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D-Chiro-Inositol - Its Functional Role in Insulin
Action and Its Deficit in Insulin Resistance

JOSEPH LARNER, M.D., PH.D.*

Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA

In this review we discuss the biological sig-
nificance of D-chiro-inositol, originally discov-
ered as a component of a putative mediator of
intracellular insulin action, where as a putative
mediator, it accelerates the dephosphorylation
of glycogen synthase and pyruvate dehydroge-
nase, rate limiting enzymes of non-oxidative
and oxidative glucose disposal.

Early studies demonstrated a linear relation-
ship between its decreased urinary excretion
and the degree of insulin resistance present.
When tissue contents, including muscle, of type
2 diabetic subjects were assayed, they demon-
strated a more general body deficiency.
Administration of D-chiro-inositol to diabetic
rats, Rhesus monkeys and now to humans
accelerated glucose disposal and sensitized
insulin action.

A defect in vivo in the epimerization of myo-

inositol to chiro-inositol in insulin sensitive tis-
sues of the GK type 2 diabetic rat has been elu-
cidated. Thus, administered D-chiro-inositol
may act to bypass a defective normal epimer-
ization of myo-inositol to D-chiro-inositol
associated with insulin resistance and act to at
least partially restore insulin sensitivity and glu-
cose disposal.

Keywords: D-chiro-inositol, insulin resist-
ance,diabetes, myo-inositol, epimerase,phos-
phoprotein phosphatase,insulin sensitizer, GK
rat,glucose disposal

BACKGROUND AND INTRODUCTION

The stereoisomeric family of 9 inositols
includes myo-, cis-, allo-, epi-, muco-, neo-,
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FIGURE 1

Structures of myo-, D and L chiro-inositols. Note that myo-inositol is epimerized in position 1 to form L-chiro-inositol and in position

3 to form D-chiro-inositol.
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FIGURE 2
Tissue distribution of rat phospholipid D and L chiro-inositols.

Tissues were extracted in methanolic chloroform. Extracts were dried in vacuo and hydrolyzed in 6N Hcl. Analysis of inositols was by
GC/MS as hepta fluorobutyryl esters. From Ph.D. Thesis, Allison S. Kennington, University of Virginia (1990) p. 65 “Insulin Mediators
and Their Inositol Contents”. Note the predominance of D-chiro-inositol in fat, liver, brain and kidney phospholipids and the approx-
imately equal amounts of D and L chiro-inositol in skeletal muscle, heart and smooth muscle.

scyllo- and the optical isomers D and L chiro-
inositols. Myo-inositol is the most widely dis-
tributed in nature. Biosynthesized from glucose
[1], the cyclase converting the immediate pre-
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cursor fructose 6-P to myo-inositol has been
cloned [2]. L-chiro-inositol is the product of
epimerizing hydroxyl #1 of myo-inositol, while
D-chiro-inositol is the product of epimerizing
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hydroxyl #3 of myo-inositol (Fig. 1). D-chiro-
inositol has classically been found in plants and
insects. A rich source in plants is pinitol, the 3-
0-methyl ether extracted from pine wood [3].
L-chiro-inositol is also found in plants and par-
asites as quebrachitol, its 2-0-methyl ether [4].
L-chiro-inositol is also found in beef liver and
rat tissue phospholipids [5, 6].

Early reports noted the presence of minor
amounts of chiro-inositol in animal and human
tissue sources including rat granulation tissue
[7], human placenta, human urine and uremic
serum [8] in the presence of much greater quan-
tities of myo-inositol. Another report identified
chiro-inositol together with myo-inositol in a
mixed glycosyl phosphatidyl inositol lipid
(GPI) fraction from rat liver and H3$5
hepatoma cells, without determining the
absolute configuration of the chiro-inositol [9].

Two separate inositol phosphoglycan (IPG)
putative mediators of insulin action from rat
liver were purified and chemically analyzed in
our lab. The one which activated pyruvate
dehydrogenase phosphatase (PDH) contained
D-chiro-inositol and galactosamine, the second
which inhibited ¢cAMP kinase and adenylate
cyclase contained myo-inositol and glu-
cosamine [10]. This was the first definitive
demonstration of the sole presence of D-chiro-
inositol in an IPG molecule without myo-inosi-
tol being present. In this review, we shall sum-
marize the current status of the biological sig-
nificance of D-chiro-inositol in animals, its
functional role in insulin action, its deficit as
related to insulin resistance, and current studies
of its epimerization from myo-inositol.

