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Objective. Mannan-binding lectin (MBL) concentration in plasma is increased in subjects with type 1 diabetes and associated with
increased mortality and risk of diabetic nephropathy. Recent findings show that pancreas transplantation reduces MBL
concentration. Whether the increased MBL concentration is reversed by improved glycaemic control remains unknown. We
investigated the effects of improved glycaemic control on MBL concentration in patients with type 1 diabetes. Methods. We
measured MBL, fructosamine, and HbA1cat baseline and after 6 weeks in 52 type 1 diabetic patients following the change from
conventional insulin therapy to insulin pump therapy. Results. After initiation of insulin pump therapy, the total daily
insulin dose was significantly reduced (from 51± 18 IE/day to 39± 13 IE/day, P < 0 0001). There was a significant
decrease in HbA1c from 8.6% to 7.7% (from 70mmol/mol to 61mmol/mol, P < 0 0001) and in fructosamine levels
(from 356 μmol/L to 311μmol/L, P < 0 0001). MBL levels decreased by 10% from 2165 μg/L (IQR 919–3389μg/L) at
baseline to 1928μ/L (IQR 811–2758 μg/L) at follow-up (P = 0 005), but MBL change was not significantly correlated with
changes in insulin dose, HbA1c, or fructosamine. Conclusions. MBL concentration decreased following the initiation of insulin
pump therapy in patients with type 1 diabetes and did not correlate with changes in glycaemic control.

1. Introduction

Diabetic vascular complications progress in part as a
consequence of hyperglycaemia. A growing body of
evidence links the complement system, in particular
mannan-binding lectin (MBL) and the lectin partway, to this
pathophysiological process.

MBL is a soluble pattern recognition molecule of the
innate immune system that may activate the complement
system via the lectin pathway. Concentration of circulating
MBL is predominantly determined by the genotype, where
polymorphisms give rise to large interindividual differences
[1]. Intraindividual differences in MBL concentrations are
far smaller [2] and fluctuate as an acute-phase response [3]
and from hormonal influence [4, 5].

MBL levels are increased in patients with type 1 diabetes,
and high levels of MBL have been associated with increased
mortality [6] and development of nephropathy [7–9]. Studies
in mice have shown that the absence of MBL minimizes the
inflammatory injury induced by ischemia [10–12]. Further-
more, deficiency of MBL protects mice against diabetic
nephropathy [13]. On the other hand, low MBL levels have
been associated with enhanced risk of myocardial infarction
[14] and more pronounced plaque formation [15]. Also,
MBL seems to have a beneficial role in the clearance of ath-
erogenic lipoproteins by monocytes and macrophages [16].

MBL levels are increased in type 1 diabetic patients
without any association between the genotype and type 1
diabetes [7, 17, 18], but whether this is reversible by improv-
ing glycaemic control remains unknown. Animal studies
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demonstrate a clear association between the increase in blood
glucose and an increase in MBL levels following the induc-
tion of diabetes [19]. Also, altered MBL concentration was
observed following pancreas transplantation in patients with
type 1 diabetes [20]. We therefore aimed to investigate the
possible association between intensified glycaemic regulation
and MBL levels in patients with type 1 diabetes.

2. Materials and Methods

We included 52 consecutive patients with type 1 diabetes
from our outpatient clinic. The patients were selected for
switch from conventional insulin therapy to insulin pump
therapy due to poor metabolic control.

Insulin therapy was based on insulin aspart (Novo
Nordisk A/S, Bagsværd, Denmark) and administered subcu-
taneously by a pump system (Minimed 512; Medtronic,
Northridge, CA, USA).

Blood samples were collected at baseline and after 6
weeks of treatment with a pump. Serum was isolated from
venous blood drawn from the cubital vein and immediately
frozen to −80°C until time of analysis.

The study was conducted in accordance with the Helsinki
II Declaration and approved by the local Ethics Committee.

