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Background. Research investigating the effect of air pollution on diabetes incidence is mostly conducted in Europe and the United
States and often produces conflicting results. The link between meteorological factors and diabetes incidence remains to be
explored. We aimed to explore associations between air pollution and diabetes incidence and to estimate the nonlinear and lag
effects of meteorological factors on diabetes incidence. Methods. Our study included 19,000 people aged ≥60 years from the
Binhai New District without diabetes at baseline. The generalized additive model (GAM) and the distributed lag nonlinear
model (DLNM) were used to explore the effect of air pollutants and meteorological factors on the incidence of diabetes. In the
model combining the GAM and DLNM, the impact of each factor (delayed by 30 days) was first observed separately to select
statistically significant factors, which were then incorporated into the final multivariate model. The association between air
pollution and the incidence of diabetes was assessed in subgroups based on age, sex, and body mass index (BMI). Results. We
found that cumulative RRs for diabetes incidence were 1.026 (1.011-1.040), 1.019 (1.012-1.026), and 1.051 (1.019-1.083) per
10 μg/m3 increase in PM2.5, PM10, and NO2, respectively, as well as 1.156 (1.058-1.264) per 1mg/m3 increase in CO in a
single-pollutant model. Increased temperature, excessive humidity or dryness, and shortened sunshine duration were positively
correlated with the incidence of diabetes in single-factor models. After adjusting for temperature, humidity, and sunshine, the
risk of diabetes increased by 9.2% (95% confidence interval (CI):2.1%-16.8%) per 10 μg/m3 increase in PM2.5. We also found
that women, the elderly (≥75 years), and obese subjects were more susceptible to the effect of PM2.5. Conclusion. Our data
suggest that PM2.5 is positively correlated with the incidence of diabetes in the elderly, and the relationship between various
meteorological factors and diabetes in the elderly is nonlinear.

1. Introduction

Diabetes is one of the top ten reasons for increases in Years
Lived with Disability (YLD) and exacerbates the global bur-
den of disease [1]. More than 80% of diabetes deaths occur
in low- and middle-income countries, and China has the
highest diabetes prevalence [2, 3]. Therefore, it is essential
to predict diabetes incidence accurately and to control its
possible risk factors. It has been widely recognized that fam-

ily history, age, obesity, and genetic susceptibility are all risk
factors for diabetes, and recent evidence supports the
hypothesis that air pollution might be an essential risk factor
for diabetes. Since most risk factors are uncontrollable, air
pollution acting as an intervening factor may provide a turn-
ing point for the prevention of diabetes and reduce the heavy
burden caused by this condition [4–8].

Suspended particulate matter (PM) and gaseous pollut-
ants such as ozone (O3), nitrogen dioxide (NO2), carbon
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monoxide (CO), and sulfur dioxide (SO2) are major air pol-
lutants posing a threat to human health. Previous research
has shown that exposure to PM2.5 may increase the risk of
diabetes or death due to diabetes [9–11]. Possible mecha-
nisms behind this increased risk include oxidative stress, sys-
temic inflammation, immune response, insulin resistance,
disorders of the autonomic nervous system, and alterations
of mitochondrial function and gene expression in adipose
tissue [12]. Air pollution possibly acts through pathways that
affect glucose homeostasis, thereby increasing the risk of
diabetes [13–15].

In addition to air pollutants, meteorological factors are
also closely related to human health, and the effects of climate
change have a disproportionate impact on the health of vul-
nerable groups in low- and middle-income countries [16].
There are close connections between meteorological factors
and noncommunicable diseases, such as cardiovascular,
respiratory, and metabolic diseases [17–19]. A few of these
studies explored the association between meteorological fac-
tors and diabetes and found that extreme temperatures
increase diabetes mortality and hospitalization rates and
affect glucose homeostasis. Additionally, sunshine can reduce
the incidence of diabetes [20–23]. However, studies on other
meteorological factors, such as humidity, wind speed, and
precipitation, are rare.

Although evidence of air pollution, especially PM, is
increasing, diabetes-related results to guide the establishment
of air quality standards remain controversial. Furthermore,
most studies are conducted in developed countries, and there
is a lack of evidence from developing countries in Asia. How-
ever, the estimated prevalence of diabetes among adults in
China was 10.9% in 2013 [24]. The prevalence was higher
in rural Tianjin than in the overall Chinese rural and urban
population, according to the Fourth National Nutritional
Survey [25]. China is a developing country with the largest
population in the world. With rapid urbanization and indus-
trialization, the burning of large amounts of fuel and the
emission of vehicle exhausts have resulted in decreased air
quality [26]. The most polluted cities are mainly located in
North China Plain, which includes Tianjin [27]. With the
implementation of the Air Pollution Prevention Action Plan,
which was the most stringent air pollution plan to date in
China, the concentrations of SO2, NO2, PM10, and PM2.5
decreased in Tianjin from 2012 to 2017, but still exceeded
the national standard air quality index (AQI) level II and
far exceeded the WHO guidelines. Air pollution caused sig-
nificant public health problems, affecting over 100 million
people in the Beijing-Tianjin-Hebei (BTH) region [28].
Given the heavy burden of diabetes and the inevitable expo-
sure to air pollution, the association between air pollution
and diabetes may have clinical and public health significance,
especially in Tianjin, China. Meteorological factors are also
risk factors for diabetes, and there are interactions or syner-
gies between meteorological factors and air pollutants [29].
However, studies about the impact of meteorological factors
on diabetes incidence are limited, and results are inconsistent
due to differences in geographic locations and races studied.
Therefore, an evaluation of the relationship between meteo-
rological factors and diabetes is urgently warranted. The pur-

pose of this study was to investigate the effects of air
pollutants and meteorological factors on the incidence of
diabetes to provide theoretical support and reference for
environmental management as well as to relieve the burden
of diabetes.

2. Material and Methods

2.1. Study Population and Area. The Binhai New District
(east longitude 117.68, north latitude 39.03) is located in
the Eastern coastal area of Tianjin. It is the center of the
Bohai Economic Circle, with a total area of 2,270 square kilo-
meters and a population of 2.97 million. We included resi-
dents aged 60 years and older who regularly participated in
free medical examinations in Tianjin Binhai New District.
A total of 37 community hospitals were involved, covering
approximately 360,000 people. After screening the data, sub-
jects with diabetes at baseline, residents under the age of 60,
and residents with repeated physical examinations within
one year were excluded. This resulted in a total of 190,453
people included in this study.

