vol. 44, no. 10,
pp. 1245–1259, 2012.

[7] D. G. Anderson, “Iterative procedures for nonlinear integral
Equations,” Journal of the ACM, vol. 12, no. 4, pp. 547–560,
1965.

[8] A. C. Aitken, “XXV.—on Bernoulli’s numerical solution of
algebraic Equations,” Proceedings of the Royal Society of
Edinburgh, vol. 46, pp. 289–305, 1927.

[9] V. Aksenov, M. Chertov, and K. Sinkov, “Application of
accelerated fxed-point algorithms to hydrodynamic well-

fracture coupling,” Computers and Geotechnics, vol. 129,
Article ID 103783, 2021.

[10] S. Baumann and M. Klymak, “FixedPoint: a suite of acceleration
algorithms with applications,” 2021, https://cran.r-project.org/
web/packages/FixedPoint/vignettes/FixedPoint.pdf.

[11] H. F. Walker and P. Ni, “Anderson acceleration for fxed-
point iterations,” SIAM Journal on Numerical Analysis,
vol. 49, no. 4, pp. 1715–1735, 2011.

[12] K. C. Kiwiel, “Variable fxing algorithms for the continuous
quadratic knapsack problem,” Journal of Optimization Teory
and Applications, vol. 136, no. 3, pp. 445–458, 2008a.

[13] A. Frangioni, C. Gentile, E. Grande, and A. Pacifci, “Projected
perspective reformulations with applications in design problems,”
Operations Research, vol. 59, no. 5, pp. 1225–1232, 2011.

[14] Y. H. Dai and R. Fletcher, “New algorithms for singly linearly
constrained quadratic programs subject to lower and upper
bounds,” Mathematical Programming, vol. 106, no. 3,
pp. 403–421, 2006.

[15] P. M. Pardalos and N. Kovoor, “An algorithm for a singly
constrained class of quadratic programs subject to upper and
lower bounds,” Mathematical Programming, vol. 46, no. 1-3,
pp. 321–328, 1990.

[16] K. M. Bretthauer, B. Shetty, and S. Syam, “A branch- and
bound-algorithm for integer quadratic knapsack problems,”
ORSA Journal on Computing, vol. 7, no. 1, pp. 109–116, 1995.

[17] K. C. Kiwiel, “Breakpoint searching algorithms for the con-
tinuous quadratic knapsack problem,” Mathematical Pro-
gramming, vol. 112, no. 2, pp. 473–491, 2007.

[18] E. D. Dolan and J. J. Moré, “Benchmarking optimization
software with performance profles,” Mathematical Pro-
gramming, vol. 91, no. 2, pp. 201–213, 2002.

[19] E. M. Torrealba, J. G. Silva, L. C. Matioli, O. Kolossoski, and
P. S. Santos, “Augmented Lagrangian algorithms for solving
the continuous nonlinear resource allocation problem,” Eu-
ropean Journal of Operational Research, vol. 299, no. 1,
pp. 46–59, 2022.

[20] H. Markowitz, “Portfolio selection,” Te Journal of Finance,
vol. 7, no. 1, pp. 77–91, 1952.

[21] J. Silva, A. Alves, P. Santos, and L. Matioli, “A new SVM solver
applied to skin lesion classifcation,” Statistics, Optimization,
and Information Computing, In press.

[22] J. Snyman and A. Hay, “Te spherical quadratic steepest
descent (sqsd) method for unconstrained minimization with
no explicit line searches,” Computers and Mathematics with
Applications, vol. 42, no. 1-2, pp. 169–178, 2001.

[23] A. Agnetis, E. Grande, and A. Pacifci, “Demand allocation
with latency cost functions,” Mathematical Programming,
vol. 132, no. 1-2, pp. 277–294, 2012.

Table 14: Continued.

Dimension Iterations Time (sec) Error
n Avg Max Min Avg Max Min —
100000 1001.0 1001 1001 287.6 415.0 269.8 10
1000000 1001.0 1001 1001 3640.9 4487.0 3485.7 10
Median search
100 8.0 8 8 0.0 0.0 0.0 0
1000 11.0 11 11 0.1 0.1 0.1 0
10000 14.0 14 14 1.0 1.1 0.8 0
100000 18.0 18 18 9.0 10.1 8.7 0
1000000 21.0 21 21 96.2 158.6 87.4 0

Journal of Control Science and Engineering 17

https://github.com/jona04/scripts-fpa
https://cran.r-project.org/web/packages/FixedPoint/vignettes/FixedPoint.pdf
https://cran.r-project.org/web/packages/FixedPoint/vignettes/FixedPoint.pdf

