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Objective. To identify susceptibility modules and genes for cardiovascular disease in diabetic patients using weighted gene
coexpression network analysis (WGCNA). Methods. The raw data of GSE13760 were downloaded from the Gene Expression
Omnibus (GEO) website. Genes with a false discovery rate < 0:05 and a log2 fold change ≥ 0:5 were included in the analysis.
WGCNA was used to build a gene coexpression network, screen important modules, and filter the hub genes. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the genes in
modules with clinical interest. Genes with a significance over 0.2 and a module membership over 0.8 were used as hub genes.
Subsequently, we screened these hub genes in the published genome-wide SNP data of cardiovascular disease. The overlapped
genes were defined as key genes. Results. Fourteen gene coexpression modules were constructed via WGCNA analysis. Module
greenyellow was mostly significantly correlated with diabetes. The GO analysis showed that genes in the module greenyellow
were mainly enriched in extracellular matrix organization, extracellular exosome, and calcium ion binding. The KEGG analysis
showed that the genes in the module greenyellow were mainly enriched in antigen processing and presentation, phagosome.
Fifteen genes were identified as hub genes. Finally, HLA-DRB1, LRP1, and MMP2 were identified as key genes. Conclusion. This
was the first study that used the WGCNA method to construct a coexpression network to explore diabetes-associated
susceptibility modules and genes for cardiovascular disease. Our study identified a module and several key genes that acted as
essential components in the etiology of diabetes-associated cardiovascular disease, which may enhance our fundamental
knowledge of the molecular mechanisms underlying this disease.

1. Introduction

Cardiovascular disease is a common public health problem
that occurs in individuals over 45 years of age. Diabetes
mellitus (DM) is an independent risk factor for cardiovascu-
lar disease [1]. The Framingham study showed that patients
with diabetes have a twofold to fourfold higher risk of
developing cardiovascular disease than those without dia-
betes [2]. Clinically, patients with cardiovascular disease
and diabetes mellitus generally have a poorer prognosis

compared with the patients without diabetes mellitus [3].
Larger necrotic cores of plaques and a higher incidence of
healed plaque ruptures within the coronary arteries were
observed in patients with DM compared with those without
DM [4]. Cardiovascular disease is a major cause of death in
patients with diabetes.

The mechanisms underlying the DM-associated progres-
sion of cardiovascular disease are not fully understood. There
are several potential mechanisms through which diabetes
causes the acceleration of atherosclerosis [5]. Clinically,
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patients with diabetes may also have hypertension, abnormal-
ities of lipid metabolism, and insulin resistance; all of which
are linked to an increased cardiovascular risk [6]. At the sys-
temic level, hyperglycemia, oxidative stress, and inflamma-
tion may promote cardiovascular disease in patients with
diabetes [7]. Conversely, at the cellular or molecular levels,
little is known about this phenomenon. Therefore, we aimed
to detect the genetic basis of cardiovascular disease between
patients with and without diabetes.

Weighted gene coexpression network analysis (WGCNA)
is a bioinformatics analytical method that is used frequently
to explore effectively the relationships between genes and
phenotypes [8]. The distinct advantage of WGCNA is that
it can cluster genes into coexpression modules and build a
bridge between sample characteristics and changes in gene
expression. WGCNA analyzes thousands of genes, identifies
gene modules that are relevant to clinically characters, and,
finally, identifies key genes in the disease pathways, for fur-
ther validation. WGCNA provides a systems-level insight

into the signaling networks that may be associated with a
phenotype of interest.

In this study, we aimed to identify diabetes-associated
susceptibility modules and genes for cardiovascular disease.
We used the rich data from the GEO database. WGCNA
was used to build a gene co-expression network, to screen
important modules, and to filter the key genes. This paper
provides novel insights that will help understand the
molecular mechanism of cardiovascular disease in patients
with diabetes.

2. Methods

2.1. Data Sources and Searches. We took the full use of the
Gene Expression Omnibus (GEO) database, which repre-
sents the largest resource of public microarray data. We
searched the GEO for high-throughput functional genomics
experiments of type 2 diabetes. This study included several
selection criteria for data selection, as follows: (1) the samples
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Figure 1: Clustering dendrogram of samples based on their Euclidean distance.
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included blood vessel samples in diabetic and nondiabetic
patients, (2) the study type was narrowed down to expression
profiling by array, (3) the organism was restricted to Homo
sapiens, (4) the raw data or processed data were public and
accessible, and (5) the total sample size was larger than 15.
The gene expression profiles of GSE13760 were selected
because it exhibited the best quality and the most appropriate
sample size for performing WGCNA analysis.

