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Gestational diabetes mellitus (GDM) and obesity in pregnancy (OP) are pathological conditions associated with placenta vascular
dysfunction coursing with metabolic changes at the fetoplacental microvascular and macrovascular endothelium. These alterations
are seen as abnormal expression and activity of the cationic amino acid transporters and endothelial nitric oxide synthase
isoform, that is, the “endothelial L-arginine/nitric oxide signalling pathway.” Several studies suggest that the endogenous nucleoside
adenosine along with insulin, and potentially arginases, are factors involved in GDM-, but much less information regards their role
in OP-associated placental vascular alterations. There is convincing evidence that GDM and OP prone placental endothelium to
an “altered metabolic state” leading to fetal programming evidenced at birth, a phenomenon associated with future development
of chronic diseases. In this paper it is suggested that this pathological state could be considered as a metabolic marker that
could predict occurrence of diseases in adulthood, such as cardiovascular disease, obesity, diabetes mellitus (including gestational
diabetes), and metabolic syndrome.

1. Introduction

Pregnancy is a physiological state with a complex anatomical
and functional interaction between mother and fetus [1].
When this interaction is not a success, the mother, the fetus,
or both exhibit functional impairments. Complications of
pregnancy are important causes of maternal mortality, where
gestational diabetes mellitus (GDM) and obesity of the
mother in pregnancy (OP) are major obstetric pathologies.
Fetal-maternal interaction could result in metabolic distur-
bances leading, for example, to placental and endothelial
dysfunction [2, 3]. Endothelial dysfunction is defined as
an altered capacity of the endothelium to take up and
metabolize the cationic amino acid L-arginine, the substrate
for nitric oxide (NO) synthesis via NO synthases (NOS)
[4, 5]. Interestingly, it is reported that GDM and OP are

pathological conditions associated with altered L-arginine
transport and NO synthesis (i.e., the “L-arginine/NO sig-
nalling pathway”), probably due to altered uptake and
metabolism of adenosine [6, 7], an endogenous nucleoside
acting as vasodilator in most vascular beds [8, 9]. These
pathophysiological characteristics are considered key in the
establishment of a “programmed state” of the developing
fetus (i.e., “fetal programming”). This concept refers to the
impact of abnormal intrauterine conditions on the develop-
ment of diseases in adulthood and becomes a key mechanism
associated with future development of chronic diseases
including cardiovascular disease (CVD), diabetes mellitus,
and metabolic syndrome (a concept globalizing clinical
association of obesity, type II or non-insulin-dependent
diabetes mellitus, hypertension, and dyslipidaemia) [10–12].
Interestingly, GDM is a condition that also increases the risk
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Figure 1: Comparison of published reports addressing a potential
association of human adult diseases in subjects from pregnancies
coursing with gestational diabetes mellitus or obesity in pregnancy.
Gestational diabetes mellitus (GDM, column of light-blue circles)
and obesity in pregnancy (OP, column of orange circles) are
pathological conditions in human subjects. Different number of
reports (x-axis, Published reports), in this cartoon represented as
relative size of corresponding light-blue and orange circles, suggest
that GDM and OP are differentially associated with increased
incidence of human adult diseases (y-axis, Human adult diseases),
such as obesity, type 2 diabetes mellitus (T2DM), insulin resistance,
hyperlipidaemia, or hypertension. Data taken from [13, 77, 78, 81,
84, 92, 190, 195–212].

of obesity in children and adolescents [13], a phenomenon
leading to high incidence of type 2 diabetes mellitus (T2DM)
[14]. OP is also related to neonatal metabolic compromise,
which is already apparent in the offspring at birth, character-
ized by reduced insulin sensitivity and higher concentrations
of inflammatory markers [13]. Surprisingly, few studies have
been reported regarding the potential association between
GDM and OP as pathological conditions of the mother
during pregnancy leading to diseases in the adulthood,
the latter most likely programmed during the intrauterine
life period (Figure 1). These concepts are discussed in
this paper in terms of the fetus-placenta interaction and
consequences of GDM and OP leading to fetal vascular
disturbances. We also suggest that, based in the discussed
observations, our attention should be certainly switched
towards a better understanding of the gestational period as a
key interventional target in the prevention of adult diseases at
the state where fetal programming of adult diseases occurs.

2. Endothelial Dysfunction

Endothelial cells play a crucial role in the regulation of
vascular tone through the release of vasoactive substances,
including nitric oxide (NO) [4, 5, 15]. In pathological
pregnancies, such as GDM [6, 16], intrauterine growth
restriction (IUGR) [2], or preeclampsia [17], the synthesis
and/or bioavailability of NO are altered leading to changes
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Figure 2: Endothelial L-arginine/NO signalling pathway in ges-
tational diabetes mellitus and obesity in pregnancy. In human
endothelial cells L-arginine is taken up via cationic amino acid
transporters 1 (hCAT-1) accumulating this amino acid in the
intracellular space. L-Arginine is then metabolized by the endothe-
lial nitric oxide synthase (eNOS) into L-citrulline and nitric
oxide (NO) as a co-product. Gestational diabetes mellitus is
associated with higher expression and activity of hCAT-1 leading to
supraphysiological accumulation of L-arginine. This phenomenon
results in higher L-arginine metabolism by eNOS due to increased
expression and activity of this enzyme leading to overproduction of
NO. In endothelial cells from OP there is no information addressing
whether this pathological condition alters L-arginine transport
and intracellular accumulation, but reduces eNOS expression and
activity leading to lower than physiological synthesis of NO.

