Elevated Serum Level of Cytokeratin 18 M65ED Is an Independent Indicator of Cardiometabolic Disorders

Lingling Qian,1,2 Lei Zhang,1 Liang Wu,1 Jing Zhang,1 Qichen Fang,1 Xuhong Hou,1 Qiongmei Gao,1 Huating Li,1 and Weiping Jia1

1Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai 200233, China
2Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Correspondence should be addressed to Huating Li; huarting99@sjtu.edu.cn and Weiping Jia; wpjia@sjtu.edu.cn

Received 24 July 2019; Revised 17 February 2020; Accepted 28 February 2020; Published 31 March 2020

Academic Editor: Michaelangela Barbieri

Background. Recent studies have suggested that cell death might be involved in the pathophysiology of metabolic disorders. The cytokeratin 18 (CK18) fragment, as a cell death marker, plays an important role in nonalcoholic fatty liver disease (NAFLD). However, only a limited number of studies have found elevated serum levels of CK18 in patients with type 2 diabetes. Moreover, no studies have been conducted yet to investigate the role of CK18 in hypertension or dyslipidemia. In particular, CK18 M65ED is a more sensitive marker of cell death, and its role in cardiometabolic disorders has not been revealed yet.

Methods. A total of 588 subjects were enrolled from the local communities of Shanghai. Serum CK18 M65ED were determined using the enzyme-linked immunosorbent assay. A cardiometabolic disorder was identified by the presence of at least one of the components including overweight or central obesity, diabetes, dyslipidemia, and hypertension.

Results. Subjects with cardiometabolic disorders exhibited significantly higher serum levels of CK18 M65ED than those without cardiometabolic disorders (197.36 (121.13–354.50) U/L versus 83.85 (52.80–153.75) U/L, respectively, \(P < 0.001 \)). Increased serum CK18 M65ED quartiles were associated with the increased prevalence of cardiometabolic disorders and its components (\(P < 0.001 \) for all components). Multiple stepwise regression analysis also revealed that diastolic blood pressure, glycated hemoglobin A1c, alanine transaminase, and high-density lipoprotein cholesterol were independently correlated with serum CK18 M65ED levels (all \(P < 0.01 \)). In addition, logistic regression analysis showed that the serum CK18 M65ED levels were positively correlated with cardiometabolic disorders and in an independent manner. Further, CK18 M65ED was revealed to be an indicator of cardiometabolic disorders in a NAFLD-independent manner.

Conclusions. Elevated levels of CK18 M65ED, a sensitive cell death marker, were independently and positively correlated with cardiometabolic disorders, even after the adjustment for the presence of NAFLD and other cardiovascular risk factors.

1. Introduction

Cardiovascular disease (CVD) remains the leading cause of death and disability in developed countries, and it accounted for the death of approximately 17 million people worldwide in 2013 [1]. Cardiometabolic disorders, including obesity, type 2 diabetes (T2D), insulin resistance (IR), hypertension, and dyslipidemia, are common risk factors for CVD [2]. Moreover, the steady increase in the occurrence of cardiometabolic disorders compels the search for the involved pathophysiology and more effective preventive strategies.

Cytokeratin 18 (CK18) is involved in cell death pathway, and it is an important cell death marker. Cell death (apoptosis, necrosis, autophagy, etc.) can help to get rid of damaged cells and protect cell integrity when a cell responds to the aberrant cellular stresses like endoplasmic reticulum (ER) stress and oxidative stress, which have been the hallmarks of cardiometabolic disorders [3–5]. Massive beta cell death [6, 7] and cell death–induced decrease in the delta cell volume and number cause T2D [8]. Endothelial apoptosis can lead to endothelial dysfunction and development of hypertension [9]. Apoptosis in response to glucose excess was observed...
2 Methods