BIOLOGICAL SIGNIFICANCE OF
CHIRO-INOSITOL AND ITS IPG

TISSUE DISTRIBUTION OF CHIRO-INOSITOL
An early study demonstrated the presence of
both D and L chiro-inositol in rat tissues (Fig. 2)

Urinary
Inositol E
Extretion myo-Inositol
(nmol/day) r——
400 chiro-Inositol
300 T
200
100+
0 —
Wister Rats GK Rats
M:SD(n=5), » p<0.001
FIGURE 3

24 hr urinary excretion of myo- and chiro-inositols in G/K rats.
Inositols were analyzed by GC/MS as described by Kennington,
et al. (Ref. 11) From Ref. 14 with permission. Note the similar
pattern of excretion as seen in Rhesus monkeys (Table 1) of
increased myo-inositol and decreased chiro-inositol.

TABLE 1

24 hr urinary excretion of myo and chiro-inositols in Rhesus
monkeys.

Urine was collected in the presence of toluene and sodium azide in
iced bottles to minimize bacterial contamination. Note the pattern
of decreased urinary chiro-inositol and increased urinary myo-
inositol as the animals progressed from normal to obese non-dia-
betic to type 2 diabetic monkeys. From [11] with permission.

chiro-Inositol myo-Inositol

Monkey no. Diagnosis (umol/day) (umol/day)

1 Normal 185 219

2 Normal 31 59

3 Normal 18 6.7

4 Normal 37 35
Mean + SE — 6.7+23 95124

S Obese 1.7 7.0

6 Obese 3.6 6.5

7 Obese 29 11.3

8 Obese 0.3 31

9 Obese ND 722

10 Obese ND 63.2

11 Obese ND 49
Mean + SE — 12+02 240+4.7

12 Diabetic 1.0 169.0

13 Diabetic ND 61.4

14 Diabetic ND 3125

15 Diabetic ND 613
Mean + SE — 02+01 151.1 +34.3

ND, not detectable (limit of detection <0.5 pmol/l). Adapted from
Kennington et al. (69).
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FIGURE 4

24 hr urinary chiro-inositol excretion rate and insulin sensitivity.
Normal monkeys ¢; NIDDM monkeys ®; hyperinsulinemic mon-
keys o

Insulin sensitivity determined by the hyperinsulinemic eug-
lycemic clamp procedure.

Insulin sensitivity determined by skeletal muscle biopsy glycogen
synthase activation state. Note the relationship between 24 hr
excretion rate of chiro-inositol and insulin resistance.

From [15] with permission.

[6]. In crude phospholipids extracted from fat,
liver, brain and kidney the D-isomer predomi-
nated whereas in skeletal muscle, heart and
smooth muscle approximately equal amounts of
D and L isomers were present. The amounts
present were much smaller than myo-inositol.
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In rat urine, D-chiro-inositol again predominat-
ed over the L-isomer as it did in human urine as
well [11,12]. This demonstrated that both D
and L isomers have a widespread distribution in
rat tissues and that the D isomer predominated
in specific tissues and in urine.

URINARY EXCRETION OF CHIRO-INOSITOL-
RELATIONSHIP TO DIABETES

To understand the functional significance of
the two inositol containing IPG putative insulin
mediator species, we initially examined the 24
hr urinary myo and chiro-inositol excretions in
human subjects. We had much earlier demon-
strated increased urinary myo-inositol excre-
tion in type 2 diabetic subjects compared with
controls utilizing a yeast growth bioassay and
shown that the increased excretion was due to
a competition between glucose and myo-inosi-
tol in renal tubular transport [13]. Following
our discovery of D-chiro-inositol in one IPG
and myo-inositol in a second, we were interest-
ed to examine their roles particularly in insulin
action. We therefore measured their urinary
excretion in control and type 2 diabetic sub-
jects using a modern GC/MS analysis. We
reconfirmed the increased myo-inositol excre-
tion in type 2 diabetics compared to controls,
but to our surprise we also noted a decreased
excretion of chiro-inositol [11]. This was noted
in a local cohort of subjects at Virginia and in
a population of Pima Indians as well. A similar
pattern was also observed in the rhesus monkey
(Table 1) where an increase of myo-inositol and
a decrease of chiro-inositol excretion was
observed in the progression from normal, to
obese non-diabetic, to type 2 diabetic [11]. This
pattern of increased myo-inositol and
decreased chiro-inositol excretion in urine has
also been reported in GK rats, a non-obese type
2 diabetic model developed in Japan by
inbreeding rats selectively for insulin resistance
in [14] (Fig. 3).
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FIGURE 5