in blood flow of the human placenta which could result in
limiting fetal growth and development [1, 3]. NO is a gas
synthesized from the cationic, semiessential amino acid L-
arginine in a metabolic reaction leading to equimolar for-
mation of L-citrulline and NO (Figure 2) [5]. This reaction
requires the activity of NO synthases (NOS), of which at
least three isoforms have been identified, that is, neuronal
NOS (nNOS or type I), inducible NOS (iNOS or type II),
and endothelial NOS (eNOS or type III) [4, 5, 18]. The NO
diffuses from the endothelium to the underlying layer of
vascular smooth muscle cells leading to cyclic GMP (cGMP)-
dependent vasodilatation [5]. In vessels without innervation,
such as the placenta and the distal segment of the umbilical
cord [1, 19], vascular tone is regulated by the synthesis
and release of vasoconstrictors and vasodilators from the
endothelium [3]. The reduced ability of this tissue to stimu-
late NO-mediated vasodilatation is referred to as endothelial
dysfunction [20]. This phenomenon is strongly correlated
with cardiovascular disease (CVD) risk factors [21] and with
early states of chronic diseases such as hypertension [22],
hypercholesterolemia [23], diabetes mellitus [24], hyperho-
mocysteinaemia [25], and chronic renal [26] and cardiac
failure [27]. Interestingly, eNOS expression and activity is
highly regulated in human fetoplacental microvascular and
macrovascular endothelium, an effect that is differential in
these two vascular beds; thus, endothelial dysfunction and
perhaps increased risk of appearance of chronic diseases in
adulthood will also depends on the type of fetal vascular bed
that is altered in diseases of pregnancy [16].

Activity of NOS may depend on the ability of endothelial
cells to take up their specific substrate L-arginine via a variety
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Figure 3: Adenosine/L-arginine/nitric oxide (ALANO) signalling pathway in gestational diabetes mellitus. Human umbilical vein
(macrovasculature) and placental microvascular endothelial cells exhibit increased (solid light-blue arrows) L-arginine transport via the
cationic amino acid transporters 1 (hCAT-1) but reduced (segmented light-blue arrows) adenosine uptake via the equilibrative nucleoside
transporter 1 (hENT1). The latter phenomenon leads to accumulation (white up arrow) of adenosine in the extracellular space, which then
stimulates A2A adenosine receptors to activate (dotted light-blue arrows) maximal transport capacity of hCAT-1 and maximal metabolic
capacity of endothelial nitric oxide synthase (eNOS) leading to supraphysiological levels of nitric oxide (NO) and L-citrulline. The gas NO
activates hC/element-binding protein (CBP) homologous protein 10-C/EBPα transcription factor complex (CHOP) leading to repression
of SLC29A1 gene expression resulting in reduced hENT1 protein synthesis and abundance at the plasma membrane. On the other hand,
NO activates the transcription factor-specific protein 1 (Sp1) and nuclear factor κB (NFκB) leading to increase transcription of SLC7A1 and
NOS3 genes, respectively. This phenomenon results in higher abundance of hCAT-1 and eNOS protein increasing L-arginine transport and
NO synthesis. From data in [6, 16, 39, 48, 52, 59].

of membrane transport systems [2, 28–30]. In human
endothelial cells, L-arginine is taken up via membrane
transport systems grouped as systems y+, y+L, b0,+, and B0,+

[31–33]. System y+ conforms a family of proteins known as
cationic amino acid transporters (CATs) (hereafter referred
as “CATs family”), with CAT-1, CAT-2A, CAT-2B, CAT-3,
and CAT-4 isoforms [34] whose expression and activity,
and the mechanisms modulating these phenomena, have
been extensively described [30, 33–35], including in the
human placenta [36–38]. Human fetoplacental endothelium
takes up adenosine via equilibrative nucleoside transporters
(ENTs) [6, 16, 39–41]. Four members of the ENT family
of solute carriers (SLC29A genes) have been cloned from
human tissues, that is, hENT1, hENT2, hENT3 and hENT4
[40, 41]. In primary cultures of human umbilical vein
endothelial cells (HUVECs), adenosine transport is mainly
(∼80%) mediated by hENT1 with the remaining transport
(∼20%) being mediated by hENT2 [39, 42, 43]. Recent
reports show that these proteins are also expressed in human
placental microvascular endothelial cells (hPMECs); how-
ever, contribution of hENT1 and hENT2 to total adenosine
transport in this cell type is similar compared with adenosine
transport in HUVEC [17, 44]. hENT3 and hENT4 seem not
to play a significant role in endothelium (see [16, 45–47]).

Interestingly, adenosine has been suggested as a nucleoside
increasing L-arginine/NO signalling pathway in HUVEC
[39, 48], hPMEC [17, 49], rat cardiomyocytes in response
to the ENTs inhibitor dipyridamole [41], and in skeletal
microvascular endothelium in response to hypoxia [50]. This
phenomenon has been referred to as endothelial “ALANO”
signalling pathway (adenosine/L-arginine/nitric oxide) first
characterized in HUVEC from GDM pregnancies [6, 16,
48]. The mechanism involves adenosine activation of A2A-
adenosine receptors and increased expression of hCAT-1 and
eNOS, via activation of key signalling molecules includ-
ing mitogen-activated protein kinases of 42 and 44 kDa
(p42/44mapk) and protein kinase C (PKC) [6, 7, 16, 39,
48]. Thus, a relationship between expression and activity
of hCATs and hENTs in HUVEC from GDM has been
established (Figure 3) [6, 16, 48, 51, 52].

3. Gestational Diabetes Mellitus

Gestational diabetes mellitus (GDM) is a syndrome char-
acterized by glucose intolerance leading to maternal hyper-
glycaemia first recognized during pregnancy [53]. GDM
is associated with abnormal foetal development and peri-
natal complications, such as macrosomia and neonatal
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hypoglycaemia [54]. Alterations associated with GDM re-
sult from a change in the amount of D-glucose available
to the fetus due to alterations in the physiology of the pla-
centa (e.g., increased D-glucose transplacental transport)
or by hormone-induced dysfunction (e.g., altered insulin
signalling), phenomena that could lead to abnormal growth
of the fetus (macrosomia) and perinatal complications [16,
55, 56]. Clinical manifestations of GDM have been attributed
mainly to the condition of hyperglycaemia, hyperlipidaemia,
hyperinsulinemia, and fetoplacental endothelial dysfunction
[54, 55]. Various organs show structural and functional
alterations, including endothelial dysfunction of the micro-
and macrocirculation in the fetoplacental circulation, in
GDM [16, 57]. Increased NO synthesis has also been re-
ported in human placental veins and arteries [58] and in
primary cultures of HUVEC [7, 51, 59] isolated from preg-
nancies with GDM (Table 1). Thus, vascular dysfunction
resulting from this syndrome may be a consequence of
a functional dissociation between the synthesis of NO
and/or its bioavailability to the vascular endothelium and
smooth muscle in the human placenta circulation. Even
when the GDM-associated endothelial dysfunction regards
altered endothelial L-arginine/NO signalling pathway, most
studies regarding the mechanisms behind these effects of
GDM are not conclusive. However, it is conceivable that these
alterations are the result of alterations in multiple, rather
than single, metabolic mechanisms including sensitivity of
the human fetal endothelium to vasoactive molecules such
as adenosine [39, 48] or insulin [7, 47].

