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Purpose. The objective of this study was to establish diagnostic technology to automatically grade the severity of diabetic
retinopathy (DR) according to the ischemic index and leakage index with ultra-widefield fluorescein angiography (UWFA) and
the Early Treatment Diabetic Retinopathy Study (ETDRS) 7-standard field (7-SF). Methods. This is a cross-sectional study.
UWFA samples from 280 diabetic patients and 119 normal patients were used to train and test an artificial intelligence model
to differentiate PDR and NPDR based on the ischemic index and leakage index with UWFA. A panel of retinal specialists
determined the ground truth for our data set before experimentation. A confusion matrix as a metric was used to measure the
precision of our algorithm, and a simple linear regression function was implemented to explore the discrimination of indexes
on the DR grades. In addition, the model was tested with simulated 7-SF. Results. The model classification of DR in the
original UWFA images achieved 88.50% accuracy and 73.68% accuracy in the simulated 7-SF images. A simple linear
regression function demonstrated that there is a significant relationship between the ischemic index and leakage index and the
severity of DR. These two thresholds were set to classify the grade of DR, which achieved 76.8% accuracy. Conclusions. The
optimization of the cycle generative adversarial network (CycleGAN) and convolutional neural network (CNN) model classifier
achieved DR grading based on the ischemic index and leakage index with UWFA and simulated 7-SF and provided accurate
inference results. The classification accuracy with UWFA is slightly higher than that of simulated 7-SF.

1. Introduction

The number of people with diabetes mellitus has quadrupled
globally in the past three decades, and diabetes mellitus is
the ninth major cause of death [1]. With the increasing
prevalence of diabetes mellitus in the community, diabetic
retinopathy- (DR-) related visual impairment has become a
serious public health issue [2]. The prevalence rate of DR
in adults with diabetes aged 40 and older has been estimated
to be 34.6% (93 million people) worldwide [3–5].

Diabetic patients have a disease course of more than 20
years, and more than 60% of patients will develop retinopa-
thy [6]. Fundus examination of the retina constitutes part of
the recommended routine physical examination of any
adults with newly diagnosed diabetes and diabetic patients

with a long disease course. Fundus fluorescence angiography
(FFA) can clearly show retinal microaneurysm, nonperfu-
sion areas, and neovascularization [7]. In particular, in eyes
with complicated cataracts, FFA is routinely used to evaluate
retinal vascular retinopathy.

The conventional Early Treatment Diabetic Retinopathy
Study (ETDRS) 7-standard field (7-SF) montage FFA only
images part of the fundus at a time. In recent years, ultra-
widefield angiography (UWFA), capturing nearly 200°, has
been used to image a wider retinal area, including the periph-
eral retina [8]. The significant advantage of UWFA is that it
eliminates the need to stitch together several images to obtain
a full fundus photograph, which is more convenient for clin-
ical work. However, the lesions found beyond 7-SF by
UWFA, and whether to take them into consideration when
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evaluating the severity of DR confused many ophthalmolo-
gists including us. The concepts of ischemic index and leak-
age index were defined as the ratio of nonperfusion area
and leakage area to total retina area in UWFA images, respec-
tively [9, 10], and were introduced to quantitatively analyze
the nonperfusion area and leakage area by UWFA. Several
recent studies have shown that the severity of diabetic reti-
nopathy is closely associated with the ischemic index and
leakage index [10–14]. It is difficult to delineate or quantify
the nonperfusion and leakage areas accurately manually.
Given the large number of diabetes patients globally, this
process is expensive and time-consuming. Therefore, artifi-
cial intelligence (AI) technology for rapid diagnosis and
quantitative analysis for disease staging is urgently needed.

At present, with the rapid development of AI technology
in the medical and health domain, AI technology has wide
applications in ophthalmic imaging, such as fundus color
photography and optical coherent tomography (OCT)
[15–22]. For example, IDx-DR was the first authorized
device to provide a screening decision without the need for
a clinician to also interpret the image or results, making it
usable by health care providers who may not normally be
involved in eye care [22]. A few studies have reported the
application of AI for FFA in DR patients, mainly to identify
microaneurysms, nonperfusion areas, leakage, and laser
spots [23, 24]. These algorithms depend on manual extrac-
tion for DR characterization. It is ineffective, measures only
partial features of a single field of vision, and cannot com-
prehensively grade the disease; thus, its clinical application
is limited. Ding et al. established algorithms to characterize
prognostic anatomic structures in UWFA images, such as
the optic disc or blood vessels [25]. To date, there has been
no research on the application of AI models with UWFA
to comprehensively evaluate disease staging.

Therefore, we created a fully automated algorithm in
UWFA images using scalable deep learning methods and
accurately identified nonperfusion and leakage areas in
synthetic images to establish a prediction model to evaluate
the severity of DR. The prediction model can make a prelim-
inary judgment of the patient’s condition immediately
following examination.

2. Method

More than 5000 DR patients with UWFA examination
between 2015 and 2020 from the eye center of Renmin
Hospital of Wuhan University (Wuhan, China) were retro-
spectively reviewed. The exclusion criteria were as follows:
eyes with opacity of refractive media, preretinal hemorrhage
obscuring fluorescence, and treated eyes. Finally, 280 naive
DR patients were included in this study, including 171 NPDR
patients and 109 PDR patients. Additionally, 119 normal
cases were included for model training and testing. The
inclusion criterion of normal cases was eyes without any fun-
dus disease. In total, 399 eyes were included in this study.