2.2. Data Download and Statistical Data Analysis. The raw
data of GSE13760 were downloaded from the GEO web-
site. The limma package was used to perform quality con-
trol, preprocessing, and statistical data analysis. The robust
multi-array average (RMA) method was used to normal-
ize data. A limma analysis was used to identify genes with
a false discovery rate < 0:05 and a log2 fold change ≥ 0:5 for
WGCNA analysis.

2.3. WGCNA Network Construction and Module
Identification. We used the WGCNA R package to construct
the coexpression network [8]. First, samples were clustered to
assess the presence of any obvious outliers. Second, the auto-
matic network construction function was used to construct
the coexpression network. The R function pickSoftThres-
hold was used to calculate the soft thresholding power β, to
which coexpression similarity is raised to calculate adjacency.
Third, hierarchical clustering and the dynamic tree cut func-
tion were used to detect modules. Fourth, gene significance
(GS) and module membership (MM) were calculated to
relate modules to clinical traits. The corresponding module
gene information was extracted for further analysis. Finally,
we visualized the network of eigengenes.

2.4. Functional Enrichment Analysis. Genes in modules of
interest were extracted for further functional enrichment

analysis. A Gene Ontology analysis (GO) was used to identify
characteristic biological attributes [9]. A Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analy-
sis was performed to identify functional attributes [10]. Sig-
nificance was set at P < 0:05.

2.5. Identification of Key Genes. We defined the genes with a
GS over 0.2 and an MM over 0.8 in the clinically relevant
gene module networks as hub genes. Subsequently, we
screened these hub genes in the published genome-wide
SNP data of cardiovascular disease. The overlapping genes
were defined as key genes. A classical t-test was performed
to compare the differences in the expression of key genes
between the two groups using a P value < 0.05 to indicate sta-
tistical significance. The ggplot2 R package was used to draw
violin plots of the expression of key genes.

3. Results

3.1. Data Collection. We downloaded the gene chip
GSE13760 of arterial tissues together with its clinical mani-
festation data from the GEO database. The dataset was plat-
form was GPL571 (Affymetrix Human Genome U133A 2.0
Array). There were 10 type 2 diabetic blood vessel samples
and 11 control blood vessel samples. The raw data had been
processed, and the gene expression matrix provided by the
website was directly used in the analysis.

The raw data were normalized using the RMAmethod in
the limma package. Genes with a false discovery rate < 0:05
and a log2 fold change ≥ 0:5 were included in the WGCNA
analysis. First, we checked for genes and samples with too
many missing values, and all genes passed the cut-off values.
Next, we clustered the samples, to identify if there are any
obvious outliers. The height cut-off value was set at 30, and
all samples were included in our analysis (Figure 1).
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Figure 2: Analysis of network topology for various soft-thresholding powers. (a) The x-axis reflects the soft-thresholding power. The y-axis
reflects the scale-free topology model fit index. (b) The x-axis reflects the soft-thresholding power. The y-axis reflects the mean connectivity
(degree).
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Network heatmap plot, all genes

Figure 4: Visualization of the WGCNA network using a heatmap plot. The heatmap depicts the topological overlap matrix (TOM)
among all modules included in the analysis. The light color represents a low overlap, and the progressively darker red color represents an
increasing overlap.
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3.2. Construction of Gene Coexpression Modules. To con-
struct a WGCNA network, we first calculated the soft thresh-
olding power β, to which the coexpression similarity is raised
to calculate adjacency. We used of the function pickSoft-
Threshold function inWGCNA, which performs the analysis
of network topology analysis. The soft thresholding power β
was set at 11 in the subsequent analysis, because the scale
independence reached 0.9 (Figure 2(a)) and had a relatively
high-average connectivity (Figure 2(b)).

We constructed the gene network and identified modules
using the one-step network construction function of the
WGCNA R package. To cluster splitting, the soft threshold-
ing power was set at 11, the minimum module size was set
at 30, and the deepSplit was set at 2 (which implies a medium
sensitivity). Finally, 14 gene coexpression modules were
finally constructed (Figure 3).

3.3. Analysis of the Relationship between Pairwise Gene
Coexpression Modules and Eigengenes. We mapped the rela-
tionships between the identified modules (Figure 4). The
heatmap depicts the topological overlap matrix (TOM)
among all genes included in the analysis. The light color rep-

resents a low overlap, and the progressively darker red color
represents an increasing overlap. The results of this analysis
indicated that the gene expression was relatively independent
between modules.

We analyzed the connectivity of eigengenes. Eigengenes
can provide information about the relationship between pair-
wise the gene coexpression modules. We clustered the eigen-
genes. The results showed that 14 modules could be clustered
into two clusters (Figure 5), and four combinations (modules
cyan and green, modules blue and brown, modules purple
and turquoise, and modules greenyellow and midnightbule)
had a high degree of interaction connectivity.