3.1. Endothelial Dysfunction in Gestational Diabetes Mellitus

3.1.1. L-Arginine/NO Signalling Pathway. In primary cul-
tures of HUVEC from GDM, synthesis of NO [7, 39, 59],
L-arginine transport [39], and its intracellular concentration
[16] are increased (Figure 2). GDM-associated increase of L-
arginine transport is due to higher maximal velocity (Vmax)
for transport, most likely resulting from higher hCAT-1
expression [39]. Since general activators of PKC increase L-
arginine transport and because activation of p42/44mapk is
increased in response to NO and PKC, the mechanisms by
which L-arginine transport is activated in GDM in HUVEC
seem to depend on these intracellular signalling molecules.

PKC and p42/44mapk are also involved in the stimulation
of L-arginine transport via hCAT-1 by insulin in HUVEC
[30, 33, 47, 60]. This phenomenon seems to result from
increased SLC7A1 (for hCAT-1) promoter transcriptional
activity via a mechanism involving the zinc finger pro-
moter-selective transcription-factor-specific protein 1 (Sp1)
binding to multiple consensus sequences identified between
−177 and −105 bp from the ATG (transcription starting
sequence) of this gene [33]. Insulin causes relaxation
of human umbilical vein rings in an endothelium- and
hCAT-like transport activity-dependent manner [33]. Since
this vascular response is found using physiological plasma
concentrations of insulin (∼0.01–0.1 nM), it is feasible
that SLC7A1 expression and most likely hCAT-1 activity
are under tonic regulation by physiological insulinemia
in human umbilical veins. Insulin-induced umbilical vein

relaxation was lower in vessels from GDM compared with
normal pregnancies [7]. This phenomenon could be the
result of a less reactive umbilical vein, perhaps due to tonic
and basally increased vasodilation due to overrelease and/or
accumulation of adenosine at the umbilical vein blood [7].
In addition, it is known that insulin effect in patients with
insulin resistance is improved by infusion of adenosine
receptor agonists suggesting that insulin biological effects
could be facilitated upon adenosine receptor activation [61].
This mechanism is also plausible in the human fetoplacen-
tal circulation where activation of adenosine receptors is
also, apparently, facilitating insulin-increased L-arginine/NO
signalling pathway [47]. Altogether these findings could be
crucial for fetal insulin modulation of endothelial-derived
NO synthesis in human umbilical vessels from pregnancy
diseases associated with hyperinsulinemia, such as GDM,
and other states of insulin resistance [6, 7, 16, 30, 47].

3.1.2. Adenosine Transport. HUVEC from GDM also exhibit
reduced adenosine transport (Figure 3) [6, 16]. GDM
effect on adenosine uptake is proposed to result from a
lower hENT1 transport capacity (Vmax/Km) due to reduced
Vmax rather than altered intrinsic properties (i.e., unaltered
apparent Km) of this type of nucleoside transporters [7,
51, 59]. Since adenosine uptake efficiency (i.e., adenosine
molecules per transporter per cell per second) is unaltered in
HUVEC from GDM [62], reduced hENT1 expression could
explain this effect of GDM. Alternatively, a lower number
of nucleoside-binding sites per endothelial cell (∼50%)
have been estimated in HUVEC from GDM compared
with cells from normal pregnancies [62]. In addition, an
apparent recycling of hENT1 from the plasma membrane to
perinuclear location has been shown in this cell type [63, 64].
Thus, not only a reduced activity and expression but also
hENT1 recycling could be a mechanism involved in GDM
altered adenosine transport in human fetal endothelium
[16, 65, 66]. It is also known that NO inhibits SLC29A1
(for hENT1) promoter transcriptional activity in HUVEC
from GDM, where a higher NO synthesis due to eNOS
activation (phosphorylation of eNOS at Ser1177 residue)
[39] as well as increased total eNOS expression [59] is
reported. The SLC29A1 promoter region spanning from
−2154 to −1810 bp from the ATG contains sequence(s)
for inhibitory transcription factor(s) leading to downreg-
ulation of this gene expression in HUVEC from GDM
[59]. Interestingly, GDM effect requires activation of the
NO-dependent repressive transcription factors complex con-
formed by hC/element-binding protein homologous protein
10 (CHOP)-CCAAT/enhancer-binding protein α (C/EBPα)
(hCHOP-C/EBPα) [51]. These regulatory mechanisms of
hENT1 expression and/or intracellular localization could
be key events to understand the recently reported GDM-
increased plasma adenosine concentration (∼600 nM) in
umbilical vein blood [7] compared with normal pregnancies
(∼350 nM) [7, 67–69]. Reduced expression and/or activity of
hENTs is a phenomenon that could also explain the elevated
extracellular adenosine concentration detected in the culture
medium of HUVEC from GDM (∼900–2,000 nM) [7]
compared with normal (∼50–500 nM) pregnancies [7, 69].
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Table 1: Effect of GDM, obesity, and hypercholesterolaemia on ALANO signalling pathway.