Effects on plasma glucose of infusions of 150 mmol/L NaCl (A N=7); insulin 73 p mol/min (¢ N=6); IPG-P 8.5 pmol/min (low) (¢ N=3);
and IPG-P 83.3 pmol/min (high) (¢ N=5) Data are mean = SEM; *p<0.001 **p<0.05. From (Ref. 21) with permission. Note the lack
of hypoglycemia in the 2™ hour of infusion with IPG-P compared to insulin.

URINARY EXCRETION OF CHIRO-INOSITOL-
RELATIONSHIP TO INSULIN RESISTANCE.

That the decreased urine chiro-inositol was
more strictly related to insulin resistance per se,
rather than to type 2 diabetes was next shown
in rhesus monkeys [15]. Insulin sensitivity
determined by the euglycemic hyperinsulinemic
glucose clamp M value, glucose disappearance
rate (Kglucose), muscle biopsy glycogen syn-
thase activation and phosphorylase inactiva-
tion states, and adipose tissue glycogen syn-
thase activation and phosphorylase inactiva-
tion states all correlated with urinary chiro-
inositol excretions [15]. Two examples are
shown in Fig. 4: the correlation of urinary
chiro-inositol excretion with M values (Fig. 4A)
and with skeletal muscle glycogen synthase
activation state (Fig. 4B) [15]. As seen,
decreased urine chiro-inositol excretion rate is
related linearly to decreased insulin sensitivity
(increased insulin resistance). Similar correla-
tions have now been obtained in humans com-
paring controls with glucose intolerant non-

diabetics and type 2 diabetics [16]. Thus, it has
become clear that decreased urine chiro-inosi-
tol as well as increased myo-inositol may be
measures of insulin resistance. Altered ratios of
increased myo-inositol to decreased chiro-inos-
itol in urine have been proposed as a more sen-
sitive index of insulin resistance in human sub-
jects [17]. A recent independent/confirmation
by Wall et al. has also appeared in abstract
form [18]. These and other early studies in
which urine and tissue (muscle) inositols [19]
were examined indicated that a generalized
total body deficiency of chiro-inositol was
associated with tissue resistance to insulin
action.

INSULIN LIKE IN VIVO ACTIONS OF IPG’S
AND D-CHIRO-INOSITOL

IN VIvo AND IN VITRO IPG ACTIONS
The two separate purified IPG’s from rat
liver, one containing D-chiro-inositol and

INTERNATIONAL JOURNAL OF EXPERIMENTAL DIABETES RESEARCH
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A. Effects of insulin (INS) or IPG-P (MED) on G3PAT activity
(CPM x 10* mg prot/min) in intact (hatched bars) or cell free
homogenates (open bars) of BC,H, myocytes (top) non-diabetic
Wistar rat adipocytes (middle) and diabetic G/K rat adipocytes
(bottom). Values are means = SE of (n) assays. Note the lack of
insulin and IPG-P action in the G/K rat adipocytes compared to
the controls.