2.1 Study Participants. Subjects aged 18 years or older were enrolled from the local communities in Shanghai. All subjects underwent comprehensive physical examinations, routine biochemical analyses of blood, 75 g oral glucose tolerance test, hepatitis B surface antigen test, hepatitis C virus antibody test, and B-ultrasonography. The histories of present illness, medical therapy, and alcohol consumption were obtained through standard questionnaires. Subjects with the following conditions were excluded from this study: biliary obstructive disease, acute or chronic viral hepatitis, drug-induced liver disease, autoimmune hepatitis, Wilson’s disease, known hyperthyroidism or hypothyroidism, presence of cancer, ongoing treatment with systemic corticosteroids, pregnancy, and current drinkers and ex-drinkers. A total of 588 subjects were enrolled in the study. Of them, 310 had cardiometabolic disorders, and the control group consisted of 278 age-matched participants without conditions of obesity, central obesity, diabetes, dyslipidemia, or hypertension. The study was approved by the Ethics Committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital and was conducted in accordance with the principles of the declaration of Helsinki. All data were handled without compromising the privacy of the study participants. All participants provided written informed consent prior to enrollment.

2.2 Anthropometric and Laboratory Measurements. Blood pressure, weight, height, waist circumference (WC), and biochemical indices were measured according to our previous standardized protocols [23]. Body mass index (BMI) = weight (kg)/height^2 (m^2). Blood samples collected from the subjects following an overnight fast of at least 10h were tested to measure the levels of serum fasting plasma glucose (FPG), fasting insulin (FINS), glycated hemoglobin A1c (HbA1c), alanine transaminase (ALT), aspartate aminotransferase (AST), gamma-glutamyl-transferase (GGT), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). The 2-hour plasma glucose (2hPG) levels were measured following a 75 g oral glucose tolerance test (OGTT). Basal insulin secretion and insulin sensitivity were calculated using the homeostasis model assessment (HOMA) calculations: HOMA – B = [(FINS) (mU/L) x 6 – 3.33]/[FPG (mmol/L) – 3.5] and HOMA – IR = FINS x FPG/22.5 [23]. The concentration of serum CK18 M65ED was quantified using the M65 Enzyme-linked immunosorbent assay kit (Peviva AB, Bromma, Sweden). As shown in Figure 1, the difference between CK M30 assay, CK M65 assay, and CK M65ED assay was explained. We chose the M65ED assay in this present study as a more sensitive marker for cell death. The intra- and interassay variations for the measurement of CK18 M65ED were 5.23% and 7.12%, respectively.

Cytokeratin 18 is a major intermediate filament protein of the cytoskeleton that is expressed in simple epithelial cells, hepatocytes, cholangiocytes, pancreas, and colon [16, 24, 25]. During apoptosis, full-length CK18 can be cleaved at two sites into three fragments [26]. The M30 assay can detect the caspase-cleaved fragments of CK18 by using the monoclonal antibody, M30, showing the extent of apoptosis [24]. The CK18 M65 assay uses the capture antibody M6 and the detection antibody M5 that are directed against two different epitopes of CK18 and can recognize both full-length CK18 and cleaved fragments of CK18, regardless of whether they are cleaved by caspases or not [18]. The M65ED assay uses the M6 antibody for detection and the M5 as a capture antibody, which can achieve improved binding specificity and lower signals in healthy controls [24, 27].

2.3 Diagnostic Criteria. Cardiometabolic disorders were identified by the presence of at least one of the components including overweight or central obesity, diabetes, dyslipidemia, and hypertension [28]. An overweight condition was defined as a BMI between 25.0 and 29.9 kg/m^2, and obesity was defined as a BMI > 30 kg/m^2 [29]. Central obesity was defined as a waist circumference ≥ 90 cm for Chinese men and ≥ 80 cm for Chinese women [30]. For diabetes, a self-reported diagnosis of diabetes determined previously by a health care professional was considered...
in addition to FPG ≥ 7.0 mmol/L, 2hPG ≥ 11.1 mmol/L during OGTT, HbA1c ≥ 6.5%, subjects with classic symptoms of hyperglycemia or hyperglycemic crisis, and random plasma glucose ≥ 11.1 mmol/L [31]. Dyslipidemia condition was defined as the levels of TC ≥ 6.20 mmol/L, TG ≥ 2.26 mmol/L, HDL – C < 1.03 mmol/L, and LDL – C ≥ 4.13 mmol/L, or taking lipid-lowering medications [32]. Hypertension condition was defined as a systolic blood pressure (SBP) ≥ 140 mmHg, diastolic blood pressure (DBP) ≥ 90 mmHg, or taking blood pressure-lowering medications [33]. The guidelines for the diagnosis of NAFLD proposed by the Asia-Pacific Working Party were used [34]. NAFLD was clinically defined as manifestations of B- ultrasonography performed by experienced radiologists, ruling out the drinking habit, and the specific diseases that could result in fatty liver, according to our previous standardized protocols [23].