Element
Pregnancy Nonpregnancy

GDM Obesity Hypercholesterolemia

Cell type Effect References Cell type Effect References Cell type Effect References

hENT1 expression
HUVEC Reduced [7, 39, 51]

hPMEC Reduced [16, 44]

hENT1 activity
HUVEC Reduced [7, 39, 51]

hPMEC Reduced [16, 44]

hENT2 expression
HUVEC Unaltered [16]

hPMEC Reduced [16, 44]

hENT2 activity
HUVEC Unaltered [16]

hPMEC Reduced [16, 44]

Extracellular adenosine HUVEC Increased [7, 48]

hCATs, expression HUVEC Increased [39] hP Reduced [213] EAhy926 Increased [128]

rAR Increased [127]

hCATs, activity HUVEC Increased [39] hP Reduced [213] EAhy926 Increased [128]

rAR Reduced [127]

bAEC Reduced [214]

pAEC Reduced [215]

HUVEC Unaltered [216]

HUVEC Unaltered [217]

eNOS expression
HUVEC Increased [39, 51] hVEC Unaltered [173] hSVEC Reduced [129]

hPT Increased [218] mVEC Increased [219] rbAS Reduced [131]

hAd Increased [220] HUVEC Reduced [130]

hHep Unaltered [221]

eNOS activity
HUVEC Increased [7, 39, 51] hVEC Reduced [173] hSVEC Reduced [129]

hVT Unaltered [222] mVEC Reduced [219] rbAR Reduced [131]

mHep Reduced [223] HUVEC Reduced [130]

hP Unaltered [213] pAEC Reduced [215]

NO level HUVEC Increased [11] ∗ Increased [221] hSVEC Reduced [129]

Arginase 1 mHep Increased [223]

Arginase 2 hAEC Increased [136–138]

mAEC Increased [137, 138]

hENT1: human equilibrative nucleoside transporter 1; hENT2: human equilibrative nucleoside transporter 2; hCATs: human cationic amino acid transporters;
eNOS: endothelial nitric oxide synthase; NO: nitric oxide; HUVEC: human umbilical vein endothelial cell; hPMEC: human placental microvascular
endothelial cell; hPT: human placental tissue; hVT: human villous tissue; hP: human platelets; hVEC: human vascular endothelial cell; mVEC: mouse vascular
endothelial cell; hAd: human adipocyte; hHep: human hepatocyte; mHep: mouse hepatocyte; EAhy 926: human endothelial cell line EAhy 926; rAR: rat aortic
ring; bAEC: bovine aortic endothelial cell; pAEC: porcine aortic endothelial cell; hSVEC: human saphenous vein endothelial cell; rbAS: rabbit aortic segment;
rbAR: rabbit aortic ring; hAEC: human aortic endothelial cell; mAEC: mouse aortic endothelial cell; ∗measurement performed in human serum.

Insulin also reduces hENT1-mediated adenosine trans-
port in HUVEC from normal pregnancies but restores
GDM-associated reduced hENT1 expression and activity in
this cell type [7, 70]. One of the proposed mechanisms
accounting for this beneficial effect of insulin on adenosine
transport is an activation of A2A-adenosine receptors by
extracellular adenosine, which is increased due to reduced
hENT1 transport activity in this cell type. In addition, a role
for a differential expression of insulin receptor isoforms A
(IR-A) and B (IR-B) in HUVEC from GDM is proposed
[7]. In this phenomenon insulin would be acting as a
factor that restores a potential GDM-associated metabolic
phenotype (i.e., preferential activation of p42/44mapk over
Akt pathways) to a normal, mitogenic phenotype (i.e.,
preferential activation of Akt over p42/44mapk pathways) by

restoring IR-A expression to values in HUVEC from normal
pregnancies [7]. Similar findings have been recently reported
for endothelial cells from the microcirculation of the human
placenta from GDM pregnancies, where instead a differential
role for insulin receptor isoforms is played as modulator of
hENT2-mediated adenosine transport [39].

In a recent study it has been proposed that diabetes
mellitus is not triggered in experimental animals where
arginases activity is increased, a phenomenon proposed to be
due to reduced NO synthesis [71]. These findings highlight
the importance of the counterregulatory effect of arginases
and NOS in pathologies where vascular tone regulation is
altered [72]. It is likely that increased arginase activity leads
to lower L-arginine bioavailability for eNOS impairing NO
synthesis in the endothelium (see Figure 4). Interestingly,
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Figure 4: L-Arginine metabolism in hypercholesterolaemia. In human endothelial cells, L-arginine is taken up via cationic amino acid
transporter 1 (hCAT-1) which is then metabolized by either the endothelial nitric oxide synthase (eNOS) into L-citrulline and nitric
oxide (NO), or via arginases (ARG) into L-ornithine and urea, phenomena conforming a normal endothelial function phenotype. These
mechanisms occur in a condition recognized as maternal physiological hypercholesterolaemia (MPH), which has been shown to be associated
with early states of fetal vasculature atherosclerosis. However, in a state of maternal supraphysiological hypercholesterolaemia (MSPH) (see
text), hCAT-1 and eNOS expression and activity are reduced (white down arrow) leading to reduced (segmented light-blue arrows) L-
arginine uptake and NO synthesis, respectively. However, a higher (white up arrow) expression and activity of ARG (most likely arginase
2) leads to increased formation of L-ornithine and urea. The alterations seen in endothelial cells from pregnancies with MSPH result
in endothelial dysfunction contributing in a larger proportion to fetal vasculature atherosclerosis compared with MPH. From data in
[129, 130, 136, 138].

exogenous L-citrulline, but not L-arginine, and inhibition of
arginases induce a diabetic phenotype in rats [71]. Therefore,
it is also feasible that recycling of L-citrulline to L-arginine
could also be involved in this phenomenon. The fact that
L-arginine does not induce diabetes could mean that L-
arginine availability for NOS is compartmentalized at such
degree that it could not reach appropriate concentrations to
activate NOS (Km of eNOS for L-arginine ranges 1–10 μM)
[5], thus limiting the use of this amino acid in the treatment
of GDM. What will be the impact of these mechanisms in
the fetoplacental circulation, and whether these mechanisms
will be associated with programming of adulthood diseases,
is unknown.