B. Effects of insulin (INS) and IPG-P (Med) on G3PAT activation
in cell free homogenates of insulin-treated diabetic G/K rats (2u
NPH insulin injected for 6 days prior to experiment). Note the
activating effect of IPG-P in the absence of an effect of insulin.
From [23] with permission.
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termed IPG-P (inositol phosphoglycan-phos-
phatase stimulator) and the other containing
myo-inositol and termed IPG-A (inositol phos-
phoglycan-AMP kinase inhibitor) were then
injected into low-dose STZ rats, a model of
type 2 diabetes. They were shown to reduce
hyperglycemia in a dose-dependent manner
[20]. Single bolus IV injections of low nanomo-
lar doses reduced hyperglycemia about 50%.
Subsequently, using an infusion protocol in the
same animal model, an approximately equiva-
lent low nanomolar dose of infused insulin was
compared with a similar dose of IPG-P [21].
Both effectively reduced hyperglycemia to eug-
lycemia during the first 60 min, but in the sec-
ond 60 min period, insulin produced a hypo-
glycemic response, while the IPG-P maintained
euglycemia (Fig. 5). Two control infusions with
saline and low (1/10) dose of IPG-P are also
shown. While we do not as yet understand this
difference between IPG-P and insulin action,
IPG-P in contrast to IPG-A has been shown in
preliminary experiments to specifically inhibit
glucose stimulated insulin release from isolated
rat islet beta cells [22] thus constituting a
potential feedback mechanism. Since these
IPG’s are clearly insulin-like iz vivo in reducing
hyperglycemia at doses comparable to insulin,
this evidence is in keeping with their potential
roles as insulin mediators with IPG-P perhaps
somewhat more physiological in its action than
IPG-A.

Further evidence for a more selective role of
the IPG-P derives from an experiment demon-
strating its insulin like action in GK rat broken
cell preparations. In both BC,H, myocytes and
in adipocytes from Wistar rats, insulin and
IPG-P stimulated insulin sensitive glycerol 3
phosphate acyltransferase (G3PAT) activity
comparably in whole cells and homogenates
while both were ineffective in GK rat
adipocytes (Fig. 6A) [23]. However, if G/K rats
were pretreated with insulin for 6 days, pre-
sumably to restore protein phosphatase activi-
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FIGURE 7

Skeletal muscle glycogen synthase fractional velocity under insulin stimulated (euglycemic hyperinsulinemic clamp) and insulin-stimu-
lated plus D-chiro-inositol in 6 monkeys. D-chiro-inositol was administered I.V. 1g/K for 3 min. 30 min later the last muscle biopsy was
performed. At steady state maximally effective insulin infusion rates, D-chiro-inositol further activated glycogen synthase above maxi-

mal insulin levels. From [30] with permission.

ty, strikingly, adipocyte homogenates from GK
rats became sensitive to G3PAT stimulation by
IPG-P under conditions where insulin was still
ineffective possibly due to a chiro-inositol syn-
thesis deficit (See Epimerization) or an IPG syn-
thesis or IPG- generation deficit (Fig. 6B) [23].
Since IPG-A was inactive in these experiments,
this again is a striking demonstration of the
insulin-like effectiveness of IPG-P in a diabetic
resistant tissue where insulin itself was still
ineffective, again evidence for the IPG-P acting
as a potential insulin mediator.

Of interest, Schofeld and Hackett also
demonstrated that myo-inositol GPI from P.
falciparum also had insulin-like effects in vitro
and in wvivo [24]. Acting on adipocytes it
increased, ['*C] glucose oxidation to ["*CO,]
and ["C] lipid synthesis. In mice, IP injection of
12.5 pg GPI lowered blood glucose and caused
hypoglycemia not attributable to TNF release.
Thus the myo-inositol GPI lipid was insulin
mimetic. Unfortunately the IPG was not tested
in these in vitro and in vivo assays for its insulin

mimetic properties.

Although somewhat counter intuitive to
classical second messenger theory, there is now
a solid body of data supporting the extracellu-
lar generation/release of IPG’s. These include
extracellular antibody inhibition studies [25],
cultured cell dilution experiments demonstrat-
ing a predicted decreasing effect of increased
culture medium volume on bioactivity [26] and
impermeant flourescent tag experiments [27]
all supporting the unconventional thesis. In
keeping with an extracellular site of generation,
an ATP-dependent transport for IPG has been
reported in rat hepatocytes [28] thus demon-
strating a mechanism for cell entry from extra-
cellular sites.

IN VIvo D-CHIRO-INOSITOL ACTION

Since urine and tissue concentrations of
chiro-inositol and putative mediator levels were
decreased in type 2 diabetes with insulin resist-
ance [6, 11,19], we reasoned that D-chiro-inos-
itol administration might replete IPG putative

INTERNATIONAL JOURNAL OF EXPERIMENTAL DIABETES RESEARCH
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A. Effect of MgCl, on the stimulatory effect of IPG-P putative mediator. The reaction mixture contained homogenous PDH phosphatase
(supplied by Dr. L. Reed) and [**P] PDH complex. Compare the left shifted MgCl, sensitivity in the presence of IPG-P with the action

of insulin shown in B. From (Ref. 36) with permission.

