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Background. Characterizing maternal glucose sampling over the course of the entire pregnancy is an important step toward
improvement in prediction of adverse birth outcome, such as preterm birth, for women with type 1 diabetes mellitus (T1DM).
Objectives. To characterize the relationship between the gestational glycemic profile and risk of preterm birth using a joint
modeling approach. Methods. A joint model was developed to simultaneously characterize the relationship between a
longitudinal outcome (daily blood glucose sampling) and an event process (preterm birth). A linear mixed effects model using
natural cubic splines was fitted to predict the longitudinal submodel. Covariates included mother’s age at last menstrual period,
age at diabetes onset, body mass index, hypertension, retinopathy, and nephropathy. Various association structures (value, value
plus slope, and area under the curve) were examined before selecting the final joint model. We compared the joint modeling
approach to the time-dependent Cox model (TDCM). Results. A total of 16,480 glucose readings over gestation (range: 50-260
days) with 32 women (28%) having preterm birth was included in the study. Mother’s age at last menstrual period and age at
diabetes onset were statistically significant (beta = 1.29, 95% CI 1.10, 1.72; beta = 0.84, 95% CI 0.62, 0.98) for the longitudinal
submodel, reflecting that older women tended to have higher mean blood glucose and those with later diabetes onset tended to
have a lower mean blood glucose level. The presence of nephropathy was statistically significant in the event submodel
(beta = 2.29, 95% CI 1.05, 4.48). Cumulative association parameterization provided the best joint model fit. The joint model
provided better fit compared to the time-dependent Cox model (DIC ðJMÞ = 19,895; DIC ðTDCMÞ = 19,932). Conclusion. The
joint model approach was able to simultaneously characterize the glycemic profile and assess the risk of preterm birth and
provided additional insights and a better model fit compared to the time-dependent Cox model.

1. Background

Self-monitoring of blood glucose plays a significant role in
reduction of perinatal mortality and morbidity in pregnant
women with type 1 diabetes mellitus (T1DM) [1, 2]. Tracking
blood glucose over the entire pregnancy has provided insight
into the effects of poor maternal glucose control on various
neonatal outcomes, including preterm birth [3]. Recent stud-
ies have shown that the rate of both spontaneous and indi-
cated preterm birth is increased in women with T1DM [4].

The rate of preterm birth ranged from 22% to 45% in women
with T1DM, which is greater by four- to eightfold over the
frequency of preterm delivery in pregnancies which are not
complicated by diabetes [5]. Preterm babies have been shown
to have a higher risk of morbidity, mortality, and poor neuro-
logical outcome later in life [6]. In addition to the overall
increased rate, poor glycemic control was associated with
both spontaneous and indicated preterm birth, for mothers
with T1DM [7]. Hence, characterizing the glucose profile
together with estimating the rate of maternal glucose
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sampling over the course of the entire pregnancy is an impor-
tant step along the path to predict the risk of preterm birth
outcome and inform T1DM care management practices.

Regulation of glucose is a dynamic process that varies
in response to meals, insulin dosage as well as gestational
period [8]. In recent years, advancement in technology has
improved diabetes self-management practices allowing mon-
itoring of blood glucose on both a programmed and contin-
uous basis. The maternal glucose profile may be considered
measurements of an almost continuous-time monitoring
process whose outputs are samples of functions or curves.
Each curve accounts for blood glucose oscillations that occur
throughout the day and perhaps at the same time on different
days throughout pregnancy. The longitudinal measurements
of the blood glucose level are subject to measurement error as
most other self-reported and machine-recorded data, but
measurements may be viewed as a noisy version of the true
glucose profile.

A common aim in follow-up studies is to characterize the
relationship between longitudinal measurements and the
event outcomes to gain a better understanding of the risk of
an event such as preterm delivery. The time-dependent Cox
model [9] is prevalent in the literature for modeling this kind
of association. However, the time-dependent Cox model
assumes that the covariates are external and are independent
of the event mechanism [10, 11]. Moreover, another strong
assumption in the time-dependent Cox model is that the
time-dependent covariates are measured without error.