2.2. Health Data. The daily incidence of diabetes in Tianjin
Binhai New District from January 1, 2014, to December 31,
2017, was obtained from the Tianjin Community Health
Service Information System (http://218.68.9.122:808/), an
official website for collecting and registering basic informa-
tion and medical examination data for residents aged ≥60
years in Tianjin. Residents from 37 community hospitals in
Tianjin Binhai New District participated for free in the
annual medical examinations. In addition to the date of diag-
nosis and incidence of diabetes, the trained doctors also col-
lected biochemical test values, including triglycerides,
cholesterol, serum urea nitrogen, serum creatinine, aspartate
aminotransferase, alanine aminotransferase, fasting blood
glucose, hemoglobin, platelets, and white blood cells. The fol-
lowing demographic characteristics and behavioral health
data were also collected by a face-to-face conversation on
the day of medical examinations: gender, age, weight, height,
body mass index (BMI), smoking status, drinking status, and
exercise frequency. Finally, the above information was elec-
tronically recorded. The diseases in this study were coded
according to The International Classification of Diseases,
Revision 10 (ICD-10). The crude rate of diabetes diagnosed
in community hospitals was 3.7 per 1,000 person-years, and
additional patients were diagnosed in higher-level hospitals.
Finally, the data were screened by ID card number, a unique
number for national legal identity, to ensure that there were
no duplications.

2.3. Diagnosis of Diabetes. We defined a new-onset diabetes
event as a patient who was without diabetes on January 1,
2014, and then diagnosed with diabetes during the study.
Diabetes was diagnosed based on the criteria of the WHO
Diabetes Committee in 1999. Diagnosis of diabetes included
the following: diagnosed as diabetes by medical personnel or
self-reported diagnosis of diabetes in hospital (ICD-10 code:
E10-E14); taking antidiabetic drugs or subcutaneous insulin
therapy within the 12months before the medical examination;
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or diagnosed by medical personnel and recommended for dia-
betes diet and physical activity programs. Although we cannot
rule out type 1 diabetes, considering that on average >90% of
adult diabetes is type 2 diabetes and our research was aimed
at elderly aged ≥60 years, it can be assumed that most cases
were type 2 diabetes [30]. All subjects whomet the above diag-
nostic criteria for diabetes at baseline (January 1, 2014) were
considered preexisting diabetes patients and were excluded
from the study.

2.4. Air Pollution Data. According to the National Environ-
mental Protection Standard of the People’s Republic of China
(http://www.mee.gov.cn/GB3095-2012), real-time air quality
is measured every hour by the four Air Quality Monitoring
(AQM) stations located in Binhai New District and data of
particulate pollutants (PM2.5 and PM10) and gaseous pollut-
ants (NO2, SO2, CO, and O3) are recorded. We downloaded
data of air pollutants from January 1, 2014, until December
31, 2017, from the website of the Tianjin Ecological Environ-
ment Monitoring Center (http://www.tjemc.org.cn/index
.html) and calculated the arithmetic mean of air pollutants
concentrations for every 24 hours, except for O3, which was
calculated as a daily 8-hour maximum O3 concentration, as
the daily average concentration of air pollutants at each mon-
itoring point. An average of these four monitoring stations’
concentrations of air pollutants was used as the daily average
concentration of air pollutants in Binhai New District. The
average concentration of air pollutants within a day was cal-
culated only when there were more than 20 valid data. Before
calculating the average concentrations, the hourly data of
each station were checked for soundness to remove the non-
conforming data by the “is.na” function.

2.5. Meteorological Data. All meteorological factors were
measured eight times per day, at local time of 02, 05, 08, 11,
14, 17, 20, and 23 hours. These measurements were used to
calculate the daily average. Meteorological data were down-
loaded from the China Meteorological Data Sharing Service
System (http://data.cma.cn/), including daily average tem-
perature (°C), relative humidity (%), wind speed (m/s), atmo-
spheric pressure (hPa), precipitation (mm), and duration of
sunshine (h). The average level (mean value) of four moni-
toring sites in Tianjin Binhai New District was used as the
exposure level for residents.

2.6. Statistical Analysis. Correlations between air pollutants
and meteorological factors were assessed by the Spearman
rank correlation test, and the collinearity between indepen-
dent variables was examined. Based on experience, the occur-
rence of diabetes in the population is a small probability
event, and the overall distribution of cases is scattered, con-
sistent with the Poisson distribution. Therefore, the Poisson’s
generalized additive model (GAM) was chosen as the model
framework in this study. In view of the existing biological and
epidemiological studies, we decided the confounding factors
that need to be adjusted (day of the week (DOW), time,
and meteorological factors) when focused on air pollution.
Because the incidence of diabetes was not only affected by
air pollution or meteorological factors of the day, but also

related to the exposure levels of the previous few days. In
order to fit the nonlinear and delayed effects, we used a dis-
tributed lag nonlinear model (DLNM) to construct a
“cross-basis” function, a bidimensional function expressed
by two basic functions, depicting the effects of predictors
and lags simultaneously. The structure of our model for air
pollution was as follows:

LogE Ytð Þ = βZt,l + DOW+ ns time, dfð Þ + ns temperature
⋯

, df
� �

+ intercept,
ð1Þ

where Yt represented the expected number of diabetes cases;
βZt,l represented the cross-basis objects used to estimate the
effects of air pollutants; Z was determined by each pollutant
(PM2.5, PM10, NO2, SO2, O3, and CO); β was the coefficient
for Zt,l, the logarithmic increase in the number of diabetes
cases caused by the increase of air pollutant by one unit; t
represented the observation day, and l represented the lag
days; ns was a natural cubic spline function, and df was its
degree of freedom; time was a date variable used to control
time trends and seasonal fluctuations; DOW represented
the day of the week, controlling the natural fluctuations of
the number of people with diabetes in a week; and
temperature/⋯ referred to meteorological conditions, which
were used to adjust the impact of meteorological factors on
diabetes incidence. To fit the model, we set the df of natural
cubic spline functions for time to 11 per year, which was
based on the Akaike information criterion (AIC) and the
principle of the partial autocorrelation function (PACF)
[31]. And we set the df of meteorological factors to 3, based
on experience and previous studies. The model for meteoro-
logical factors is shown in the Supplementary Materials
(available here).