2.4. Statistical Analysis. All analyses were performed using SPSS 25.0 (Chicago, IL, USA). Normally distributed data were expressed as mean ± SD. Data that were not normally distributed were log-transformed before analysis and expressed as median with interquartile range. Categorical variables were expressed as a percentage (%). Student’s unpaired t-test and chi-square test were used for comparison between two groups. Analyses were performed separately for different genders and different components of cardiometabolic disorders. Pearson’s correlation and multiple stepwise regression analysis were used to examine the associations between serum CK18 M65ED levels and various parameters. Multiple logistic regression was used to assess the association of serum CK18 M65ED levels with the risk for cardiometabolic disorders. Serum CK18 M65ED levels were entered in the following two ways: as quartiles and as a continuous variable. The odds ratio (OR) was calculated to determine whether the relevant factors were risk factors for cardiometabolic disorders. The number of cardiometabolic disorders for each subject was indicative of the total number of each cardiometabolic disorder component: obesity or central obesity, diabetes, dyslipidemia, and hypertension. Hence, for each cardiometabolic disorder component, the subjects received a 1 if it was present or a 0 if not present. A two-tailed P value < 0.05 was considered indicative of a statistically significant difference.

3. Results

3.1. Clinical Characteristics of the Study Subjects. A total of 588 subjects were enrolled in this study (median age: 40.00 (33.00–49.75) years) and included 340 men and 248 women. Table 1 lists the clinical and laboratory characteristics of the subjects. Subjects with cardiometabolic disorders (n = 310) exhibited higher values for BMI, WC, SBP, DBP, 2hPG, HbA1c, FINS, HOMA-IR, HOMA-B, ALT, AST, GGT, TG, TC, and LDL-C (all P < 0.05) and a lower value for HDL-C (P < 0.001) than those without cardiometabolic disorders (n = 278). Age and FPG did not differ significantly between the two groups (all P > 0.05).

3.2. Serum CK18 M65ED Levels in Different Components of Cardiometabolic Disorders. As shown in Table 1, the median serum CK18 M65ED level for all subjects was 137.54 (76.51–254.39) U/L. The subjects with cardiometabolic disorders showed higher serum CK18 M65ED levels (197.36 (121.13–354.5) U/L) than those without cardiometabolic disorders (83.85 (52.8–153.75) U/L) (P < 0.001). There was a significant difference in the serum CK18 M65ED levels between men and women with and without cardiometabolic disorders (211.60 (132.53–361.30) U/L versus 74.70 (48.22–136.57) U/L in men, respectively, P < 0.001 and 161.96 (98.33–301.95) U/L versus 96.10 (60.83–158.93) U/L in women, respectively, P < 0.001; Figure 2(a)). Serum CK18 M65ED levels were higher in subjects with obesity or central obesity (202.86 (124.18–350.75) U/L) than non-obese subjects (93.66 (57.82–160.6) U/L). Serum CK18 M65ED levels were higher in subjects with diabetes (279.63 (151.59–457.59) U/L) than nondiabetic subjects (124.43 (69.47–223.53) U/L). Serum CK18 M65ED levels were higher in the subjects with dyslipidemia (233.98 (152.82–371.84) U/L) than those without dyslipidemia (103.41 (60.89–184.01) U/L). Serum CK18 M65ED levels were higher in the subjects suffering from hypertension...
(291.61 (182.44–460.18) U/L) than those not suffering from hypertension (124.58 (69.7–218.12) U/L) (all *P* < 0.001; Figure 2(b)).