In recent years, a joint model has been shown to be an
efficient approach to simultaneously model longitudinal data
and an observed outcome, often yielding more accurate,
informative prediction than traditional models [12, 13].
The joint model approach constructs two submodels, longi-
tudinal and event time, and links the two models by
subject-specific random effect terms. The early development
of joint models for longitudinal and survival data was pri-
marily motivated from HIV/AIDS clinical trials to model
longitudinal CD4 counts and survival data. Classical models
such as the linear mixed effects model for longitudinal data
and the Cox model for time-to-event data do not consider
dependencies between these two different data types (longi-
tudinal and time-to-event data). By simultaneously modeling
these two data types into a single model, joint models can
infer the dependence and association between the longitudi-
nal and time-to-event outcomes, in order to better assess the
effect of a treatment, to quantify uncertainty, and to provide
accurate predictions of outcomes. Excellent expositions of
joint models have been provided by Wulfsohn and Tsiatis
[14], Tsiatis and Davidian [15], De Gruttola and Tu [16],
Wang and Taylor [17], Henderson et al. [18], and Brown
and Ibrahim [19]. More recent work on joint models includes
Rizopoulos et al. [20], Wu et al. [21], Ye et al. [22], Huang
et al. [23], and Wu et al. [24].

In addition to being able to characterize the association
between longitudinal and time-to-event outcomes using the
joint model, dynamic prediction has also gained increasing
momentum in clinical research. Because dynamic predic-
tions are individualized and have the ability to appropriately
account for possible nonlinearity in each individual longitu-

dinal trajectory, better prospective treatment decisions may
become available. In contrast to the linear mixed model, the
joint model could provide individualized risk prediction
based on the availability of longitudinal information up to
that point with the assumption that the individual is event-
free until that time.

In the current study, we utilize the aforementioned
advantages of the joint model in the shared-parameter
framework to characterize the relationship between maternal
glucose profile in the longitudinal submodel and preterm
birth outcome in the event submodel. Our overall objective
is to improve the prediction using the joint model approach
while characterizing the relationship between maternal gly-
cemic profiles and preterm birth among women with
T1DM. We hypothesize that the joint model would provide
better model fit compared to the conventional approach,
the time-dependent Cox model. The final joint model will
be chosen based on the model fit statistics for different asso-
ciation structures between the maternal glycemic profiles and
the risk of preterm birth. Additionally, following Rizopoulos-
proposed Monte Carlo approach [25], we will estimate the
risk of preterm birth and illustrated how it can be dynami-
cally updated, given that the subject-specific glycemic profiles
were available up to the time of prediction.

2. Methods

2.1. Study Design and Participant Characteristics. The study
methods and cohort characteristics have been described in
detail elsewhere [26]. Briefly, women with confirmed diagno-
sis of T1DM who were either pregnant or planning a preg-
nancy were recruited and enrolled in our Diabetes in
Pregnancy study. The women were prospectively followed
over gestation as part of a 17-year interdisciplinary program
of diabetes in pregnancy between 1978 and 1995 conducted
at the University of Cincinnati Medical Center. The study
subjects were managed with intensive insulin therapy,
involving a split mixed-dose regimen of three to four injec-
tions per day using short- and intermediate-acting insulin
combined with dietary regulation. After 1981, women were
instructed to check blood glucose concentrations 6–8 times
a day: fasting, preprandial (before each meal), 90min post-
prandial (after each meal), at bedtime, and occasionally at
3 : 00AM. The current analysis included women who used a
reflectance meter through pregnancy and delivered a single-
ton live fetus beyond 20 weeks of gestation. The glucose mea-
surements recorded between gestational days 50 and 260
were included in the study. Data from profiles corresponding
to ne onatal death within 28 days of delivery or presence of a
major congenital malformation were excluded from this
analysis. Birthweight was measured within the first hour of
delivery using an electronic scale (Toledo Scale, Worthing-
ton, Ohio). Preterm delivery was defined as delivery prior
to 37-week gestation as a result of either spontaneous pre-
term labor, or preterm premature rupture of membranes,
or any other cause classified by a study perinatologist as indi-
cated preterm delivery. Glycosylated hemoglobin A1 concen-
tration was measured every 4 weeks throughout pregnancy
and prior to delivery using Isolab column chromatography.
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Mother’s age at last menstrual period, age at diabetes onset,
body mass index, white classification (widely used to assess
maternal and fetal risk complicated by diabetes), chronic
hypertension, retinopathy, and nephropathy were included
as predictors in the initial longitudinal (glucose trajectory)
and event (preterm birth) models. Bivariate analysis indi-
cated that mother’s age, age at diabetes onset, and the pres-
ence of nephropathy were statistically significant in both
longitudinal and event models and will be included in the
joint model and time-dependent Cox modeling phase. Glu-
cose recordings were available for all patients on the day
the event (birth) occurred.