We first used a single-pollutant model to examine the
association between the incidence of diabetes and the expo-
sure of each air pollutant on the day (lag 0 days) to obtain
estimated values that were not adjusted for meteorological
factors. Additionally, the relationships between meteorologi-
cal factors (lag 0 days) and diabetes incidence were analyzed.
To verify the stability of the association between air pollution
and diabetes incidence, a double-pollutant model was con-
structed. In addition, to avoid underestimating the relation-
ship between air pollutants, meteorological factors, and
diabetes, we studied the hysteresis and cumulative effects of
air pollutants and meteorological factors on the incidence
of diabetes. This allowed for the assessment of the impact
of various factors on the occurrence of diabetes over time
and the clarification of the duration of each factor’s effect.
Then, we constructed a three-dimensional model of meteo-
rological factors and diabetes. Based on the single-factor
models, statistically significant air pollutants (PM2.5, NO2,
and CO) were included in the final multivariate model, and
relevant meteorological factors (temperature, humidity, and
sunshine) were selected as covariates. In the data processing
process, we found that sixteen days’ data of air pollutants in
2014 were missing, and the “na.approx” function from the
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“zoo” package in R software was used to fill the missing data
with linear interpolated values [32].

We performed subgroup analyses of air pollutants, taking
the sensitivity to air pollutants of different populations into
account. We evaluated possible effect modification of these
demographic characteristics, stratifying the population into dif-
ferent groups by sex (male or female), age (<75 or ≥75 years),
and BMI (<18.5kg/m2, 18.5-23.99kg/m2, 24-27.9 kg/m2, and
≥28kg/m2).

In all statistical tests, a two-sided P < 0:05 was considered
significant. All analysis was performed in R software, version
3.5.1, and the fitting process was implemented using the
“dlnm” and “mgcv” packages. The effect-estimated value is
the relative risk ratio (RR) of the onset of diabetes and its
95% confidence interval (CI) for each 10μg/m3, 1mg/m3,
or interquartile range (IQR) increase of the corresponding
air pollutant’s concentration.

3. Results

Finally, 190,453 participants aged ≥60 years in Tianjin Binhai
New District were included in the study, and the population
characteristics are summarized in Table 1. The median
(interquartile range) age was 68 (64-72) years, and the ratio
of male to female was 1 : 1.09. A total of 49.31% of enrolled
participants exercised every day, and 28.05% of participants
never exercised. The participants did not have diabetes at
baseline, and the median (interquartile range) value of fasting
blood glucose (FBG) was 5.30 (4.91-5.70)mmol/L. During
2014-2017, there were 7,585 new-onset diabetes patients
among the 190,453 nondiabetic participants, resulting in a
crude incidence of diabetes of 9.9 per 1,000 person-years.
There were 4,180 females (55%), 1,371 subjects aged ≥75
years (18%), and 5,413 overweight and obese people (71%)
among these new-onset diabetes patients. Figure 1 shows
the monthly distribution of new-onset diabetes patients in
the study from 2014 to 2017. The number of new-onset dia-
betes cases fluctuated to varying degrees every month. From
2014 to 2016, the number of new-onset diabetes had
declined, but this rebounded in 2017. In general, diabetes
was diagnosed more often in winter and spring (January,
March to May), and less in summer (June to July).

Tables 2 and 3 show the statistical summary of air pollut-
ants and meteorological factors. The average concentration
of PM2.5 was 70.56μg/m

3, which was more than once higher
than the national standard (35μg/m3). The average concen-
trations of PM10, SO2, CO, O3, and NO2 were 96.24μg/m

3,
23.55μg/m3, 1.42mg/m3, 53.18μg/m3, and 48.2μg/m3,
respectively. The corresponding median of the temperature,
humidity, sunshine, air pressure, precipitation, and wind
speed were 15.4°C, 57%, 8 h, 1016.6 hPa, 0mm, and 2.3m/s,
respectively.

Figures 2 and 3 show the monthly distribution of each air
pollutant and meteorological factor from 2014 to 2017. The
PM2.5, PM10, NO2, SO2, and CO all reached the highest con-
centration in winter (December-February) and the lowest in
summer (June-August), while O3 levels were showing the
opposite effect. Temperature and air pressure had apparent
seasonal fluctuations, and the temperature was higher in

summer and lower in winter, which was opposite to the air
pressure. The regularity of humidity and precipitation was
similar. Wind speed changed with no discernable patterns,
but the wind speed was faster in spring (March-May).

Table 4 lists the results of the Spearman correlation
between air pollutants and meteorological factors. PM2.5,
PM10, NO2, SO2, and CO were positively correlated with
each other, with correlation coefficients ranging from
0.548 to 0.897, while O3 was negatively correlated with all
other air pollutants. O3 was positively correlated with all
meteorological factors except for atmospheric pressure.
Except for O3, all other pollutants were negatively corre-
lated with sunshine duration and positively correlated with
atmospheric pressure.

Figure 4 shows the delayed (longest lag 30 days) and the
cumulative effect of the association between air pollutants
and the onset of diabetes in a single-factor model.

Table 1: The population characteristics at baseline.

Median (P25, P75) (n = 190453)
Age (years) 68 (64, 72)

Weight (kg) 66 (60, 73)

Height (cm) 165 (159, 170)

BMI (kg/m2) 24.0 (22.6 ,26.2)

Waistline (cm) 84 (79, 90)

TG (mmol/L) 1.30 (1.01, 1.71)

TC (mmol/L) 5.04 (4.43, 5.70)

BUN (mmol/L) 5.40 (4.58, 6.35)

Scr (μmol/L) 73.0 (60.8, 86.0)

TB (μmol/L) 12.7 (10.0, 16.2)

AST (U/L) 21.0 (17.0, 26.0)

ALT (U/L) 19.0 (14.0, 25.0)

FBG (mmol/L) 5.30 (4.91, 5.70)

Hemoglobin (g/L) 137 (128, 147)

N (%) (n = 190453)
Sex, male 91237 (47.91)

Physical activity

Never 53418 (28.05)

Once a week 10587 (5.56)

More than once a week 32531 (17.08)

Every day 93914 (49.31)

Vegetables/meat ratio

<2 2284 (1.20)

=2 181859 (95.49)

>2 6310 (3.31)

Smoking status

Never 141345 (74.22)

Current 37903 (19.90)

Former 11205 (5.88)

BMI: body mass index; TC: total cholesterol; TG: triglyceride; BUN: blood
urea nitrogen; Scr: serum creatinine; TB: total bilirubin; ALT: glutamic-
pyruvic transaminase; AST: glutamic oxalacetic transaminase; FBG: fasting
blood glucose.
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(i) PM2.5: exposure to PM2.5 increased the incidence of
diabetes, and the effect was the strongest on the day
and then decayed gradually. By the 25th day, the
effect was no longer present, and the cumulative
effect also rose within 25 days (Figure 4(a)).

(ii) PM10: the lag and cumulative effect of PM10 on
diabetes incidence were similar to that of the
PM2.5. The negative effect was strongest on the day
and then gradually decayed until the 25th day.
However, compared to PM2.5, PM10 had a weaker
effect on the incidence of diabetes (Figure 4(b)).