3.3. Clinical Characteristics and Prevalence of Cardiometabolic Disorders Stratified by Quartiles of Serum CK18 M65ED Levels. The CK18 M65ED quartiles were defined according to the median and interquartile values for the serum CK18 M65ED levels for the entire study population as follows: quartile 1, ≤76.51 U/L (*n* = 147); quartile 2, 76.51–137.54 U/L (*n* = 147); quartile 3, 137.54–254.39 U/L (*n* = 147); and quartile 4, ≥254.39 U/L (*n* = 147). Clinical parameters, such as BMI, WC, SBP, DBP, FPG, HbA1c, HOMA-IR, ALT, AST, GGT, TG, TC, and LDL-C, displayed an increasing trend from quartile 1 to quartile 4 (all *P* < 0.001; Table 2). However, HDL-C displayed a decreasing trend from quartile 1 to quartile 4 (*P* < 0.001; Table 2). In addition, the prevalence of cardiometabolic disorders and its components (obesity, central obesity, diabetes, dyslipidemia, and hypertension) increased from quartile 1 to quartile 4 (all *P* < 0.001; Table 2). As shown in Table 2 and Figure 3, the number of cardiometabolic disorder components also increased from quartile 1 to quartile 4.

3.4. Association of Clinical Parameters with Serum CK18 M65ED Levels. Pearson’s correlation analysis revealed positive correlations between BMI, WC, SBP, DBP, FPG, 2hPG, HbA1c, HOMA-IR, ALT, AST, GGT, TG, TC, and LDL-C, and serum CK18 M65ED levels (all *P* < 0.001) (Table 3). HDL-C showed a negative correlation with serum CK18 M65ED levels. To further identify factors independently affecting serum CK18 M65ED levels, we performed stepwise regression analysis with the serum CK18 M65ED levels designated as the dependent variable and BMI, WC, SBP, DBP, FPG, 2hPG, HbA1c, HOMA-IR, ALT, AST, GGT, TG, TC, HDL-C, and LDL-C levels designated as the independent variables, with the adjustment for gender. The analysis revealed that the levels of DBP (standardized β = 0.207), HDL-C (standardized β = 0.171), ALT (standardized β = 0.474), and HDL-C (standardized β = −0.135) were independently associated with serum CK18 M65ED levels (all *P* < 0.01).

3.5. Serum CK18 M65ED Is an Independent Risk Factor for Cardiometabolic Disorders. We performed a binary logistic regression analysis in which the presence of cardiometabolic disorders was designated as the dependent variable in three different models, and adjustments were made for age, gender, BMI, and other related clinical parameters. The multivariable-adjusted (age, gender, and BMI, model 1) OR of cardiometabolic disorders across the quartiles of CK18 M65ED were 1.00 (95% confidence interval (CI), 1.00–1.00), 2.77 (95% CI, 1.31–5.85), 3.14 (95% CI, 1.43–6.89), and 9.08 (95% CI, 3.91–21.08) (all *P* < 0.001) (Table 4). The association was still significant (*P* = 0.012) after further adjustment for SBP, DBP, ALT, AST, GGT, TG, TC, HDL-C, LDL-C, HOMA-IR, HOMA-B, and HbA1c (model 2).
and maintained significant difference \((P = 0.018) \) after adjustment for SBP, DBP, ALT, AST, GGT, TG, TC, HDL-C, LDL-C, FPG, 2hPG, HbA1c, and FINS (model 3). Considering that CK18 levels are elevated in NAFLD, we adjusted the binary variable of NAFLD with age and gender, and still observed significant association \((P = 0.011, \text{model } 4) \), suggesting that the association of CK18 with cardiometabolic disorders is independent of NAFLD. Upon examining CK18 M65ED levels as a continuous variable, each 1 SD increase in the CK18 M65ED levels was a positive predictor of cardiometabolic disorders \(\text{all } P < 0.05 \) with the adjustment of different variables in different models.