2.2. Statistical Methods. Each joint model consists of two
linked submodels, a mixed effects model to fit longitudinal
blood glucose monitoring and a survival model to fit preterm
birth data. The longitudinal outcome, glucose recordings
(log-transformed scale) from the ith woman and jth preg-
nancy observed at gestation time tij (i = 1⋯ :n, j = 1⋯ nij)
can be expressed as

Glucose recordingij = XT
ij θð Þ + f tij

� �
+ ZT

ijbi + εij, ð1Þ

where parametric effects are represented for traditional
covariates Xij and p × 1 parameter vector θ; f ð:Þ is a nonpara-
metric smooth function evaluated at time tij; Zij, and bi cor-
responding to the design matrix and subject-specific qi × 1
parameter vectors for random effects; εij represents the mea-
surement error corresponding to the observation at time tij.
The mean response function f ðtijÞ in equation (1) below
can be estimated using the natural cubic spline which can
be expressed as: f ðtijÞ =∑22

r=0BrλrðtijÞ where Br are the
parameter coefficients of the expansion with basis functions
λrðtijÞ. In order to capture the nonlinear subject specific fluc-
tuations in glucose recordings, we included the natural cubic
spline that expands the time effects into a B-spline basis
matrix. Based on the Bayesian information criteria [27], we
selected a total of 22 knots, which was necessary to estimate
the individual dynamic prediction for risk of preterm birth
(discussed in the next section). Including the fixed-effect
covariates, maternal age at last menstrual period, age at dia-
betes onset, and spline functions, the above equation can be
written as

Glucose recordingij
=mi tð Þ + εi tð Þ = β0 + bi0ð Þ

+ β1 + bi1ð ÞBr gestational dayð Þij + λ1
� �

+ β2 + bi2ð ÞBr gestational dayð Þij + λ2
� �

+⋯⋯ + β22 + bi22ð ÞBr gestational dayð Þij + λ22
� �

+ β23 ageð Þi + β24 age at diabetes onsetð Þi + εij:

ð2Þ

In equation (1), Br represent the fixed effects part of the
spline coefficient, r = 0, 1,⋯22. We assumed that the ran-

dom spline coefficients are mutually independent and distrib-
uted as bik ~N23ð0, σikÞ, k = 0, 1,⋯22, and measurement
error εij ~Nð0, σ2εÞ.

We linked the event model, probability of preterm
birth to the glucose measurements through the random
effects. Let hi denote the event endpoint, which is the
binary indicator of preterm birth. The probability of pre-
term birth is linked to the longitudinal process of glucose
measurements as

hi t½ � = ltl−1 exp ΩT
i ϕð Þ + αmi tð Þ

� �
, ð3Þ

where ΩT
i denotes the vector of fixed effects covariates,

such as the presence of nephropathy at baseline; miðtÞ is
the true values of the underlying glucose monitoring pro-
cesses, with α being the parameter characterizing the asso-
ciation between longitudinal glucose recording process and
the PB outcome. Because of model complexity we specified
the Weibull distributional form for the baseline hazard
function. Equation (3) monotonically increases with time
if l > 1, decreases if l < 1, and the exponential hazard
remains constant if l = 1.

In equation (3), the risk of preterm birth depends on the
current value of the blood glucose level. However, since for
each patient the blood glucose follows a trajectory in time,
it is also reasonable to consider a joint model in which the
risk depends on both the current true value of the blood glu-
cose trajectory and the slope of the true blood glucose trajec-
tory at that time. The event model then becomes

hi t½ � = ltl−1 exp ΩT
i ϕð Þ + α1mi tð Þ + α2mi t ′

� �n o
, ð4Þ

where miðt ′Þ = ðd/dtÞðmiðtÞÞ. Additionally, we fitted the
association structure to allow the whole history of the blood
glucose trajectory to be associated with the risk of the pre-
term birth. Then, the event model takes the form

hi t½ � = ltl−1 exp ΩT
i ϕð Þ + α

ðt

0
mi sð Þds

� 	
: ð5Þ

For any particular time point, α in (4) measures the
strength of association between the risk of PB at time t
and the area under the longitudinal trajectory of the blood
glucose level up to the same t. We tested all three associ-
ation structures (value, slope, and area under the curve)
and selected the best model based on the deviance infor-
mation criteria (DIC) [28]. The deviance information cri-
teria measure balances, the fit of a model to the data
with its complexity. A smaller value of DIC indicates the
preferred model.