3.2. Dyslipidaemia. GDM is a pathological condition also
characterized by maternal dyslipidaemia, alteration directly
affecting fetal development and growth [56]. Dyslipi-
daemia is defined as elevated levels of triglycerides (hyper-
triglyceridemia) and total blood cholesterol (hypercholes-
terolemia), including increased low-density lipoprotein
(LDL) and reduced high-density lipoprotein (HDL) levels
[73]. This phenomenon is associated with the development
of endothelial dysfunction and atherosclerosis (a progressive

disease characterized by formation of lipid plaques in
arteries) [73, 74]. Dyslipidaemia is the main risk factor
for development of CVD [73, 75, 76]. Additionally, GDM
is a risk factor to fetal programming due apparently to
metabolic syndrome [77–79] and, thus, predisposes to an
accelerated development of CVD in adult life [78–83].
Interestingly, most of pregnancies with GDM course with
dyslipidaemia, thus making feasible a pathological link (i.e.,
most likely potentiation) between dyslipidaemia in GDM
pregnancies and development of CVD later in life. In fact,
GDM could play a role in fetal programming of adult CVD
not only by alterations in endothelial function of the placenta
(mainly triggered by hyperinsulinemia, hyperglycaemia, and
changes in nucleoside extracellular concentration) but also
by dyslipidaemia associated with this pathology [79, 84].

3.2.1. Hypertriglyceridemia. Pregnancy is a physiological
condition characterized by a progressive weeks of gestation-
dependent increase (reaching 100–200%) in the maternal
blood level of triglycerides [85, 86]. These changes promote
accumulation of maternal fat stores in early and mid
pregnancy, so to metabolize and use it in late pregnancy.
The very-low-density lipoprotein (VLDL) is the type of
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triglycerides carrier that increases in major proportion in the
plasma in hypertriglyceridemia. This phenomenon results
from an enhanced VLDL production by the liver and de-
creased removal of this lipoprotein from the circulation as
a consequence of pregnancy-associated hormonal changes,
including insulin-resistant condition and elevated plasma
oestrogen [85, 87]. The characteristic fetal macrosomia in
GDM is also a phenomenon related with alterations in lipid
metabolism leading to increased supply of nutrients to the
fetus favouring its growth [88]. The association between
dyslipidaemia and macrosomia regards hypertriglyceridemia
more than hypercholesterolemia; in fact, a positive corre-
lation between maternal triglycerides and neonatal body
weight or fat mass has been found in GDM [86, 88,
89]. Furthermore, since triglycerides cross the placenta [1]
and contribute to fetal macrosomia [87], maternal plasma
concentration of these lipids in the third trimester of
gestation, which could result from higher concentration
of fatty acids derived from maternal triacylglycerol, is
considered as a strong predictor of birth weight in women
with GDM [90–92]. This phenomenon is related with altered
placenta expression of key proteins involved in de novo lipid
synthesis (fatty acid synthase and sterol regulatory element-
binding protein 2) [93], triglycerides metabolism (placental
fatty acid-binding protein) [94, 95], and genes related
with placental lipid pathways accounting for placental lipid
metabolism and transport (e.g., PLA2G5 for phospholipase
A2, LPL for lipoprotein lipase, FACL3 for fatty acid-coenzyme
A ligase) [96]. It is accepted that regulation of these genes in
GDM alters placenta and fetus lipid metabolism leading to
altered fetal development and size, a condition potentiating
fetal hyperinsulinemia’s biological effects and contributing to
the development of the metabolic syndrome and CVD later
in life [79, 96].

3.2.2. Hypercholesterolemia. Pregnancy is also characterized
by a progressive and weeks of gestation-dependent increase
(40%–50%) in the maternal blood level of cholesterol
[85, 97, 98]. This phenomenon is known as maternal
physiological hypercholesterolemia in pregnancy (MPH) and
is considered to be an adaptive response of the mother to
satisfy the high lipids demand by the growing fetus [85, 86].
However, when a maternal misadaptation to the cholesterol
demands by the fetus occurs, a group of these women
develop a pathological condition referred to as maternal
supraphysiological hypercholesterolemia (MSPH). This con-
dition is characterized by maternal blood cholesterol level to
be over the 95th percentile or following the establishment of
a cut-point >280 mg/dL [93, 99–101]. Sources of cholesterol
for fetal metabolism along with endogenous production by
fetal tissues include transplacental mother-to-fetus transport
of maternal cholesterol [93, 100–106]. Although lipid traffic
through the placenta is restrictive, a correlation between
maternal and fetal blood cholesterol in the first and second
trimesters of pregnancy has been established [100, 107].
These studies suggest that maternal cholesterol level alters
normal development of the fetus. In fact, it has been reported
that, due to altered lipid metabolism in the placenta as
a result of high maternal blood cholesterol, atherogenesis,

a clinical complication commonly appearing in adults,
probably begins in fetal life with likely similar factors altered
in the mother, the fetus, and the placenta (see Figure 5)
[100, 108–111]. This phenomenon was for the first time
referred to as the “foetal hypothesis of atherosclerosis” [100,
112]. Interestingly, a strong correlation between maternal
cholesterolaemia before and during pregnancy and the size
of atherosclerotic lesions in arteries of fetus, children, and
young adults has been shown [100, 101, 111, 112]. This
is apparently crucial regarding fetal programming of CVD
[109–113]. Potential clinical implications for this foetal
hypothesis of atherosclerosis were further contextualised
with the FELIC (“Fate or Early Lesions in Children”)
study [101] where the possibility of applying a therapy
to mothers with hypercholesterolaemia during pregnancy
complemented with described pathogenic insights in the
primary prevention of CVD, including stem cell therapy
[114], is suggested as a potential way to improve health
in their children [101]. Alternatively, C-reactive protein
blood levels were described as higher in mothers with
hypercholesterolaemia during pregnancy, and this finding
was proposed to be used as a predictor of increased
atherogenesis in children [115]; however, even when this
information is of relevance for preventive medicine, maternal
cholesterolaemia seems to be a stronger predictor.