3.4. Identification of Key Modules. We correlated modules
with clinical characteristics and searched for the most signif-
icant associations. The results of this analysis showed that
module greenyellow was mostly significantly correlated with
diabetes (Figure 6).

3.5. Functional Analysis of the Key Module. We conducted a
GO analysis and KEGG analysis of genes in the module
greenyellow (Figures 7 and 8). The results of these analyses
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showed that, regarding the biological process, the genes were
mainly enriched in extracellular matrix organization. As for
the cellular component, the genes were mainly enriched in
extracellular exosome. Finally, regarding molecular function,
the genes were mainly enriched in calcium ion binding.

We then performed a functional analysis (KEGG analy-
sis) of the genes in the greenyellow module and identified
the module-regulated pathway. The result of this analysis
showed that the greenyellow module-regulated pathways
included antigen processing and presentation, phagosome.

3.6. Identification of Key Genes. The greenyellow module
contained 78 genes. Using a GS over 0.2 and an MM over
0.8 as cut-off criteria, 15 genes were identified as hub genes
(Table 1). Subsequently, we screened these hub genes in the
published cardiovascular disease SNP data. Three out of 15
genes had been reported to be associated with cardiovascular
disease: HLA-DRB1, LRP1, and MMP2. We defined these
genes as key diabetes-associated susceptibility genes for car-
diovascular disease. The expression level of the key genes is
shown in Figure 9. LRP1 and MMP2 were upregulated in
T2DM arterial tissue, while HLA-DRB1 was downregulated
in T2DM arterial tissue.

4. Discussion

Cardiovascular disease is a serious complication of DM. Clin-
ically, patients with cardiovascular disease and DM generally
have a poorer prognosis compared with the patients without
DM. Moreover, decreasing the rates of cardiovascular events
has proved to be more difficult than simply intensifying the
management of hyperglycemia. The molecular mechanisms
involved in the pathophysiology of cardiovascular disease in
patients with DM remain unclear. Therefore, exploring sus-
ceptibility modules and genes for cardiovascular disease in
diabetic patients is essential.

In this study, we built the coexpression modules via
WGCNA using the published data. We identified key mod-
ules in the blood vessels of diabetic patients compared with
those of nondiabetic patients’ blood vessel. The function
enrichment was investigated. Finally, HLA-DRB1, LRP1,
and MMP2 were identified as key genes.

WGCNA is a systems biology method for describing the
pairwise relationships among gene transcripts [8]. Compared
with those bioinformatics articles that only analyzed the dif-
ferentially expressed genes, our work required a high-power
computer and carefully distinguished the false-positive
results. Its merit is obvious: the results would be more com-
plete. To our knowledge, this was the first study that used
the WGCNA method to construct a coexpression network
to explore diabetes-associated susceptibility modules and
genes for cardiovascular disease.

By deeply and systemically reanalyzing the GSE13760
dataset, we identified the greenyellow module as being signif-
icantly relevant to cardiovascular disease in patients with dia-
betes. GO analyses demonstrated that calcium ion binding
was activated during the development of cardiovascular dis-
ease in diabetic patients. Studies have shown that calcium
ion binding is crucial in the process of arterial calcification
and atherosclerosis [11]. KEGG analyses demonstrated that
antigen processing and presentation, phagosome, were
important pathways in this context. Antigen processing and
presentation, phagosome, are closely associated with autoph-
agy, which is associated with the pathogenesis of diabetes
[12]. Dysregulation of autophagy frequently leads to athero-
sclerosis [13]. The physiological process of antigen process-
ing and presentation, phagosome, may provide potential
targets for the prevention of or intervention in cardiovascular
disease in diabetic patients.

Here, we identified three diabetes-associated susceptibil-
ity genes for cardiovascular disease: HLA-DRB1, LRP1, and
MMP2. The human leukocyte antigen (HLA) complex is a
gene family that is involved in antigen presentation associ-
ated with protection against, or susceptibility to inflamma-
tory, infectious and autoimmune diseases. The study
reported by Williams found lower expression of the HLA-
DRB1 mRNA in type 2 diabetes, which was consistent with
our findings, and suggests that HLA-DRB1 is protective for
type 2 diabetes by increasing insulin secretion [14]. There is
some evidence of the potential role of HLA in the pathogen-
esis of diabetic complications. The study reported by Marz-
ban found a potential protective role for the HLA-DRB1∗

07-DQB1∗02 haplotype against the development of periph-
eral neuropathy in patients with T2D [15]. The study of
Cordovado et al. showed that carriers of DRB1∗04 were pro-
tected against the injurious hyperglycemic effects related to
nephropathy in type 1 diabetes [16]. Our findings demon-
strated a potentially protective role of HLA-DRB1 against
the development of cardiovascular disease in patients with
T2D. Atherosclerosis, which is the key pathophysiology of
cardiovascular disease, is a chronic inflammatory disease in
which HLA molecules play a role in the initiation and devel-
opment of the condition. Golmoghaddam et al. reported a
significantly lower frequency of HLA-DRB1∗01 in patients
with coronary artery atherosclerosis, suggesting that HLA-

Table 1: Hub genes of the module greenyellow. Hub genes were
defined as having a gene significance over 0.2 and a module
membership over 0.8.