(iii) NO2: there was a positive correlation between NO2
levels and diabetes incidence within 8 days and 20-
27 days. Although NO2 was also positively correlated
with diabetes on days 9-19, the association was not

statistically significant. Combined with the cumula-
tive effect curve, exposure to NO2 was associated with
an increased incidence of diabetes (Figure 4(c)).

(iv) SO2: for both the single-effect and the cumulative-
effect curves, no relationship between SO2 and dia-
betes incidence was found (Figure 4(d)).

(v) CO: exposure to CO is a relative risk factor for diabetes
within 16 days, after which there was no significant
correlation between CO and diabetes (Figure 4(e)).

(vi) O3: in the single-effect curve, O3 was negatively corre-
lated with the incidence of diabetes between the 12th
day and the 23rd day. The cumulative-effect curve
showed that O3 and the incidence of diabetes were
negatively correlated from the 5th day (Figure 4(f)).
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Figure 1: Monthly distribution of new-onset diabetes during 2014 to 2017.

Table 2: Air pollutants in Binhai New Area during 2014 to 2017.

Min 25% quartile Median 75% quartile Max Mean Standard deviation Interquartile range

PM2.5 (μg/m
3) 10.68 36.38 56.55 89.10 343.33 70.56 49.22 52.72

PM10 (μg/m
3) 11.11 64.51 96.24 142.87 975.75 96.24 72.60 78.36

NO2 (μg/m
3) 9.18 30.44 43.78 61.91 177.77 48.20 23.50 31.47

SO2 (μg/m
3) 1.98 10.64 16.94 29.95 161.48 23.55 19.69 19.31

O3 (μg/m
3) 2.57 26.39 46.68 75.25 174.43 53.18 33.94 48.86

CO (mg/m3) 0.27 0.91 1.25 1.71 9.23 1.42 0.78 0.80

Table 3: Meteorological factors in Binhai New Area during 2014 to 2017.

Min 25% quartile Median 75% quartile Max Mean Standard deviation Interquartile range

Average temperature (°C) -14.50 3.45 15.40 24.25 33.30 14.27 10.84 20.80

Maximum temperature (°C) -11.30 7.80 20.30 28.50 39.33 18.58 11.07 20.70

Humidity (%) 13 43 57 72 99 57 18.19 29

Precipitation (mm) 0.00 0.00 0.00 0.00 148.30 1.52 7.14 0.00

Sunshine (h) 0.00 4.10 8.00 10.00 13.60 6.98 3.94 5.90

Average pressure (hPa) 994 1008 1017 1025 1043 1017 10 17

Average wind speed (m/s) 0.50 1.80 2.30 3.00 9.40 2.47 0.95 1.20
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Figure 5 shows the cumulative effect of lag 30 days for
each meteorological factor in single meteorological factor
models. The cumulative relative risks over 30 lag days of
the full range of meteorological factors are presented. The
black lines are the effect estimates, and the gray areas are
the 95% CI. The median values were used as the reference
for calculating the cumulative effect of various meteorologi-
cal factors to study the lowest cumulative effect of different
meteorological factors. The values of meteorological factors
with the lowest cumulative effect value for 30 days were
-14.5°C for temperature, 71% for humidity, 1042.7 hPa for
atmospheric pressure, 13.6 h for the sunshine duration,
0mm for precipitation, and 4.5m/s for wind speed. These
values were used as references to estimate the effects of mete-
orological factors on diabetes, as presented in Figures 6 and 7.

The relationship between meteorological factors and the
incidence of diabetes was nonlinear. Figure 6 shows three-
dimensional (3D) graphs distributed in a hexahedron, which
vividly depicts the relationship of meteorological factors, lag
days, and risk of diabetes incidence (referenced to the values
of meteorological factors with the lowest cumulative effect for
30 days). One bottom edge of the hexahedron represents the
full range of meteorological factors, the other bottom edge
represents the number of days delayed, and the height repre-
sents the relative risk of diabetes incidence. The 3D graphics

show the impact of different meteorological factor values on
the incidence of diabetes when lagging on different days.
Figure 7 shows contour plots of various meteorological factors
depicting the estimated effects on diabetes incidence of the full
range of meteorological factors over different lag days (refer-
enced to the lowest effect value of meteorological factors). It
is similar to the plot in Figure 6 and describes the risk of diabe-
tes incidence with color. Blue indicates that the RR value was
<1, and red indicates an RR value of >1. In other words, blue
indicates a protective factor, and red indicates a risk factor,
and the darker the red color, the higher the risk of diabetes.

(i) Humidity: whether excessively moist or dry,
humidity increased the risk of diabetes, and the effect
of moisture lasted longer. The humidity in the Binhai
New District usually ranged from 43% to 72%, which
meant that an adverse effect on the incidence of dia-
betes only occurred in extreme weather conditions.

(ii) Sunshine: the shortening of sunshine duration was
positively correlated with diabetes incidence, and the
correlation was strongest within five days of exposure.

(iii) Atmosphere pressure: the atmospheric pressure
fluctuated between 994.2 and 1042.7 hPa. The risk
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Figure 2: Monthly average changes in air pollutants for 2014-2017.
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Figure 3: Monthly average changes in meteorological factors for 2014-2017.

Table 4: Spearman correlation analysis between air pollutants and meteorological variables.

Number PM2.5 PM10 SO2 O3 NO2 CO Humidity Temperature Precipitation Sunshine Pressure

PM2.5 .039

PM10 .078∗∗ .897∗∗

SO2 .024 .548∗∗ .581∗∗

O3 .148∗∗ -.228∗∗ -.228∗∗ -.449∗∗

NO2 .123∗∗ .611∗∗ .611∗∗ .721∗∗ -.531∗∗

CO .008 .657∗∗ .590∗∗ .734∗∗ -.448∗∗ .688∗∗

Humidity -.122∗∗ .265∗∗ .032 -.161∗∗ .012 -.082∗∗ .185∗∗

Temperature -.031 -.122∗∗ -.162∗∗ -.509∗∗ .769∗∗ -.482∗∗ -.400∗∗ .229∗∗

Precipitation -.058∗ -.151∗∗ -.259∗∗ -.302∗∗ .089∗∗ -.271∗∗ -.118∗∗ .425∗∗ .151∗∗

Sunshine .130∗∗ -.271∗∗ -.135∗∗ -.142∗∗ .425∗∗ -.216∗∗ -.331∗∗ -.539∗∗ .300∗∗ -.335∗∗

Pressure -.033 .043 .059∗ .455∗∗ -.714∗∗ .438∗∗ .341∗∗ -.234∗∗ -.886∗∗ -.216∗∗ -.252∗∗