2.1. Assays. SerumMBL concentrations were measured using
an in-house time-resolved immunofluorometric assay with a
lower detection level of 10μg/L [7]. In brief, microtiter wells
were coated with mannan followed by incubation with
samples diluted 200-fold. After washing, a monoclonal anti-
MBL antibody (131-1; Immunolex, Copenhagen, Denmark)
labelled with europium using reagents from Wallac Oy
(Turku, Finland) was added. After incubation and washing,
the amount of the bound europium-labelled antibody was
assessed by time-resolved fluorometry (Delphia; Wallac,
Turku, Finland). We used two established tests (HbA1c and
fructosamine) to monitor the effect of treatment. HbA1c is
used to a great extent in our outpatient clinic to monitor
glycaemic control; however, fructosamine is only used in spe-
cial cases as in conditions with changed erythrocyte lifespan
(e.g., haemolysis or splenectomy).

Fructosamine concentration was estimated by a commer-
cially available kit (ABX Pentra Fructosamine, Montpellier,
France) based on the tetrazolium method. HbA1c was
measured at the Clinical Biochemistry Department using
gold standard methods.

2.2. Statistical Methods. MBL levels were nonnormally
distributed, and values were given as medians with interquar-
tile ranges (IQR). All other values were given as means± SD.
To analyse changes in MBL from baseline to follow-up, we
used theWilcoxon signed-rank test, whereas paired Student’s
t-test was used for normally distributed variables. Spearman
correlation with two-tailed probability values was used to
estimate the strength of association between the observed
changes. Statistical significance was assumed at P < 0 05. All
statistical calculations were performed with IBM SPSS for
Windows (version 20; IBM, Armonk, NY, USA).

3. Results

Themeanageof theparticipantwas40± 11years,with average
diabetes duration of 21± 2 years. After initiation of insulin
pump therapy, the patients’ total daily insulin dose was
significantly reduced (from 51± 18 IE/day to 39± 13 IE/day,
P < 0 0001) (Figure 1(a)). Despite this, there was a significant
decrease in both HbA1c from 8.6% to 7.7% (from
70mmol/mol to 61mmol/mol, P < 0 0001) (Figure 1(b))
and fructosamine levels (from 356μmol/L to 311μmol/L,
P < 0 0001) (Figure 1(c)). The relative reductions in HbA1c
and fructosamine levels were highly correlated (ρ = 0 45,
P < 0 001) but were not correlated with changes in insulin
dose (ρ = 0 21, P = 0 13 and ρ = 0 17, P = 0 22, resp.).

There was a 10% decrease in MBL concentration from
2165μg/L (IQR 919–3389μg/L) at baseline to 1928μg/L
(IQR 811–2758μg/L) at follow-up (P = 0 005) (Figure 2).
In exploratory analysis, patients were divided into two
groups according to the median MBL concentration at base-
line (2165μg/L) as this would indicate either high-expressing
MBLgenotypes or low-expressingMBL genotypes. In patients
with MBL above the median, MBL concentration changed
from 3379μg/L (IQR 2535–4061μg/L) to 2711μg/L (IQR
2199–3910μg/L) (P = 0 07) whereas in patients with MBL
below the median, MBL concentration changed from
955μg/L (IQR 399–1429) to 877.5 (252–1149) (P = 0 01).

The change in MBL was not significantly correlated
with the changes in insulin dose (ρ = 0 08, P = 0 58),
HbA1c (ρ = −0 15, P = 0 29), or fructosamine (ρ = 0 09,
P = 0 53). Even when the analyses were performed in the sub-
group of patients with MBL levels above the median, which
would be expected to be carriers of the high-coding MBL
genotypes, there were no correlations between changes in
MBL and changes in insulin, HbA1c, or fructosamine (data
is not shown).

4. Discussion

Our main goal was to examine the impact of improved
glycaemic regulation on MBL levels in patients with type 1
diabetes. We found a significant decline in HbA1c and fructo-
samine levels in the patients following the change from con-
ventional insulin therapy to insulin pump therapy. In parallel
with this, we observed a significant reduction in MBL levels.
This was seen despite a significant decrease in total insulin
dose used.