B. Effect of insulin on the sensitivity of pyruvate dehydrogenase phosphatase to Mg?* . Toluene permeabilized mitochondria from con-
trol () and insulin-treated () tissue were incubated and steady state values of pyruvate dehydrogenase complex activity (PDHa) were
obtained in the presence of 0.2 mM ATP, 100 pM Ca?*, and various Mg?* concentrations. From [39] with permission.

mediator stores. In contrast to IPG which is
administered parenterally, D-chiro-inositol may
be administered orally. Initial studies in low-
dose STZ rats demonstrated that in the dose
range of 1-10 mg/kg, a dose dependent modest
decrease in hyperglycemia of up to 50% was
observed. Similarly when administered Lv. to
diabetic and insulin resistant rhesus monkeys

INTERNATIONAL JOURNAL OF EXPERIMENTAL DIABETES RESEARCH

(100 mg/kg), increased rates of decline of plas-
ma glucose and plasma insulin were noted [29].
A striking demonstration of the effect of D-
chiro-inositol to enhance insulin sensitivity was
an experiment in which the activation state of
glycogen synthase was determined in muscle
biopsies during a euglycemic hyperinsulinemic
clamp in the Rhesus monkey. While insulin
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Model of serial activation of PP1 and PP2C by IPG-P and IPG-A. Dephosphorylation of INH-1-P is accomplished by both IPG-P and
IPG-A. IPG-P stimulates PP2C to dephosphorylate while IPG-A inhibits its phosphorylation by PKA. Thus, PP1 becomes activated by
virtue of the loss of inhibitory activity of INH-1. Similar experiments were also, conducted with DARPP-32. From [43] with permission.

alone increased GS activation state (Fig. 7, not
shown) the further infusion of D-chiro-inositol
in the continued presence of maximal insulin
further activated the enzyme above that pro-
duced by maximal insulin (Fig. 7) [30].
Presumably the D-chiro-inositol is acting by
initial incorporation into GPI lipid precursor
stores, with subsequent release by phospholi-
pase action as IPG-P stimulated by insulin. We
have previously identified and characterized the
presence of chiro-inositol containing phospho-
lipids in bovine liver [31]. More recently, we
have shown that [*H] D-chiro-inositol injected
in vivo is incorporated into control Wistar and
diabetic G/K rat phospholipids [32]. Insulin
stimulated release of IPG from GPI lipids is
well established [23].

In another model of insulin resistance, glu-
cosamine was infused into rats for 210 min to
induce insulin resistance under euglycemic glu-
cose clamp conditions [33]. Animals pretreated
with either troglitazone or D-chiro-inositol for
7 days were compared. Pretreatment with D-
chiro-inositol had no effect on hepatic glucose

output but prevented glucosamine induced
peripheral insulin resistance, whereas pretreat-
ment with troglitazone improved hepatic glu-
cose output but was without effect on periph-
eral insulin resistance. This again indicates the
effectiveness of D-chiro-inositol to correct
insulin resistance in an additional model of
insulin resistance [33].

In separate experiments, we were unable to
demonstrate any metabolic effects of myo-inos-
itol administered under similar conditions to D-
chiro-inositol [29]. However, Ortmeyer in rhe-
sus monkeys was able to observe the improve-
ment of glucose tolerance by myo-inositol.
[34]. Diabetic conditions and/or animal species
may produce these differences. A possible
explanation raised by these latter authors was
that the effectiveness of myo-inositol may have
resulted from its conversion to chiro-inositol in
vivo. This is addressed in a later section. It is of
interest that Ostlund et al. [35] have demon-
strated a Na* dependent transport of D-chiro-
inositol in HepG2 liver cells by a transporter
that also transports myo-inositol.

INTERNATIONAL JOURNAL OF EXPERIMENTAL DIABETES RESEARCH
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A. [*H]myo-inositol conversion to [*H]chiro-inositol in purified phospholipids of control Wistar and diabetic G/K tissues. % conver-
sion was based on ratio of chiro-inositol/myo-inositol + chiro-inositol. Note the marked decrease in conversion of myo to chiro-inos-

itol in the insulin sensitive tissues liver, fat and muscle.