Placental vascular dysfunction, including altered macro-
and microvascular endothelial altered function, is associated
with higher risk of developing CVD in adulthood [16, 57].
Cumulative evidence shows that high levels of blood choles-
terol modify the endothelial function in different vascular
beds [116], mostly associated with reduced vascular NO
bioavailability and elevated oxidative stress (Table 1). Unfor-
tunately, nothing is reported regarding whether abnormal
maternal blood cholesterol level, including MSPH, leads to
placental vascular endothelial dysfunction [109, 117]. GDM
correlates with placental macro- and microvascular endothe-
lial dysfunction [16], also considered as early marker of
atherosclerosis [77]. Neonates with macrosomia from GDM
pregnancies show a significant increase in the aortic intima-
media thickness and higher lipid content, both conditions
considered as subclinical markers of atherosclerosis [110,
118] and that will potentially increase the atherosclerotic
process later in life. Nothing is yet available regarding the
potential effect of MSPH in normal or GDM pregnancies
regarding development of atherosclerosis in the fetoplacental
vasculature in humans [16, 118]. Preliminary findings from
our group suggest that MSPH is associated with reduced
(in fact almost abolished) vasodilatation of human umbilical
vein rings in response to insulin (Figure 6), a phenomenon
that could be mediated by endothelial dysfunction since
NO synthesis is also altered in HUVEC from these patients
[119]. Thus, we speculate that MSPH becomes a pathological
condition triggering potentiation of GDM effect on fetal
programming of CVD.

Reduced vascular NO bioavailability and elevated oxida-
tive stress alter vascular reactivity in the placenta [120],
as well as in children [121, 122] and adults [120, 123–
125], phenomena including downregulation of L-arginine
transport and eNOS activity in endothelial cells. Several
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Figure 5: Potential pathophysiological interaction between the mother, the placenta, and the fetus in fetal atherosclerosis. Maternal factors,
including reduced (↓) catalase (CAT) activity, increased (↑) lipid peroxidation, and oxidized low density lipoproteins (oxLDL), associated
with increased cholesterol content at the mother circulation, generate a state of maternal supraphysiological hypercholesterolaemia (MSPH).
This phenomenon leads to similar alterations in the placenta (reduced CAT, superoxide dismutase (SOD), glutathione-peroxidase (GSH-Px)
activity) and the fetus (with reduced CAT and GSH-Px and increased lipid peroxidation and oxLDL). Therefore, atherosclerosis in the fetus
is identified. Data taken from [88, 100, 101, 109, 110].

alterations caused by hypercholesterolemia could explain
these changes in vascular reactivity [126]. To date, (a)
cholesterol-enriched diet [127] or oxidized low-density
lipoproteins (oxLDLs) [128] cause a posttranscriptional
downregulation of hCATsmediated L-arginine transport in
rat aortic rings and in the human endothelial cell line
EAhy926, (b) hypercholesterolemia leads to reduced NOS
expression in human saphenous vein endothelial cell, rabbit
aortic segments, and HUVEC [129–131], the latter likely
due to increased expression of eNOS mRNA destabilizing
cytosolic proteins [130, 131], and (c) eNOS cofactor tetrahy-
drobiopterin (BH4) expression is reduced in mice and rabbit
aortic rings [132, 133] most likely due to downregulation
of guanosine triphosphate cyclohydrolase I (GTPCH, a
key enzyme involved in the BH4 synthesis) [134, 135].
In addition, hypercholesterolemia is also associated with
increased expression and activity of arginases resulting in
reduced NO synthesis in human and mice aortic endothelial
cells [136–138]. Preliminary results show that in fact arginase
II protein abundance is increased in HUVEC from patients
with MSPH compared with normal pregnancies (A. Leiva,
P. Casanello, and L. Sobrevia, unpublished results). Therefore,
we speculate that similar mechanisms may be either triggered
or potentiated by MSPH with direct consequences in the

fetoplacental endothelial L-arginine/NO pathway (Figure 4),
a phenomenon not at all evaluated in pregnancies coursing
with GDM [16, 86].

4. Obesity in Pregnancy

Obesity is a syndrome estimated to be pandemic with a large
fraction of children now diagnosed as obese, where causes,
other than malnutrition after birth, are not fully explanatory
[139]. Obesity is a pathology resulting from a misbalance
between the energy intake and energy used, with an over-
storage of lipids in adipose tissue [140]. This pathology also
courses with systemic metabolic misbalance leading to occur-
rence of multiple complications, such us dyslipidaemia and
insulin resistance [141], and endothelial dysfunction leading
to hypertensive disorders (Figure 1) [142, 143]. Incidence of
obesity in the world is currently increasing reaching up to
∼12% of the population [143]. Worryingly, increased obesity
incidence includes ∼29% of women in their reproductive
age [144]. Much evidence now available involves differential
contribution of genetic and environmental factors in the
development of obesity, diabetes mellitus, or CVD. Thus,
prevention of childhood and adult obesity may require
beginning even before conception [145–147].
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Figure 6: Insulin effect on human umbilical vein ring reactivity.
Endothelium-intact human umbilical vein rings were isolated from
umbilical veins taken from pregnancies with maternal physiolog-
ical hypercholesterolaemia (MPH) or maternal supraphysiological
hypercholesterolaemia (MSPH). Umbilical vessel ring segments
(2–4 mm length) were mounted in a myograph for isometric
force measurements with optimal diameter adjusted from maximal
active response to 62.5 mM KCl as previously described [28, 107].
Acute response to insulin (3 minutes) was determined in KCl-
preconstricted vessels in preparations incubated in Krebs. Values are
mean ± SEM (n = 7). ∗P < 0.05 versus corresponding values in
MPH.

Obesity in pregnancy is associated with fetal mortality
and morbidity, congenital malformations, macrosomia, and
increased incidence of caesarean delivery [148–151], thus
making this syndrome a condition that once declared in
pregnancy alters foetal growth and development. Even when
an inflammatory profile in placental tissue from obese
women has been described [152–154], the consequences of
OP on fetoplacental vasculature function, including expres-
sion and function of the endothelial L-arginine/NO sig-
nalling pathway, remain mostly unknown (Figure 2, Table 1)
[16]. Even when GDM [6, 16, 56, 155] and obesity [142, 156,
157] are syndromes associated with altered human vascular
function, there are no studies addressing a potential link
between placental dysfunction in GDM and OP. However, it
is known that OP is associated with higher risk of developing
GDM [158], a possibility supported by findings showing
that OP correlates with overgrown fetuses [149], intrauterine
growth restriction [154], and preeclampsia [159–161]. These
results are demonstrative that OP is a key risk factor for
pregnancy and fetal development, a condition that could lead
to programming of diseases of the adulthood (Figure 1).