Wind speed .101∗∗ -.273∗∗ -.145∗∗ -.201∗∗ .221∗∗ -.371∗∗ -.311∗∗ -.352∗∗ -.004 -.008 .240∗∗ -.070∗∗

7Journal of Diabetes Research



0 5 10 15 20 25 30

0.995

1.000

1.005

1.010

PM2.5 (95 CI)

Lag
0 5 10 15 20 25 30

Lag

O
ut

co
m

e

1.00

1.05

1.10

1.15

Cumulative association with a 10-unit increase in PM2.5

Cu
m

ul
at

iv
e R

R

(a)

0 5 10 15 20 25 30
Lag

0 5 10 15 20 25 30
Lag

0.996

0.998

1.000

1.002

1.004

1.006

PM10 (95 CI)

O
ut

co
m

e

1.00

1.02

1.04

1.06

1.08

Cumulative association with a 10-unit increase in PM10

Cu
m

ul
at

iv
e R

R

(b)

0 5 10 15 20 25 30
Lag

0 5 10 15 20 25 30
Lag

0.990

0.995

1.000

1.005

1.010

1.015

1.020

NO2 (95 CI)

O
ut

co
m

e

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Cumulative association with a 10-unit increase in NO2

Cu
m

ul
at

iv
e R

R

(c)

Figure 4: Continued.
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Figure 4: Hysteresis and cumulative effect of air pollutants on the incidence of diabetes in single-pollutant model ((a) PM2.5, (b) PM10, (c)
NO2, (d) SO2, (e) CO, and (f) O3).
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of diabetes increased when the pressure was low,
especially on the day. After the first five days, the
effect was weakened but lasted for about 30 days.

(iv) Precipitation: the risk of diabetes slightly increased
when the precipitation reached a certain level. When
precipitation further increased to 60mm or more, it
was negatively correlated with the risk of diabetes.

(v) Wind speed: wind speed ranged from 1.8m/s to
3.0m/s. A decrease in wind speed increased diabetes
incidence, and the influence was more obvious
within five days.

Table 5 summarizes the RR of diabetes in single and
double-pollutant models for 10μg/m3 (1mg/m3) or an inter-

quartile range increase in air pollutant concentration. In the
single-pollutant model, an increase in PM2.5, PM10, or NO2
concentrations by 10μg/m3 was associated with an increase
in the risk of diabetes by 2.6%, 1.9%, and 5.1%, respectively.
When the concentration of CO increased by 1mg/m3, the
risk of diabetes increased by 15.6%. The interquartile range
increase in the concentrations of PM2.5, PM10, NO2, and
CO contributed to an increased risk of diabetes by 14.4%,
15.7%, 17.1%, and 15.6%, respectively. The estimator of effect
for both PM10 and PM2.5 was relatively robust in the dual-
pollutant model. There was no statistical association between
SO2 and O3 and the risk of diabetes in both the single-
pollutant and the dual-pollutant models.

Based on the results of the single-factor model and expe-
rience from previous research, we selected relevant factors
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into the final multivariate model. The correlation between
PM2.5 and PM10 was strong, with a correlation coefficient of
0.897. We considered there was collinearity between the
two pollutants, and therefore, these parameters could not
be included in the same final model. Similarly, the correlation
coefficient of temperature and atmospheric pressure was
-0.886. To avoid the influence of collinearity, atmospheric

pressure was excluded from the final model. The correlation
coefficients of the relation between SO2 and NO2 or CO were
>0.7, and since SO2 had no apparent correlation with diabe-
tes, we excluded it. Finally, PM2.5, NO2, and CO were
included in the multivariate model. The diffusion of air pol-
lutants was usually affected by meteorological factors. There-
fore, we added temperature, humidity, and duration of
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sunshine to the final model as covariates to correct for these
confounding factors.

Separate and cumulative effect curves are shown in
Figure 8. PM2.5 showed a positive correlation with the inci-
dence of diabetes after eight days, and the adverse effect con-
tinued for more than 30 days. The cumulative RR of 30 days
was 1.092 (95% CI: 1.021-1.168). In the separate effect curve,
there was no significant correlation between NO2 and the risk
of diabetes in the first 11 days, while NO2 was the protective
factor for diabetes on the 11th-17th day. After that, NO2
became a risk factor of diabetes between the 23rd and 29th
days. The correlation was not evident, and the cumulative
effect curve showed no statistically significant correlation

between NO2 and diabetes risk (RR: 1.053; 95% CI: 0.889-
1.247). Overall, in the final model adjusted for PM2.5, NO2
was not significantly associated with the onset of diabetes.
Finally, combining the separate effect curves and cumulative
effect curves, the relationship between CO and diabetes inci-
dence was not statistically significant in the final model (RR:
0.851; 95% CI: 0.574-1.261).

The modification effects of age, gender, and BMI on the
relationship between air pollution and diabetes incidence
were explored by grouping the study population based on
these parameters (Table 6). We found no relationship
between NO2 and CO and diabetes in all the groups. For
every 10μg/m3 increase in PM2.5, the relative RR of diabetes
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was 1.163 (95% CI: 1.032-1.311) in females, while there was
no statistical correlation in men. In the different age groups,
PM2.5 was more strongly associated with diabetes in older
people (≥75 years) than those aged under 75 years. For every
10μg/m3 increase in PM2.5, the RR of diabetes incidence
increased by 1.140 (95% CI: 1.032-1.259). Exposure to
PM2.5 was positively correlated with diabetes incidence in
healthy weight and obese people. When the concentration
of PM2.5 increased by 10μg/m3, the relative RR of obese
and healthy-weight people was 1.135 (95% CI: 1.007-1.279)
and 1.221 (95% CI: 1.042-1.431), respectively.

4. Discussion

Our study found that, in the population aged ≥60 years old
from the Binhai New District in 2014-2017, there was a pos-
itive correlation between exposure to not only PM2.5 but also
PM10 and diabetes incidence after multiple adjustments and

between NO2, CO, and diabetes incidence in a single-
pollutant model. Further stratification analysis found that
the relationship between exposure to PM2.5 and diabetes
was more robust in female subjects, subjects aged ≥75 years
old, and obese people. In addition, meteorological factors
were also found to be associated with the development of dia-
betes, and this association was nonlinear.