B. [*H]chiro-inositol conversion to [*H]myo-inositol in the purified free inositols from control Wistar and diabetic G/K rat tissues.
The % conversion was based on the ratio of myo-inositol/chiro-inositol + myo-inositol. Note the small back conversion of chiro to

myo-inositol in all tissues. From (Ref. 51) with permission.

IN VITRO INTRACELLULAR MECHANISM OF
ACTION OF IPG’S

IPG-P is termed P since it activates phospho-
protein phosphatases. Originally found to acti-
vate PDH phosphatase [36], it was subsequent-
ly found to activate phosphatase PP2C as well
[37]. Both PDH phosphatase and PP2C are
now recognized as members of the family of
phosphatases termed PPM (phosphoprotein
phosphatase-metal activated), since they are
both Mg** requiring. Recently PP2C’s structure
has been determined by x-ray crystallography
and shown to contain in its active center a
bimetallic ion pair involved in catalysis [38].

We initially demonstrated that IPG-P acti-
vates PDH type 1 phosphatase holoenzyme by
left shifting the Mg** dose response curve thus
sensitizing the enzyme to Mg** (Fig. 8A) [36].
Of considerable physiologically interest,
Denton et al. [39] independently demonstrated
that when rat adipose tissue segments treated
with insulin are homogenized and examined for
the Mg* sensitivity of PDH phosphatase, the
curve is left-shifted in the insulin-pretreated

INTERNATIONAL JOURNAL OF EXPERIMENTAL DIABETES RESEARCH

compared with the control tissue (Fig. 8B).
Note that in both A and B the greatest increase
in Mg** sensitivity occurs at low physiological
Mg** concentrations. This again argues that
IPG-P is a putative mediator since in a defined
in vitro enzyme system it reproduces the kinet-
ic action of insulin acting on a sensitive tissue,
(fat), to activate a sensitive enzyme, PDH phos-
phatase. We have also shown that IPG-P acti-
vates PP2C dephosphorylating myosin light
chains by left shifting the Mg** dose response
curve [37].

Interestingly, Ortmeyer et al. demonstrated
that following insulin administration iz vivo to
rhesus monkeys, liver biopsy samples exhibited
activation of both PP1 and PP2C [40]. Other
investigators have also observed activation of
PP1 in fat or liver cells treated with insulin
[41,42]. Our laboratory demonstrated a mech-
anism for the serial activation of both PP2C
and PP1 by the 2 IPG’s, IPG-P and IPG-A in an
in vitro model system [43]. As shown in the
model (Fig. 9) both IPG putative mediators
lead to decreased phosphorylation of INH1, a
selective inhibitor of PP1 catalytic subunit.
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IPG-P stimulates PP2C to dephosphorylate
INH1 dose dependently in low nanomolar
doses, while IPG-A inhibits cAMP-kinase medi-
ated phosphorylation of INH1 dose dependent-
ly in similar low nanomolar doses [43]. This
“double barrel” IPG putative mediator action
disinhibits and thus activates PP1 following the
preceding activation of PP2C by IPG-P. In keep-
ing with this model, decreased phosphorylation
of INH1 with in vivo insulin action has been
noted in the literature [44].

IPG-A on the other hand inhibits both
cAMP-kinase and adenylate cyclase [45] and
thus helps explain the effect of insulin to
reverse the action of counter regulatory hor-
mones that elevate cAMP. Thus, both IPG’s are
insulin-like in their action in vivo [20] but, as
already discussed, IPG-P seems more direct and
specific in its role as a putative insulin media-
tor, while IPG-A may mediate the counter reg-
ulatory effect of insulin on epinephrine and
glucagon.