4. Discussion

In the present study, we have demonstrated that serum CK18 M65ED levels are significantly increased in Chinese subjects with multiple cardiometabolic disorders and these levels positively correlate with DBP, HbA1c, ALT, and HDL-C levels. Our analyses showed that increased serum CK18 M65ED levels is an independent risk factor for cardiometabolic disorders, after accounting for general cardiometabolic risk parameters or the presence of NAFLD. Additionally, we found that the prevalence of cardiometabolic disorders and its components increased with increasing quartiles of CK18 M65ED.

Several studies have been conducted to assess serum CK18 levels in NAFLD, as it is one of the most extensively evaluated biomarkers of steatohepatitis [35]. However, to our knowledge, limited studies have examined the association between serum CK18 M65ED levels and the risk for cardiometabolic disorders. In accordance with the results of Tan et al. and Civera et al., we showed that CK18 M65ED is positively correlated with the insulin resistance index of HOMA-IR [20, 21]; however, the correlation was not observed in the multiple stepwise regression analysis. The CK18 M65ED levels positively correlated with fasting glucose levels, and it was associated with cardiometabolic disorders independent of NAFLD status, which is in agreement with the results of Chang et al. [19]. In addition to adult hepatocytes [16], CK18 can be expressed in simple epithelial cells, cholangiocytes, pancreas, and colon [16, 24, 25]. CK18 M65ED can act as a cell death marker in cardiometabolic disorders because of its ability to detect both native and intact CK18 [18]. Previous studies have demonstrated that apoptosis can cause a decrease in the number of circulating mucosal-associated invariant T cells in cardiometabolic diseases [7]. Moreover, myocardial cells undergo death in obesity-associated cardiomyopathy in high-fat diet-fed mice [8]. In the present study, we extend these investigations by providing further evidences of the possibility of cell death in cardiometabolic disorders.

The strong correlation between serum CK18 M65ED levels and the risk for cardiometabolic disorders might be explained by the interactions among various metabolic stress inducers that are activated by nutritional surplus, inflammation, innate immune system, and gut microbiota during the induction of cell death. Under conditions of gluotoxicity, lipotoxicity, and exposure to proinflammatory cytokines or biologically active sphingolipids, cell death mediated by ER stress, 4-hydroxynonenal, and endogenous reactive oxygen species may contribute to the pathogenesis of cardiometabolic disorders [9, 10, 36]. Long-lasting and low-grade chronic inflammation mediated by cytokines and chemokines, which are primarily released by innate immune cells under cardiometabolic stress, is a distinguishing feature of
<table>
<thead>
<tr>
<th>Variables</th>
<th>Serum CK18 M65ED quartiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quartile 1</td>
</tr>
<tr>
<td>n (male/female)</td>
<td>71/76</td>
</tr>
<tr>
<td>Age (years)</td>
<td>39 (33–45)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>22.8 (20.8–24.5)</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>76.0 (67.0–86.0)</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>112.0 (108.5–120.0)</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>75 (70–80)</td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/L)</td>
<td>5.98 (5.16–7.21)</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.5 (5.3–5.7)</td>
</tr>
<tr>
<td>Alanine aminotransferase (IU/L)</td>
<td>14 (11–20)</td>
</tr>
<tr>
<td>Aspartate transaminase (IU/L)</td>
<td>18 (16–21)</td>
</tr>
<tr>
<td>Gamma-glutamyl-transferase (IU/L)</td>
<td>17 (13–26)</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>1.08 (0.77–1.45)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>4.48 ± 0.81</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)</td>
<td>1.31 (1.20–1.48)</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L)</td>
<td>2.77 ± 0.70</td>
</tr>
<tr>
<td>Cytokeratin 18 M65 (U/L)</td>
<td>53.00 (43.08–62.25)</td>
</tr>
<tr>
<td>Cardiometabolic disorders (n, %)</td>
<td>29 (19.73%)</td>
</tr>
<tr>
<td>Obesity (n, %)</td>
<td>4 (2.72%)</td>
</tr>
<tr>
<td>Central obesity (n, %)</td>
<td>25 (17.01%)</td>
</tr>
<tr>
<td>Diabetes (n, %)</td>
<td>1 (0.68%)</td>
</tr>
<tr>
<td>Dyslipidemia (n, %)</td>
<td>2 (1.36%)</td>
</tr>
<tr>
<td>Hypertension (n, %)</td>
<td>1 (0.68%)</td>
</tr>
<tr>
<td>No. of CD components</td>
<td></td>
</tr>
<tr>
<td>One or more (n, %)</td>
<td>29 (19.73%)</td>
</tr>
<tr>
<td>Two or more (n, %)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Three or more (n, %)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Four (n, %)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