4.1. PM2.5. In the population aged 60 and over in the Tianjin
Binhai New District, we found that PM2.5 was positively
correlated with the incidence of diabetes in both the single-
pollutant and the dual-pollutant models, which was consis-
tent with a previous study conducted in Hong Kong, China
[33]. In our multivariate model, PM2.5 increases by each
interquartile range (53 g/m3) resulting in a relative RR of dia-
betes of 1.59 (95% CI: 1.11-2.27), which represented a 59%
increase in the risk of diabetes. The Hong Kong cohort study
used logistic regression and time-varying Cox regression
models to assess the prevalence and risk of diabetes associ-
ated with PM2.5 among the elderly and found that after
adjusting for potential individual and neighborhood con-
founders, the hazard ratio (HR) for diabetes was 1.15 (95%
CI: 1.05-1.25) per interquartile range (3.2μg/m3) increase
in PM2.5. Although this finding suggests a relationship
between long-term exposures to PM2.5 and our study investi-
gated short-term effects, the results in different regions of
China were similar. Compared with our study, their results
showed a weaker correlation between PM2.5 and diabetes.
We consider that this might be due to differences in statistical
methods and adjustment factors. Furthermore, the PM2.5
levels in our study were significantly higher than those mea-
sured in the Hong Kong study.

Another cohort study followed US veterans for 8.5 years
and showed that there were approximately 32 million dia-
betic patients due to prolonged exposure to PM2.5 in 2016,
accounting for 14% of global diabetes patients [34]. A study
based on the SALIA cohort in Germany found that traffic-
related air pollution, including NO2 and PM2.5, was associ-
ated with an increased risk of type 2 diabetes in women aged
54-55 years [35]. Similarly, a cohort study in Canada with a
30-year follow-up of women between the ages 40 and 59
described the relationship between PM2.5 and diabetes using
Poisson regression models and found that for every 10μg/m3

increase in PM2.5, the risk of type 2 diabetes increased by 28%
[36]. A meta-analysis, including 13 studies conducted in
Europe and North America, reached the same conclusion.
In this study, a combined relative RR of type 2 diabetes was
1.10 (95% CI: 1.02-1.18) for every 10μg/m3 increase in PM

2.5 [37]. A large cohort study in Rome, Italy, used logistic
and Cox regression models to assess the relationship between
long-term exposure to PM, nitrogen oxides (NOx), ozone
(O3), and the incidence of type 2 diabetes at individual levels.
For every 20μg/m3 increase in NOx and 10μg/m

3 increase in
O3, the hazard ratio (HR) for diabetes was found to be 1.01
(95% CI:1.00-1.02) and 1.02 (95% CI:1.00-1.03), respectively.
However, no clear correlation was found between PM2.5,
PM10, and diabetes incidence [38]. This discrepancy might
be explained by substantial differences between the levels of
air pollutants in Italy and China. The average concentrations

Table 5: Fitting results of single and double air pollutant model.

Model
Risk ratio (95% CI)

Increase 10μg/m3

or 1mg/m3
Increase the

interquartile range

PM2.5

PM2.5 1.026 (1.011-1.040)∗ 1.144 (1.062-1.233)∗

PM2:5 + PM10 0.994 (0.972-1.017) 0.971 (0.862-1.093)

PM2:5 + NO2 1.020 (1.001-1.038)∗ 1.109 (1.007-1.222)∗

PM2.5 + SO2 1.033 (1.016-1.050)∗ 1.189 (1.090-1.297)∗

PM2:5 + CO 1.022 (1.005-1.039)∗ 1.121 (1.026-1.225)∗

PM2:5 + O3 1.026 (1.012-1.041)∗ 1.147 (1.064-1.236)∗

PM10

PM10 1.019 (1.012-1.026)∗ 1.157 (1.093-1.225)∗

PM10 + PM2:5 1.021 (1.010-1.033)∗ 1.178 (1.077-1.289)∗

PM10 + NO2 1.017 (1.009-1.025)∗ 1.142 (1.072-1.216)∗

PM10 + SO2 1.021 (1.013-1.029)∗ 1.179 (1.109-1.252)∗

PM10 + CO 1.018 (1.010-1.026)∗ 1.146 (1.077-1.218)∗

PM10 + O3 1.019 (1.012-1.027)∗ 1.158 (1.094-1.226)∗

NO2

NO2 1.051 (1.019-1.083)∗ 1.171 (1.063-1.290)∗

NO2 + PM2:5 1.023 (0.984-1.063) 1.075 (0.949-1.217)

NO2 + PM10 1.022 (0.989-1.057) 1.073 (0.966-1.193)

NO2 + SO2 1.078 (1.037-1.120)∗ 1.270 (1.122-1.438)∗

NO2 + O3 1.051 (1.019-1.083)∗ 1.171 (1.062-1.291)∗

NO2 + CO 1.032 (0.995-1.071) 1.107 (0.984-1.244)

CO

CO 1.156 (1.058-1.264)∗ —

CO +NO2 1.097 (0.984-1.224) —

CO + PM2:5 1.065 (0.958-1.185) —

CO + PM10 1.066 (0.968-1.174) —

CO+SO2 1.195 (1.074-1.329)∗ —

CO +O3 1.160 (1.061-1.269)∗ —
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of PM in our study area were about three times than that of
those measured in Italy. Additionally, Italy is a developed
country in Europe, and there might be economic and ethnic
differences with China. Finally, our study was aimed at the
elderly population, and the Italy study was conducted in peo-

ple over the age of 35; therefore, the tolerance to air pollution
of the population might be different.

4.2. PM10 and NO2. We found that exposure to PM10 and
NO2 was positively correlated with the incidence of diabetes,
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Figure 8: Hysteresis and cumulative effect of air pollutants on diabetes in multivariate model.
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similar to the results of previous studies [39, 40]. A
population-based study in Germany conducted a random
sampling of 45 to 72-year-old residents in highly urbanized
areas and followed them for 5.1 years. The study concluded
that PM10 was associated with an increased risk of diabetes,
and the RR obtained with Poisson regression adjusting for
sex, age, BMI, lifestyle factors, area and individual-level
socioeconomic status, and city was 1.05 (95% CI: 1.00-1.10)
[42]. A meta-analysis combined the results of ten cohort
studies and concluded that every 10μg/m3 increase in PM10
and NO2 was connected with an increased risk of diabetes
by 10% (95% CI: 22%-47%) and 11% (95% CI: 7%-16%),
respectively [41]. However, a study from Tianjin, China,
showed different results. It was found that among people
aged between 45 and 64 years, the risk of diabetes increased
by 1.16% for every 10μg/m3 increase of NO2, while PM10
and diabetes were not significantly correlated [42]. However,
our results showed that in the single-pollutant model, both
PM10 and NO2 were positively correlated with the onset of
diabetes, and the correlation between NO2 and diabetes was
stronger. The number of diabetic cases increased by 5.1%
for every 10μg/m3 increase in NO2. Both studies performed
short-term health effects on diabetes using time-series analy-
sis and were conducted in Tianjin. However, our study was
aimed at the Binhai New District, and the scope of that study
was the urban area of Tianjin. Furthermore, the research
periods were different. Comparing the average levels of air
pollution, we found that the air pollution level in the Binhai
New District from 2014 to 2017 was higher than that in the
urban area of Tianjin in 2008-2011. Additionally, the study
population was older, leading to a more vulnerable popula-
tion being exposed to higher levels of air pollution, likely
causing more significant adverse effects.