Gene Gene significance Module membership

SEPT11 0.39 0.88

AKR1C1 0.43 0.89

CD74 0.25 0.89

CST3 0.37 0.88

DCN 0.37 0.86

FBLN1 0.51 0.88

HLA-DRB1 0.22 0.83

LRP1 0.50 0.82

MMP2 0.39 0.92

MRC2 0.23 0.82

NPC2 0.21 0.85

PCDHGA1 0.44 0.80

PRELP 0.55 0.84

SPTBN1 0.42 0.81

TGFBR2 0.23 0.88
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DRB1∗01 is a protective allele against atherosclerosis, which
is consist with the results of our study [17]. A genome-wide
meta-analysis showed HLA-DRB1 was associated with
human longevity [18]. Other studies showed various HLA-
DRB1 alleles could contribute differently to susceptibility of
cardiovascular disease [19, 20].

The LDL receptor-related protein 1, which is encoded by
LRP1, is a large endocytic and signaling receptor [21]. An
animal study showed that LRP1 expression was increased in
cardiomyocytes isolated from acutely diabetic rats [22].
Other studies reported the upregulation of LRP1 in epicardial
fat and skin from diabetic patients compared with control
individuals, which was consistent with our findings [23,
24]. In contrast, another study showed a significant reduction
in LRP1 expression in subjects with diabetic peripheral neu-
ropathy compared with the noncomplication group [25].
Highly diverse functions of LRP1 have been reported in dif-
ferent tissues. The current view of the role of LRP1 in athero-
sclerosis formation is controversial. LRP1 plays a crucial role
in the dysregulated cholesterol transfer from modified lipo-
proteins to human coronary vascular smooth muscle cells.
The study reported by de Gonzalo-Calvo [26] showed that
the circulating soluble LRP1 levels were increased in the con-
ditioned medium of coronary atherosclerotic plaque areas
extracted from patients compared with nonatherosclerotic
areas of the same coronary artery and patient. In contrast,
Mueller’s study showed that the absence of LPR1 accelerates
atherosclerosis regression in macrophages, indicating an
atheroprotective role for LPR1 [27]. Recent studies revealed
that LRP1 regulates the insulin signaling pathway directly
[28–31]. LRP1 potentially plays a crossroad role between dia-
betes and cardiovascular disease. To date, no study has directly
demonstrated the role of LRP1 in diabetic vascular disease.
Further investigation is necessary to clarify the underlying bio-
logical pathways.

MMP-2 is a protease that degrades extracellular matrix
components in normal and pathological conditions. MMP2
was significantly increased in patients with diabetes and in

women with metabolic syndrome, which was consistent with
our findings [32, 33]. Other studies suggested a potential role
for MMP2 in the pathogenesis of diabetic complications. The
study reported by Chung et al. showed that MMP-2 was
upregulated in the arterial vasculature of CKD patients with
diabetes and was correlated with arterial stiffening, impaired
angiogenesis, and endothelial dysfunction [34]. Several stud-
ies have shown that MMP-2 is a key molecule in diabetic ret-
inopathy [35–38]. Moreover, increased plasma MMP-2 was
associated with macrovascular disease by increasing vascular
remodeling [39, 40]. Peters et al. [41] reported that higher
levels of MMP-2 are associated with cardiovascular disease
in type 1 diabetes. As an important contributing factor to
the development of vascular lesions, MMP-2 may play an
important role in the high susceptibility to CVD observed
in diabetic patients. Deep investigation of MMP2 in cardio-
vascular disease in patients with type 2 DM is required.

This study had several limitations. A larger sample size
will be needed in future studies. Moreover, functional studies
of the module and key genes identified here are needed.
Finally, methods based on molecular biology approaches
should help validate our findings.

5. Conclusion

This was the first study that used theWGCNAmethod to con-
struct a coexpression network to explore diabetes-associated
susceptibility modules and genes for cardiovascular disease.
Our findings revealed a module and several key genes that
acted as essential components in the etiology of diabetes-
associated cardiovascular disease, which may enhance our
fundamental knowledge of the molecular mechanisms under-
lying this disease.

Data Availability

The raw data used to support the findings of this study are
freely available from GEO datasets GSE13760.
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