EPIMERIZATION OF MYO-INOSITOL TO
CHIRO-INOSITOL

Early studies in Chlorella fusca [46] and the
cockroach fat body [47] demonstrated the pres-
ence of NAD and NADH dependent inositol
epimerase(s) interconverting myo-inositol into
scyllo, chiro, and neo-inositols. The mechanism
proposed was via initial oxidation of the inosi-
tol to a monoketone inosose by an oxidase,
with NAD as electron and proton acceptor.
This was followed by stereospecific reduction
by a reductase to the epimeric inositol with
NADH or NADPH as electron and proton
donor. Using extracts from bovine brain, Hipps
et al. [48] demonstrated the interconversion of
myo- into scyllo- and neo-inositol. Chiro-inosi-
tol was not observed. Evidence for the presence
of two separate enzymes was presented, an oxi-
dase producing the inosose and a stereospecific

reductase to form the epimeric inositol.

Our initial experiments demonstrated that
when rats were injected with 1 mC of [*H]
myo-inositol over a 3 1/3 day period to
approach isotopic steady state and the tissues
examined for the presence of [*H] chiro-inosi-
tol, the percent conversion of myo-to chiro-
inositol was greatest in liver, muscle (insulin
tissues) and blood (~8-9%).
Significant but lower percent of conversion was
observed in other tissues ranging from ~1 to
4% [49]. When the phospholipids were exam-
ined the percent conversion in blood was
~60%, in muscle ~8% and liver ~2% [49].

In a subsequent experiment, rat fibroblasts
expressing the human insulin receptor were
prelabeled with [*H] myo-inositol for 48h and
examined for the conversion to [*H] chiro-inos-
itol in the absence and presence of insulin.
Insulin in 15 min stimulated the conversion of
[*H] myo-inositol phospholipid into [*H] chiro-
inositol phospholipid [50]. This result suggest-
ed that the epimerization stimulated by insulin
occurred at the phospholipid level rather than
at the free inositol level. Alternatively, it might
have occurred at the free inositol level but with
the rapid incorporation of the free inositol into
phospholipids [32].

With the availability of [*H] D-chiro-inosi-
tol, we next studied its overall tissue disposi-
tion in normal Wistar and GK diabetic rats
together with its conversion to [*H] myo-inosi-
tol. We also compared the overall distribution
of [*H] myo-inositol and its conversion to [*H]
chiro-inositol. Both labeled inositols were
injected at a dose of 1 mC over a 3 1/3 day peri-
od, animals sacrificed, organs collected and
analyzed for both [*H] myo-inositol and [*H]
chiro-inositol [32]. When the percent conver-
sion of [*H]myo-inositol to [*H] chiro-inositol
was examined (Fig. 10) a marked decrease was
observed in liver, fat, muscle (insulin sensitive
tissues) and blood of the GK compared with
Wistar control rats. As seen in Fig. 10A, in liver

sensitive
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a decrease from ~25% (Wistar) to ~3% (GK),
in fat a decrease from ~30% (Wistar) to ~6%
(G/K), and in muscle a decrease from ~25%
(Wistar) to ~5% (GK) was observed [32]. Of
interest, only a small back conversion of
[*H]chiro-inositol to [*H] myo-inositol was
observed (Fig. 10B) (1% or less) with no signif-
icant difference between control and G/K rats.
This suggests that in vivo the forward conver-
sion of myo to chiro-inositol is essentially uni-
directional. The data further indicates a signifi-
cant defect in the conversion of myo- to chiro-
inositol in the tissues (principally insulin sensi-
tive tissues) of the G/K compared to the control
Wistar rat. If such a defect in fact exists, it may
help explain why administered chiro-inositol is
effective in alleviating insulin resistance related
to its deficiency.

SUMMARY AND CONCLUSIONS

We have reviewed the growing body of evi-
dence for the biological significance of D-chiro-
inositol, its potential role when present in IPG-
P as a putative mediator of insulin action. The
decrease of chiro-inositol in urine was correlat-
ed with insulin resistance and its formation via
epimerization from myo-inositol in vivo.
Another recent review has summarized the role
of insulin receptor activated alternate G-pro-
tein linked signaling mechanisms in the genera-
tion of IPG’s [51]. Other reviews have dealt
with more general aspects of IPG’s and their
role as putative insulin mediators [52] and as
related to diabetes [53] as well as their more
general role in hormone and growth factor sig-
nal transduction [54]. A chapter by Hansen
and Ortmeyer reviewed experiments in the rhe-
sus monkey dealing with insulin resistance and
type 2 diabetes [55]. Clearly this is a rapidly
growing scientific area of great theoretical and
practical interest.
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