4.3. O3, CO, and SO2. Our results suggested that there was no
statistically significant association between O3 and diabetes
in the elderly population of the Binhai New District.
Similarly, a six-year study conducted among Mexican-
Americans explored the adverse effects of air pollution on

insulin resistance resulting in a similar conclusion [43]. The
production of ozone requires the action of ultraviolet rays.
When there is a high concentration of environmental PM,
the ultraviolet rays of solar radiation will be scattered to some
extent [44]. O3 was negatively correlated with the concentra-
tion of PM2.5 and PM10, indicating that O3 may cause the elu-
tion period of PM2.5 and PM10, thus failing to reflect the
correlation between O3 and diabetes. However, in 45,231
African-American women from 56 regions of the United
States, air pollution was distributed to individual levels
through EPA Models-3/Community Multiscale Air Quality
(CMAQ) predictions fused with ground measurements.
Cox proportional hazards models were used to analyze this
relationship. The HR per interquartile range increase of O3
was 1.18 (95% CI: 1.04-1.34) for the incidence of diabetes
in adjusted models [45]. The discrepancy with our data
may be due to different statistical methods used. We explored
at the group level, while the American study was specific to
individuals. Additionally, that study only involved women,
while we conducted our study on the whole elderly popula-
tion, which may have resulted in differences in performance
between different populations exposed to O3. In addition to
O3, we did not find a correlation between SO2 and CO and
the incidence of diabetes. A large cohort study with a longer
follow-up is required to confirm these data.

4.4. Possible Mechanism behind the Effect of Air Pollution on
Diabetes Incidence. Research on the mechanisms behind the
relationship between air pollutants and the increased inci-
dence of diabetes mainly focused on PM. In both animal
and human experiments, the levels of interleukin-6 (IL-6)
and tumor necrosis factor-α (TNF-α) were elevated after
exposure to PM [46–48]. Inflammatory markers are signifi-
cantly associated with diabetes, and elevated levels of IL-6
can increase the risk of diabetes by 31% [49], indicating that
air pollution can affect the development of diabetes through
systemic inflammatory responses. Besides, animal experi-
ments have shown that exposure to PM2.5 is associated with
a decrease of insulin signaling in the liver, which inhibits

Table 6: Results of subgroup analysis based on sex, age, and BMI.

T2DM
Number

PM2.5
NO2

RR (95% CI)
CO

Sex

Male 3405 1.070 (0.988-1.157) 1.006 (0.860-1.177) 0.943 (0.603-1.473)

Female 4180 1.163 (1.032-1.311)∗ 1.044 (0.846-1.289) 0.837 (0.508-1.380)

Age

<75 6214 1.109 (1.031-1.193)∗ 1.071 (0.894-1.283) 0.805 (0.528-1.228)

≥75 1371 1.140 (1.032-1.259)∗ 0.803 (0.633-1.018) 1.167 (0.626-2.175)

BMI

Low weight (<18.5) 51 0.960 (0.542-1.700) 0.477 (0.163-1.402) 2.691 (0.129-55.997)

Normal (18.5-23.99) 2138 1.221 (1.042-1.431)∗ 0.829 (0.564-1.219) 0.593 (0.242-1.451)

Overweight (24-27.99) 3715 1.074 (0.986-1.169) 1.062 (0.866-1.302) 0.810 (0.481-1.364)

Obesity (≥28) 1698 1.135 (1.007-1.279)∗ 0.811 (0.614-1.070) 1.270 (0.625-2.578)

Total 7585 1.092 (1.021-1.168)∗ 1.053 (0.889-1.247) 0.851 (0.574-1.261)
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the translocation of glucose transporter 4 (GLUT4), provid-
ing evidence that air pollution enhances insulin resistance
in the liver [46, 50]. Moreover, exposure to PM2.5 also
induces lipid deposition in the liver and reduces gluconeo-
genesis, inhibiting insulin receptor substrate 1- (IRS-1-)
mediated signaling in the liver, which is associated with insu-
lin resistance and abnormal glucose homeostasis [51].

4.5. Meteorological Factors

4.5.1. Temperature. Our study found that high temperatures
promoted diabetes, and a previous study using 14-year longi-
tudinal data from the United States reached a similar conclu-
sion. Using meta-regression, they determined the effect of
mean annual temperature on diabetes incidence between
1996 and 2009 for each US state. Compared to cold years,
the incidence of diabetes was higher in warm years, and the
age-adjusted diabetes incidence increased by 0.314 per 1°C
[22]. However, no previous research was conducted in China
on the correlation of diabetes incidence and meteorological
factors. The activity of brown adipose tissue (BAT) is nega-
tively correlated with outdoor temperature. Increased fatty
acid flow to BAT can lead to a compensatory increase in
glucose transport to other metabolically active tissues and
even weight loss [52–54]. Therefore, insulin sensitivity is
improved at lower temperatures, which may explain the
adverse effects of elevated temperature on diabetes.

4.5.2. Humidity.We found that extreme moist or dry air was
harmful to human health. Research in the Midwest of Africa
supports our result, showing that the number of diabetes
cases was highest in the wettest months and the hospital
admission rate of diabetic patients was also slightly higher
during the rainy season [52–54]. This may be related to the
decline in body function and poor physiological response
abilities in humid conditions. Instead of meteorological fac-
tors themselves, humidity also interacts with air pollutants,
in turn affecting human health. In a previous study (con-
ducted in Beijing, adjacent to Tianjin) on the relationship
between air pollutants and meteorological factors, it was
found that there was seasonal variability in the correlation
between humidity and air pollution. Lower humidity was
likely causing air pollution in spring and higher humidity
likely contributed to air pollution in the other seasons, partly
explaining why extreme humidity affects human health
adversely [55].