*Log transformed before analysis. CK18: cytokeratin 18; CD: cardiometabolic disorder.
cardiometabolic disorders, and their overactive responses can directly contribute to the pathogenesis of such diseases [37–39]. For example, pancreatic β-cell apoptosis due to hyperglycemia and ER stress can contribute to the decreased β-cell mass that characterizes T2D, and the activation of inflamasomes by these harmful factors can lead to β-cell death [9]. Thus, β-cell death and cell death-associated inflammation interact with each other through innate immune receptors [9]. Another explanation might be that altered microbial compositions in patients with cardiometabolic disorders may foster inflammation by producing more proinflammatory molecules such as lipopolysaccharide and peptidoglycans that can interact with host pattern recognition receptors of the innate immune system [40–42]. Winer et al. have demonstrated that obesity-altered gut microbiome can increase the recruitment of macrophages and reduce the

Figure 3: Proportions of participants with multiple cardiometabolic disorders according to serum CK18 M65ED quartiles. Histograms are weighted percentages. The number of cardiometabolic disorders for each subject was the total presence number of obesity or central obesity, diabetes, dyslipidemia, and hypertension; that is, for each cardiometabolic disorder component, the participants received a 1 if this disorder was present, and 0 otherwise. CK18: cytokeratin 18.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Pearson correlation analysis</th>
<th>Multiple stepwise regression analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>P value</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.16</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.01</td>
<td>0.806</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>0.404</td>
<td><0.001</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>0.401</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>0.303</td>
<td><0.001</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>0.315</td>
<td><0.001</td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/L)</td>
<td>0.26</td>
<td><0.001</td>
</tr>
<tr>
<td>2-hour plasma glucose (mmol/L)</td>
<td>0.323</td>
<td><0.001</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>0.234</td>
<td><0.001</td>
</tr>
<tr>
<td>Fasting insulin (μU/mL)</td>
<td>0.249</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0.297</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA-B</td>
<td>0.081</td>
<td>0.06</td>
</tr>
<tr>
<td>Alanine aminotransferase (IU/L)</td>
<td>0.522</td>
<td><0.001</td>
</tr>
<tr>
<td>Aspartate transaminase (IU/L)</td>
<td>0.431</td>
<td><0.001</td>
</tr>
<tr>
<td>Gamma-glutamyl-transferase (IU/L)</td>
<td>0.388</td>
<td><0.001</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>0.329</td>
<td><0.001</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>0.199</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)</td>
<td>-0.339</td>
<td><0.001</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L)</td>
<td>0.153</td>
<td><0.001</td>
</tr>
</tbody>
</table>

§Log transformed before analysis. *Original variables included all the variables with $P < 0.05$ in the Pearson correlation analysis and were adjusted for gender. CK18: cytokeratin 18; HbA1c: glycated hemoglobin A1c; HDL: high-density lipoprotein; LDL: low-density lipoprotein.
Table 4: Odds ratios of cardiometabolic disorders based on serum cytokeratin 18 M65ED as a continuous or categorical variable.