It is well established that MBL levels are increased in
patients with diabetes compared with healthy control subjects
[7, 9, 17, 21]. Animal studies have demonstrated that the rise
in MBL is secondary to the induction of diabetes in a strepto-
zotocin model of type 1 diabetes [19]. We originally hypoth-
esized that insulin could have an inhibitory effect on MBL
production in the liver. The higher levels of MBL in patients
treated with subcutaneous insulin could thus be due to lower
concentrations of insulin in the portal system compared to
the portal insulin levels seen in subjects with normal pancre-
atic insulin secretion [17]. We were, however, not able to
demonstrate the inhibitory effect of insulin on MBL produc-
tion from human hepatocytes in in vitro studies [22].
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It is a common clinical observation that it is possible to
obtain significantly lower HbA1c levels with smaller total
insulin dose when using insulin pump therapy compared to
conventional basal-bolus therapy. In the present study,
MBL levels declined despite the use of less insulin, and with-
out any correlation with changes in HbA1c and fructosamine.
This seems to indicate that MBL levels are not affected by gly-
caemic control per se, but rather by other aspects of the type 1
diabetes pathogenesis. Our small sample size may however
introduce risk of statistical type 2 errors in our analysis.

Another interesting way of investigating the effect of gly-
caemic control on circulating levels of MBL is through
pancreas-kidney transplantation [20]. The authors observed
elevated plasma MBL levels in patients with diabetic

nephropathy, which were normalized after pancreas-kidney
transplantation. Kidney transplantation in solitude did not
have a corresponding effect on MBL levels, indicating that
glycaemic control is the driving factor.

In a cross-sectional study, Bouwman et al. [21] found that
MBL serum levels as well as MBL complex activity were ele-
vated at diagnosis of type 1 diabetes in juvenile subjects with
high MBL-producing genotypes compared to their healthy
siblings. For all genotypes, they found MBL complex activity,
but not MBL serum levels, to correlate with fructosamine
concentrations. The authors hypothesize that the elevated
MBL serum level was the result of the immunopathogenesis
of type 1 diabetes, whereas the elevatedMBL complex activity
may be affected by glycaemic control.

We found no correlation between MBL and fructosa-
mine, HbA1c, or total insulin dose. A previous study has
shown a significant correlation between HbA1c and MBL in
patients with type 1 diabetes, especially among patients with
high MBL genotypes [7]. MBL genotypes were not available
in the present study. We therefore divided patients according
to MBL concentration either above or below the MBL
median as an indicator of high-expression and low-
expression MBL genotypes [17]. However, we still found no
correlation between HbA1c and MBL even in the “high
MBL concentration” group.

The regulation of MBL production is probably multifac-
torial, and the immunopathogenesis of diabetes may to some
extent take part. Animal studies indicate that both increased
production and prolonged half-life of MBL in diabetes may
explain the kinetics of the increase in MBL seen in diabetic
animals [19]. Despite the absence of a correlation between
MBL and HbA1c in our study, it is intriguing to consider
hyperglycaemia-induced low-grade inflammation a con-
founding factor in enhanced MBL production, especially in
view of the significant parallel fall in MBL and HbA1c [20].
Furthermore, the relatively short time to follow up of 6 weeks
may have disguised a potential correlation. However,
using fructosamine to estimate the average level of blood
glucose control over a period of 2-3 weeks, we hoped to
find a correlation.

0

1000

2000

3000

4000

5000

6000

7000

8000

Baseline Follow-up

M
BL

 (�휇
g/

L)
 

P = 0.005

Figure 2: Distribution of serum MBL at baseline and after 6 weeks
in 52 type 1 diabetic patients changed from conventional insulin
therapy to insulin pump therapy. Horizontal bars represent
medians, and boxes indicate IQRs. P value refers to the change
from baseline to follow-up by the Wilcoxon signed-rank test.
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Figure 1: Daily insulin dose (a), HbA1c (b), and plasma levels of fructosamine (c) at baseline and after 6 weeks in 52 type 1 diabetic patients
changed from conventional insulin therapy to insulin pump therapy. P values refer to the change from baseline to follow-up by Student’s t-test.
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A significant decrease in MBL following intensive insulin
treatment has previously been described in an intervention
study of 451 critically ill patients [3], and in this study, the
intensive insulin treatment was also associated with a signif-
icant reduction in inflammation as indicated by reduced
high-sensitivity C-reactive protein (hs-CRP) levels [3].

In conclusion, MBL levels are significantly reduced
following the initiation of insulin pump therapy in type 1
diabetic patients, despite a significant reduction in total insu-
lin dose, but the change was not correlated with indicators of
improved glycaemic control.
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