We compared the joint model with the time-dependent
Cox model where we fitted the preterm birth event model
with a Cox model that included glucose measurements as a
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regular time dependent covariate (ignoring measurement
error), i.e.,

hi t½ � = ltl−1 exp
n
γ1 glucoseð Þij + γ2 gestational dayð Þij

+ γ3 glucoseð Þij ∗ gestational dayð Þij + γ4 ageð Þi
+ γ5 age at diabetes onsetð Þi
+ γ6 presence of nephropathyð Þig:

ð6Þ

Model comparison between the time-dependent Cox
model and the joint model was conducted by DIC. All data
analyses were conducted using SAS v9.4.4 (Cary, NC) and
JMbayes package in RStudio (2015), where the time-
dependent Cox model was estimated using a frequentist pro-
cedure, and the joint models were implemented using the
approach available in JMbayes. We used readily available
software to estimate the model parameters. The default prior
distribution was used for JMbayes to estimate all joint model
parameters. We preferred to use JMbayes instead of the JM
software package, since the former is actively maintained
and provides straightforward implementation of dynamic
prediction [12]. Estimates from each model are reported with
95% confidence or credible intervals (denoted as 95% CI),
depending upon whether the model was implemented with
the frequentist or Bayesian approach.

2.3. Individual Dynamic Prediction. In this paper, we used
Rizopoulos-proposed approach [25] to dynamically update
the risk of preterm birth based on the updated glucose trajec-
tory for an individual subject. A key feature of these dynamic
prediction frameworks is that the predictive measures for the
risk of preterm birth can be dynamically updated as addi-
tional longitudinal measurements of the blood glucose level
become available for the target subjects, providing instanta-
neous risk assessment.

3. Results

Descriptive statistics are presented in Table 1. A total of 114
women with T1DM with 16,480 glucose readings were
included in this analysis. The median (IQR) number of glu-
cose recordings was 157 (6-211); 32 (28%) of the women
had preterm delivery. Median age of entry was 27 (22–31)
years; median age of diabetes onset was 12 (8–17) years;
median baseline BMI of the cohort was 23 (21–25) kg/m2.
A total of 32 (28%) were diagnosed with preeclampsia, 14
(12%) with chronic hypertension, 40 (35%) with white classi-
fication (B/C vs ≥D), 22(19%) with nephropathy, and 16
(14%) with retinopathy.

In order to allow for flexibility in the nonlinear blood
glucose profiles, we included a natural cubic splines in both
the fixed and random effects part of the mixed effects model.
A range of knots was used to fit the longitudinal glucose
profiles. Based on Bayesian information criteria, a total of
22 knots was selected to fit individual profiles. Figure 1 corre-
sponds to the overall model fit for the glycemic profiles and
95% CI for the period of 50-260 gestational days. Mother’s
age at last menstrual period (βage = 1:29, 95% CI 1.10, 1.72)

and age at diabetes onset (βageatdiabetesonset = 0:84, 95% CI
0.62, 0.98) were statistically significant for the longitudinal
submodel, reflecting that older women tended to have a
higher mean blood glucose level and those with later dia-
betes onset tended to have a lower mean blood glucose
level (Table 2). The presence of nephropathy was statisti-
cally significant for the event submodel, reflecting that
the probability of preterm birth significantly increases with
the presence of nephropathy among women with T1DM
(RRneph = 2:29, 95% CI 1.05, 4.48). Based on deviance
infor-mation criteria, the joint model provided better
model fit in comparison to the time-dependent Cox model
(DICJM = 19895 ; DICTDCM = 19932). Unlike the joint model,
mother’s age and age at diabetes onset were not significant in
the time-dependent Cox model. The presence of nephropathy
was statistically significant in the time-dependent Cox model
(RRneph = 2:21, 95% CI 1.01, 3.32).

Based on deviance information criteria, the association
link with cumulative glucose monitoring provided the best
fit (DICαValue

= 19, 990 ; DICαValue plus slope
= 19, 905 ; DICαAUC

=
19, 895) compared to the value or rate of the glucose level
at time t (Table 3). The cumulative association (area under
the curve) indicated that the cumulative effects of the glucose
monitoring outcome up to time point t had the strongest
association (αAUC = −0:01, p < 0:01) between the risk of
preterm birth and maternal glycemic profile.