<table>
<thead>
<tr>
<th>M65ED as categories</th>
<th>Model 1<sup>a</sup></th>
<th>P</th>
<th>Model 2<sup>b</sup></th>
<th>P</th>
<th>Model 3<sup>c</sup></th>
<th>P</th>
<th>Model 4<sup>d</sup></th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartile 1</td>
<td>1.00 (1.00–1.00)</td>
<td></td>
<td>1.00 (1.00–1.00)</td>
<td></td>
<td>1.00 (1.00–1.00)</td>
<td></td>
<td>1.00 (1.00–1.00)</td>
<td></td>
</tr>
<tr>
<td>Quartile 2</td>
<td>2.77 (1.31–5.85)</td>
<td>0.008</td>
<td>3.41 (1.13–10.29)</td>
<td>0.03</td>
<td>3.24 (1.00–10.44)</td>
<td>0.049</td>
<td>4.02 (2.31–7.03)</td>
<td><0.001</td>
</tr>
<tr>
<td>Quartile 3</td>
<td>3.14 (1.43–6.89)</td>
<td>0.004</td>
<td>3.74 (1.00–13.95)</td>
<td>0.049</td>
<td>4.96 (1.20–20.47)</td>
<td>0.027</td>
<td>6.64 (3.79–11.65)</td>
<td><0.001</td>
</tr>
<tr>
<td>Quartile 4</td>
<td>9.08 (3.91–21.08)</td>
<td><0.001</td>
<td>14.28 (2.79–73.21)</td>
<td>0.001</td>
<td>16.83 (2.75–103.19)</td>
<td>0.002</td>
<td>18.39 (9.89–34.21)</td>
<td><0.001</td>
</tr>
<tr>
<td>P for trend</td>
<td><0.001</td>
<td></td>
<td>0.012</td>
<td></td>
<td>0.018</td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>M65ED (per 1 SD)</td>
<td>1.92 (1.39–2.65)</td>
<td><0.001</td>
<td>1.90 (1.13–3.19)</td>
<td>0.015</td>
<td>1.97 (1.11–3.48)</td>
<td>0.020</td>
<td>2.75 (2.07–3.66)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

^aModel 1 adjusted for age, gender, and BMI. ^bModel 2 adjusted for variables in model 1 and also for SBP, DBP, ALT, AST, GGT, TG, TC, HDL-C, LDL-C, HOMA-IR, HOMA-B, and HbA1c. ^cModel 3 adjusted for variables in model 1 and also for SBP, DBP, ALT, AST, GGT, TG, TC, HDL-C, LDL-C, FPG, 2hPG, HbA1c, and FINS. ^dModel 4 adjusted for age, gender, and nonalcoholic fatty liver disease (yes, no). Serum cytokeratin 18 M65ED levels: quartile 1: ≤76.51 U/L; quartile 2: 76.51–137.54 U/L; quartile 3: 137.54–254.39 U/L; quartile 4: ≥254.39 U/L. CI: confidence interval; SD: standard deviation.

5. Conclusions

In this study, the serum levels of CK18 M65ED, as a cell death marker, were significantly increased among subjects with cardiometabolic disorders, and these increased levels were associated with the risk for cardiometabolic disorders, independent of other cardiometabolic risk parameters, and NAFLD. Our study suggested that elevated serum CK18 M65ED levels could be used to predict the risk for cardiometabolic disorders.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Ethical Approval

The study was approved and supervised by the Ethics Committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, following the principles of the declaration of Helsinki. All subjects provided written informed consent.

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by the National Natural Science Foundation major international (regional) joint research project of China (grant number 81220108006) and National Natural Science Foundation Council-National Health and Medical Research Council joint research grant of China (grant number 81561128016) to Weiping Jia, General Program of Natural Science Foundation of China (grant number 81870596), Shanghai Pujiang Program (grant number 17PJ1407500), and Municipal Human Resources Development Program for Outstanding Young Talents in Medical and Health Sciences in Shanghai of China (grant number 2017YQ009) to Huating Li. We are very grateful to all of the involved clinicians, nurses, and technicians for dedicating their time and skill for helping with the present study.
References