4.1. Endothelial Dysfunction in Obesity in Pregnancy. Sev-
eral studies associate obesity with chronic inflammation
since blood markers, such as the proinflammatory cytokine
interleukin 6 (IL-6) and tumour necrosis factor α (TNFα),
are increased in these patients [162–166]. The endothelium
is the first cell line exposed to these cytokines [167–
170] leading to altered eNOS expression and activity and
reduced NO bioavailability [171–174]. Moreover, placentas
from patients with OP exhibit a higher inflammatory
profile with increased expression of interleukin 1 (IL-1),
IL-8, and chemoattractant protein 1, compared with lean
women [153]. These findings are complemented by reports
showing obesity-associated increase of IL-6 and TNFα level,
with higher heterogeneous macrophage infiltration in the
human placenta [152]. In addition, in a sheep model of
OP describing this inflammatory profile, JNK and NFκB
signalling pathway involvement in the placental tissue has
been reported [175]. Thus, OP could become a condition
altering placental endothelial function with consequences to
the fetus at birth and potentially in the adulthood.

Leptin, a hormone whose circulating level is increased in
obesity [176], increases system A transport activity through
activation of STAT3 and activation of JAK-STAT signalling
pathway in human placental villous [177]. However, hyper-
leptinaemia in obese pregnant women was also shown to
correlate with reduced activity of system A, an effect most
likely due to increased leptin resistance by the placental
tissue [178]. Regarding nucleoside transport, there are no
studies addressing this phenomenon, including hENT activ-
ity and/or expression, in obese subjects, including pregnant
women [142]. Interestingly, NO level is higher in obese
subjects [179] and rats [180], and the transcription factor
complex hCHOP-C/EBPα, known to cause NO-dependent
downregulation of SLC29A1 expression in HUVEC from
GDM pregnancies (see above) [51], is also expressed in
human adipocytes and involved in the downregulation of
expression of other membrane transporters, such as SCL2A4
(for GLUT4) [181]. In addition, obesity is also associated
with altered insulin signalling in several tissues and acti-
vates MAPK signalling cascades enhancing insulin resistance
[182]. Even when the above-described mechanisms are
involved in downregulation of hENT1 expression in the
human placental vascular endothelium from GDM, nothing
is reported regarding OP effect in this phenomenon.

4.2. Postnatal Outcome in Offspring in Obesity in Pregnancy.
Prepregnancy obesity and excessive gestational weight gain
have been implicated in an intergenerational “vicious cycle”
of obesity, since overweight or obese women give birth to
macrosomic girls, who are more likely to become obese
themselves and deliver large-sized neonates [183]. In fact,
gestational weight gain and birth weight were directly
associated with the body mass index and the risk of obesity in
adolescence [184, 185]. The relationship described was inde-
pendent of parental characteristics, potentially mediating
peripartum factors, child obesogenic behaviour, and weight
at birth, suggesting a role of the intrauterine environment
on long-term offspring weight regulation. Interestingly, an
association between weight gain of the mother during
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pregnancy and increased risk of greater adiposity in the
offspring has been shown at ages of infancy as early as 7
[186] or 3 years old [187]. Considering the high prevalence
of OP and its potential association with GDM [158], there
is an increasing interest in considering a potentially negative
influence of maternal overnutrition and raised birth weight
on the risk of disease in childhood and adulthood [148,
183, 188]. Children of obese women exhibiting increased
risk of diabetes in pregnancy are more likely to develop
insulin resistance later in life [189] (Figure 1). An association
between maternal weight gain during pregnancy and pre-
pregnancy weight with offspring cardiovascular risk factors
in 9 years old children has been proposed (Avon Longitudinal
Study of Parents and Children, ALSPAC) [190]. This study
shows that women gaining more than recommended weight
during gestation were more prone to have offspring with
greater body mass index, waist, fat mass, leptin, systolic
blood pressure, C-reactive protein, and interleukin-6 levels
but lower HDL cholesterol and apolipoprotein A levels
than women with a physiological weight gain. Additionally,
greater prepregnancy weight was independently associated
with greater offspring adiposity and adverse cardiovascular
risk factors, agreeing with previous studies [191–195].
Epidemiological studies show that OP increases the incidence
of metabolic syndrome in children [188]. Interestingly, OP is
related to neonatal metabolic compromise already apparent
at birth, characterized by reduced insulin sensitivity and
increased serum inflammatory markers [13]. Since OP effect
on the susceptibility to obesity in offspring is apparently
independent of GDM, as obese women with normal blood
glucose have babies with increased adiposity [196], OP
and excessive maternal weight gain during pregnancy are
independent factors leading to increased risk of obesity,
insulin resistance, and early markers of CVD in the offspring.
All this evidence shifts our attention towards the gestational
period as an extremely key interventional target in the
prevention of obesity and associated consequences such as
insulin resistance and cardiovascular risk.