The assumption for dynamic prediction is that the
woman was event-free (i.e., did not give birth) up to the time
point of the last glucose reading available. Using the Markov
chain Monte Carlo algorithm, the estimates of the risk of
preterm birth were computed for a new subject knowing
her glucose readings up to a given gestation day. Figure 2
depicts the change in the risk of preterm birth of a woman
with an increasing number of glucose readings over time.
For glucose readings up to 107 gestational days, the woman
had roughly a 25% risk of having premature delivery. The
risk decreases by 5% with her available glucose readings out
to 212 gestational days in pregnancy.

Table 1: Patient characteristics (n = 114; 16,480 glucose readings
over gestation 50-260 days).

Median (IQR) f (%)

Mother’s age at LMP 27 (22-31)

Age at diabetes onset 12 (8-17)

Baseline BMI 23 (21-25)

Number of glucose recordings 157 (6-211)

PB 32 (28)

Preeclampsia 32 (28)

White classification

B, C 40 (35)

≥D 74 (65)

Presence of nephropathy 22 (19)

Presence of hypertension 14 (12)

Presence of retinopathy 16 (14)

IQR: Interquartile range; f: Frequency; BMI: body mass index (kg/m2).
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4. Discussion

In this study, we demonstrated that the characterizing and
estimating rate of maternal glucose sampling profile over
the course of the entire pregnancy is an important task to
predict preterm birth outcome. Recent studies have shown

that the rate of both spontaneous and indicated preterm birth
is increased in women with T1DM [29, 30]. Preterm babies
go on to have a higher risk of increased morbidity, mortality,
and poor neurological outcome [31]. In mothers with T1DM,
poor glycemic control was associated with both spontaneous
and indicated preterm birth [32]. As we have shown in our
previously published work [8], nonlinear curvature of blood
glucose monitoring data makes it analytically challenging.
In recent years, the joint model has been shown to be an effi-
cient approach to simultaneously model longitudinal data
and an observed outcome, often yielding more accurate,
informative prediction than traditional models [12]. In this
paper, we describe a joint model approach aimed at analyzing
long sequences of longitudinal and time-to-event data and
used it to simultaneously characterize the glycemic profile
for women with T1DM and assess risk of preterm birth.
On the population level, we identified demographic
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Figure 1: Fitted glucose model (on log scale) with natural spline over 50-260 gestational days.

Table 2: Parameter estimates and model fit statistics from the joint model and the time-dependent Cox model.

Time-dependent Cox model
Joint model

LSM ESM
EST (CI) OR (CI) M-Val EST (CI) OR (CI) M-Val

Mother’s age at LMP 1.02 (0.95, 1.10) 1.29 (1.10, 1.72)∗

Age at diabetes onset 0.97 (0.92, 1.03) 0.84 (0.62, 0.98)∗

Presence of nephropathy 2.21 (1.01, 3.32)∗ 2.29 (1.05, 4.48)∗

Association -0.01∗

DIC 19,932 19,895

-2Log-likelihood 18,464 19,434

∗p < 0:05; CI refers to confidence and credible interval for the time-dependent Cox model and the joint model, respectively (see Methods); LSM: longitudinal
submodel; ESM: event submodel; EST: estimate; OR: odds ratio, M-Val: model value.

Table 3: Value, value plus slope, and area under the curve
association links and model fit statistics for the joint models.

Association link DIC pD

Value 19990 2182

Value and slope 19905 2143

Area under the curve 19895 2130

DIC: deviance information criteria; pD: effective number of parameters.
Lower values indicate better model fit.
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characteristics associated with longitudinal and event out-
comes. When comparing the joint model approach to the
commonly used time-dependent Cox model, we found that
the former was a better fit based on the model fit statistics
and characterized association between the risk of preterm
birth and glucose measurements over the entire pregnancy
period to provide additional insights compared to the time-
dependent Cox model. While maternal age at last menstrual
period and age at diabetes onset were not significant in the
time-dependent Cox model, it was significant in the joint
model providing additional information regarding the
relationship between maternal glycemic profile over the
course of entire pregnancy and mother’s age at last menstrual
period and age at diabetes onset. We found that older women
tended to have higher mean blood glucose, and those with
later diabetes onset tended to have lower mean blood glucose.
The presence of nephropathy was statistically significant in
both the joint model and the time-dependent Cox model.