4.5.3. Sunshine. In our study, a reduction of sunshine dura-
tion increased the risk of diabetes. The only other study that
examined the association between sunshine and diabetes
incidence was a prospective cohort study of women aged 25
to 64 years in southern Sweden. The average follow-up time
was 11 years, and data were analyzed by logistic regression
analysis. It was found that, compared to women without
activity habits, women with sun exposure habits had a lower
risk of developing type 2 diabetes [23]. Solar radiation is the
primary source of vitamin D. Vitamin D appears to play a
role in pancreatic diseases, including type 1 and type 2 diabe-
tes [56]. It can affect the function of beta cells and influence
insulin sensitivity. Furthermore, it can reduce systemic

inflammatory responses by controlling blood pressure,
reducing peripheral vascular resistance, or acting as an
immunomodulator to prevent excessive production of
inflammatory cytokines [57–59]. Therefore, sunshine may
prevent the development of type 2 diabetes by increasing
serum 25-(OH)2-D3 levels.

4.5.4. Atmospheric Pressure. We found that low air pressure
was associated with a higher diabetes incidence. No previous
research investigated the impact of atmospheric pressure on
diabetes incidence. However, a multicenter study showed
that increased atmospheric pressure was beneficial to reduce
mortality [60]. In addition, it was previously found that the
concentration of air pollutants is affected by the domestic
trans-boundary impacts (TBI), which contributed to 27% of
the total PM2.5 in China [61]. At lower atmospheric pressure,
between 900hPa and 850 hPa, wind can more easily trans-
port air pollutants between different regions, aggravating
the adverse effects of air pollution. What is more, air pollu-
tion is relatively severe when atmospheric pressure is lower,
partly affecting the relationship between low air pressure
and diabetes.

4.5.5. Precipitation. We found that precipitation might
promote diabetes within a specific range, consistent with
previous findings from studies conducted in the capital of
Cameroon, a Midwestern African country [62]. However,
in our study, when the precipitation exceeded the 99th per-
centile (60mm), it was a protective factor within 20 days,
and it showed adverse effect on diabetes after 23 days. Given
this result, we consider that precipitation was greater than
60mm only in 2 out of the 1461 days, and deviations might
be caused by these extreme values, as rainstorms could
reduce air pollutants on the day of measurement [63]. There-
fore, the combined effect makes the number of onset diabetes
decline in the short term.

4.5.6. Wind Speed.A study in Beijing showed that the effect of
wind speed on air quality differed between seasons. When the
wind speed was less than 1m/s, the probability of air pollu-
tion in autumn and winter was more than 68.06%, while
when the wind speed was 2m/s in spring and summer, the
probability of pollution reached the maximum [55]. This is
in line with our data. We showed that the number of people
with diabetes increased when wind speed was under 2m/s.
We hypothesize this may be related to the slower dissipation
of air pollutants at low wind speed.

4.6. Subgroup Analysis. To adjust for possible confounding
factors, we conducted a subgroup analysis based on gender,
age, and BMI. Analysis by gender showed that there was a
more significant association between PM2.5 and diabetes inci-
dence in women (RR: 1.12; 95% CI: 1.02-1.22). The Hong
Kong study mentioned earlier reached the same conclusion
[55]. That study involved 66,820 adults aged 65 years or older
and stratified analyses by sex. They showed that the associa-
tions between PM2.5 exposure and prevalence and incidence
of type 2 diabetes mellitus were only statistically significant
in women (RR: 1.07; 95% CI: 1.01-1.13). Additionally, a
meta-analysis combining the results of four studies in Europe
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or the United States found that women tended to be affected
more than men, with a relative risk of 1.14 (95% CI: 1.03-
1.26) in women and 1.04 in men (95% CI: 0.93-1.17) [37].
It seems the response intensity of men and women to air
pollution is different, but the specific relationship and the
mechanism behind it remain unclear. This may be due to
gender-related biological differences, such as hormones and
body size, diet, and activity patterns. Women’s airway diam-
eters are different from those in men, which leads to an easier
deposition of PM2.5 in female airways [64]. In the subgroup
analysis, we also found that the population aged ≥75 years
(RR: 1.14; 95% CI: 1.03-1.31) was more susceptible to PM2.5
than the younger population (RR: 1.16; 95% CI: 1.03-1.31).
A case-crossover study conducted in Anshan, China,
explored the relationship between air pollution and daily
mortality and also found that people aged ≥75 years were
more susceptible to air pollutants, supporting our conclusion
[65]. This may be attributed to the gradual decline of physi-
ological function, as well as the poorer physical reserves
and stress response of older people [66]. The immune system
of the elderly is weakened, and aging has been associated with
subclinical systemic inflammation. Therefore, older people
are prone to systemic inflammation when they are persis-
tently exposed to air pollutants [67]. We found a positive cor-
relation between PM2.5 and diabetes incidence in healthy
weight and obese people. A cohort of 28,831 nurses in Den-
mark found that PM2.5 was most strongly associated with
diabetes in obese people, with a hazard risk of 1.25 (95%
CI:1.06-1.47) [68]. Exposure to air pollutants could promote
the occurrence and progression of inflammatory reactions,
and obesity is associated with higher levels of systemic
inflammation, making obese people more susceptible to air
pollution [48, 69].

4.7. Limitations and Strengths. First of all, diabetes is a
chronic disease, and it is challenging to determine the exact
day of incidence, so we took the diagnosis date instead. Sec-
ondly, due to limitations in the data available and technical
constraints, we could not accurately correlate air pollutant
concentrations to individuals. Therefore, we could only study
patients at the group level. Third, there were many potential
confounding factors, such as noise, and their interaction with
air pollution has not been widely evaluated. However, the
effects of meteorological factors and long-term trends were
considered in this study, and subgroup analyses were per-
formed based on age, gender, and BMI, to ensure the results
could explain the association between diabetes and air pollu-
tion to some extent. Another limitation is that we only
obtained data about outdoor air pollutants, while indoor air
pollution concentrations, as well as those in some working
environments, are much higher than outdoors [70, 71].
Another issue is that air pollutants are complex mixtures. It
consists of variable physical properties or chemical composi-
tions, and we could not analyze the single components. How-
ever, the single and multivariate models we used are accepted
widely, making analysis feasible and comparable.

This is the first study in China into the possible associa-
tion between air pollutants in the coastal area and the risk
of diabetes in the elderly population and fills the gap of

knowledge of the impact of Chinese meteorological factors
on the risk of diabetes.

5. Conclusion

We found a positive correlation between air pollutants, such as
PM2.5, and diabetes risk, consistent with previous studies. This
finding may have an impact on strategies to reduce diabetes
risk. Meteorological factors were also found to play an essential
role in the occurrence, development, and dissipation of air pol-
lution and can also directly affect diabetes. However, due to the
limitations of this study, more advanced air pollutant estima-
tion techniques and statistical methods are needed to explore
in a wider geographical area and a larger population.
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