4.2.1. Mechanisms of Adverse Postnatal Outcome. The molec-
ular mediators and signalling pathways from the mother
to program the metabolic phenotype (i.e., obesity and
insulin resistance) of the developing offspring are not fully
elucidated. Hormones, such as leptin and insulin, or nutri-
ents, such as D-glucose, free fatty acids, and triglycerides,
and multiple inflammatory cytokines could be implicated.
During normal intrauterine life, maternal insulin does not
cross the placenta, whereas maternal D-glucose is actively
transferred to the fetus [197]. The developing fetal pancreas
responds to a D-glucose load by increasing synthesis and
release of insulin, which acts as a fetal growth hormone.
This is the basic concept of the “Pedersen’s hyperglycaemia-
hyperinsulinism hypothesis” (where fetal overgrowth due
to hyperinsulinemia in response to increased transplacental
D-glucose transfer is proposed, as recently reviewed [224])
explaining observations showing that offspring of diabetic
mothers exhibit high birth weight [225]. Further analysis
expanded this theory to include the possibility that other
insulin secretagogues, including free fatty acids, ketone

bodies, and amino acids [197]. Maternal overnutrition
produces hyperglycaemia, which leads to increased fetal
insulin secretion in a similar manner as seen in GDM [226].
Thus, secondary fetal hyperinsulinemia is believed to be
involved in the intrauterine programming of obesity and
diabetes [188]. Prospective studies indicate that at birth and
at 6 years old the greatest increase in weight to height relation
(relative obesity) was seen in children who experienced the
greatest exposures to insulin in uterus (as judged by amniotic
fluid insulin concentration) [197].

Leptin is also implicated in programming obesity. In
humans, leptin is increased in OP and maternal diabetes and
is reduced in intrauterine growth restriction [227]. Although
the placental transfer of leptin has been demonstrated in
vivo [228], it is believed that umbilical blood level of this
circulating peptide is a marker of neonatal adiposity more
than a relevant modulator of fetal growth [227]. Additionally,
several inflammatory cytokines levels are elevated in obese
pregnant women [229], changes that are proposed as poten-
tial mediators of metabolic programming. Thus, altered
metabolic phenotypes, such as obesity and insulin resistance
seen in offspring in OP, could partially be explained by the
involvement of multiple mediators. Probably, a multifactorial
contribution of nutrient- (e.g., D-glucose, fatty acids, amino
acids) and hormone- (e.g., insulin, leptin) triggered signals
between the obese mother and the developing fetus would
better describe the involved mechanisms. Recent studies
suggest a strict metabolic control of the mother with GDM
in order to overcome the adverse effects of this pathology
on the fetal outcome [46, 230–232]. However, adverse effects
of GDM environment on fetal tissues persist in time, and
multiple studies show increased risk to develop metabolic
syndrome in offspring of GDM pregnancies [70, 169, 192].
More recently it was shown that individuals born from
GDM pregnancies are prone to develop obesity and D-
glucose intolerance compared with offspring from normal
pregnancies [198, 199]. However, further research is needed
to understand the specific mechanisms of metabolic pro-
gramming in response to altered intrauterine environment
derived from OP and GDM.

5. Concluding Remarks

Fetoplacental endothelial dysfunction is a common charac-
teristic of several diseases in pregnancy limiting the function
of the placenta vasculature leading to altered fetal growth
and development. These phenomena involve altered capacity
of one of the essential functions of the endothelium, that
is, the synthesis of vasoactive molecules, including NO.
It is now established that GDM and OP are pathological
conditions altering hCAT-mediated L-arginine transport and
eNOS-synthesis of NO (i.e., the “endothelial L-arginine/NO
signalling pathway”) in the human fetoplacental vasculature.
This phenomenon results in abnormal function of the
endothelial L-arginine/NO signalling pathway leading to
altered vascular reactivity and changes in umbilical vessels
blood flow from and to the fetus with serious conse-
quences on its growth. Abnormalities in the endothelial L-
arginine/NO signalling pathway are also dependent of several
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regulatory mechanisms, including up-regulation caused by
activation of A2A-adenosine receptors in the micro- and
macrovasculature of the human placenta in GDM (and
perhaps in OP) due to accumulation of extracellular adeno-
sine resulting from reduced hENT expression and activ-
ity. Interestingly, GDM pregnancies course with dyslip-
idaemia (hypertriglyceridemia and hypercholesterolemia)
and a pathological link between this condition and develop-
ment of CVD later in life is likely. A proper management of
GDM and OP would be of benefit for the actual newborn’s
health condition and is crucial for the developing of diseases
in the adulthood. Altered function of fetal endothelium at
birth is a “metabolic altered state” associated with GDM
and OP. We hypothesize that this phenomenon is a potential
characteristic (or “at birth metabolic marker”) that could be
considered as predictor of diseases of the adulthood (e.g.,
CVD, obesity, diabetes mellitus, metabolic syndrome) result-
ing from a programmed state due to diseases of pregnancy.
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Mediterráneo, Santiago, Chile, 2011.

[2] P. Casanello, C. Escudero, and L. Sobrevia, “Equilibrative
nucleoside (ENTs) and cationic amino acid (CATS) trans-
porters: implications in foetal endothelial dysfunction in
human pregnancy diseases,” Current Vascular Pharmacology,
vol. 5, no. 1, pp. 69–84, 2007.

[3] L. Myatt, “Review: reactive oxygen and nitrogen species and
functional adaptation of the placenta,” Placenta, vol. 31, pp.
S66–S69, 2010.

[4] L. J. Ignarro and C. Napoli, “Novel features of nitric
oxide, endothelial nitric oxide synthase, and atherosclerosis,”
Current Diabetes Reports, vol. 5, no. 1, pp. 17–23, 2005.

[5] S. Moncada and E. A. Higgs, “The discovery of nitric
oxide and its role in vascular biology,” British Journal of
Pharmacology, vol. 147, supplement 1, pp. S193–S201, 2006.

[6] F. Westermeier, C. Puebla, J. L. Vega et al., “Equilibrative
nucleoside transporters in fetal endothelial dysfunction in

diabetes mellitus and hyperglycaemia,” Current Vascular
Pharmacology, vol. 7, no. 4, pp. 435–449, 2009.

[7] F. Westermeier, C. Salomón, M. González et al., “Insulin
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[40] M. Pastor-Anglada, B. Dérijard, and F. J. Casado, “Mecha-
nisms implicated in the response of system a to hypertonic
stress and amino acid deprivation still can be different,” The
Journal of General Physiology, vol. 125, no. 1, pp. 41–42, 2005.

[41] S. A. Baldwin, P. R. Beal, S. Y. Yao, A. E. King, C. E. Cass, and
J. D. Young, “The equilibrative nucleoside transporter family,
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