We tested various association structures to share the
parameters between the longitudinal and event submodel
within the joint modeling framework. Based on deviance
information criteria, the association structure based on area
under the curve of the glycemic profile provided the best fit
for the model in comparison to the value and value and rate
association structures. An alternative criterion for Bayesian
joint models is the logarithm of the pseudo likelihood
(LPML) [33], which may be computed separately for the
submodels using a Monte Carlo approach; however, readily
available software does not include either version of the
LPML. BIC may be used to rank joint models but, as the
authors of the LPML approach describe, it may not be
considered in submodel-specific assessments without proper

decomposition. The cumulative association structure, as
defined by the area under the curve, is clinically more appeal-
ing as it includes the cumulative effects of the glucose
monitoring outcome up to a certain time point to determine
the risk of preterm birth of a subject. Further, our approach,
which includes a linear mixed effects submodel, accounts for
missing glucose data. This is not possible in summary calcu-
lations, which are prone to measurement error [34].

A novel use of joint models, leveraged in this study, is to
obtain dynamic personalized prediction of future longitudi-
nal outcome trajectories and risks of an event at any time,
given the subject-specific outcome profiles up to the time of
prediction. Rizopoulos proposed a Monte Carlo approach
[25] to estimate risk of a target event and illustrated how it
can be dynamically updated. We followed this approach to
show how dynamic prediction for the risk of preterm birth
can be obtained as a function of maternal glycemic profile
over the course of an entire pregnancy for a woman in this
T1DM cohort. Based on the fitted joint model, we derived
the prediction for a new subject from the same population
that provided a set of longitudinal glucose measurements
up to a specified time. As an example, we considered one
maternal glycemic profile and, based on a Monte Carlo
procedure, showed the mean and median estimates over the
Monte Carlo samples along with the 95% pointwise credible
intervals. We calculated the conditional full-term birth (i.e.,
event-free) probabilities for an individual patient, starting
from her first glucose measurements and adding glucose at
each time point as an extra measurement.

There are some limitations to the current study. We
conducted variable selection based on a one-at-a time model
selection process. Although this approach is suitable for
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Figure 2: Individual dynamic prediction of risk for preterm birth with updating blood glucose readings (on log scale).

6 Journal of Diabetes Research



prediction modeling, it cannot be used to infer causality;
therefore, association estimates from this study must be
viewed cautiously [35]. With respect to missing data in
maternal glycemic profiles, our approach assumes that data
are missing at random [36] in the sense that missingness
can be explained by observed information. By using the exist-
ing R package, JMbayes, we modeled observed birth outcome
as a survival process, with no censoring in the data. Our fur-
ther research is aimed at rectifying this problem by including
the submodel as a binary process. The joint model [12, 13, 37,
38] approach proposed in this study may be used to model
continuous glucose monitoring data, thus incorporating the
cutting-edge technology in diabetes care. Moreover, future
work should aim to separately model the irregular glucose
sampling pattern associated with the blood glucose level for
women with T1DM to predict the risk of preterm birth.
Another interesting future work area will be to look into
the effects of glycohemoglobin along with glucose measure-
ments to predict the risk of preterm birth using the joint
modeling technique.

5. Conclusions

We have developed a joint model approach that, once applied
to motivating data, provided more realistic estimates of the
maternal glycemic profile over the entire pregnancy and
enabled individualized assessment of preterm birth risk in
women with T1DM. Through a Bayesian Markov chain
Monte Carlo algorithm implemented in open-source soft-
ware, this model could be used to aid clinicians in estimating
the risk of preterm delivery sooner than later based on the
glucose trajectory and other baseline covariates, potentially
allowing for intervention strategies to be applied. We demon-
strated that overall model fit improved with our joint model,
compared to the conventional time-dependent Cox model.
Some important covariates, mother’s age at LMP and age of
diabetes onset, were significant in the joint model unlike
using the conventional approach, the time-dependent Cox
model. Accurately characterizing the association between
blood glucose level and preterm birth may serve as a prog-
nostic aid for clinical decision making allowing for research
focused on personalized, preemptive treatment and monitor-
ing of pregnancies impacted by T1DM.
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