For the data divisions, we employed the 5-fold cross-
validation to estimate the proposed method. Specifically,
cases in each period were randomly divided into 5 groups.
Five independent repeat experiments using each group as

the test set and the remaining groups as the training set,
respectively. In the training stage, the training images are
augmented by flip, rotate, and translation.

2.1. Overview of the Pipeline. Classical generative adversarial
network (GAN) methods generate fake images with general
global similarity to real images. The adversarial strategy is
employed in which the discriminator was gradually confused
the output images of the generator with the real images.
CycleGAN transfers the styles of images in the two domains
to each other. The rule of cycle-consistent of CycleGAN
expands fake image local consistency to real images. How-
ever, the expectation of style transfer in each semantic area
is not balanced. In this study, lesion biomarkers are
demanded to transfer to appearance of normal tissue, and
the remaining should be transformed as little as possible.

A lesion attention enhanced generation approach, joint
optimization of CycleGAN and convolutional neural network
(CNN) classifier, leverages the automated grading of DR in
this paper. The part of CycleGAN prefers to make the trans-
formed image more like a real image of the target domain,
and the part of classifiers prefers to constrain the transformed
content to the relevant part of the category. In addition, the
joint optimization approach extends the transformation of
two domains to the discrimination of multiple categories.

The architecture of the joint optimization model is shown
in Figure 1. Specifically, normal, NPDR, and PDR images are
divided into two groups as normal domain and abnormal
domain. Two groups of GANs (consists of generator and dis-
criminator) translate the inputs into the two domains, sepa-
rately, where the generator GY only outputs abnormal
domain images and generator GX only outputs normal
domain images. When a fake image is fed into the other gen-
erator, the domain of the second generated image will transfer
back to the real image. The cycle-consistent is the pixel level
constraints between real image and the second generated
image, which maintain the shape and spatial position of the
tissue during style transfer. The two groups of GANs and
the corresponding cycle-consistent make up a CycleGAN
for the style transfer between normal image and abnormal
image. However, none of GAN and cycle-consistent has the
ability to distinguish grading of DR. Review the criterion of
grading, local biomarkers are strong evidence for intuitive
diagnosis. The difference image between real image and fake
image reveals pseudobiomarkers with abnormal brightness.
Classifiers for distinguishing the grading of difference images
cooperate with CycleGAN to generate more category-specific
results. Meanwhile, CycleGAN cooperates with classifiers to
find more discriminative information.

In this study, all evaluation criteria are determined by
the proposed unified model, which is supervised only by
the image-level label. We qualitatively locate the abnormal
area from the difference between the real image and the fake
image and the auxiliary diagnosis from the results of the
classifier. We quantitatively assessed the correlation between
ischemia and leakage on the severity of DR.

2.2. Localization of Biomarkers. Accurate location is condu-
cive to the discovery of potential biomarkers or lesion areas.
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The generator GX of CycleGAN replaces biomarkers or dis-
eased areas with fake normal tissue; that is, to generate a
disease-free fake image corresponding to the real image
whose appearance of abnormal areas primarily has been
transformed. The generator GY of CycleGAN supplements
local confusion similar to biomarkers in the real image to
generate a fake abnormal image. The difference between fake
image and real image shows the abnormal areas, thereby
localizing the biomarkers or the lesion areas.

DR-related lesions show a clear difference in brightness
from normal tissues in UWFA. In especial, leakage shows
significant high brightness. The location of the leakage areas
are extensively highlighted in the difference image. The gen-
erator GX transfers an input image to a base normal template
for localization. If the input is an abnormal image, ideally,
the bright spots in the subtraction image would indicate
the lesion areas. If taking a normal image as input, the out-
put image should be similar to the input image, and the
corresponding different image should be an approximately
all-zero image.

2.3. Grade Classification. The difference between real image
and fake image, i.e., subtraction image, is then fed into the
CNN classifiers to diagnose the DR severity. The screening
of all patients diagnosed 3 grades: normal, NPDR, and
PDR. Actually, the classifier CX corresponding generator
GX distinguishes all 3 grades, and the classifier CY corre-
sponding generator GY only distinguishes whether a bio-
marker appears. Subtraction images focus the attention of
the network more on the abnormal areas. A single CycleGAN
model tends to perform a global average attention transfer
process on the images. The joint optimization method
enhances the transfer ability of category-related areas.

On the other hand, the GX branch with classifier CX
extracts more valuable lesion areas to grade the severity of
DR. Notice that the subtraction input is obtained from the
input UWFA image and the generated fake image. There-
fore, the path of GX and CX in the unified model is expanded
to classify UWFA images end-to-end.

2.4. DR-Related Indexes. In this study, we quantitatively eval-
uated the ischemic index and leakage index in correlation
with the severity of DR. Early-phase images (at 30 seconds–
1minute) were used to assess the ischemic index, and late-
phase (at 5–7 minutes) images were used to assess the leakage
index, separately. The abnormally dark areas and abnormally
bright areas are biomarkers of nonperfusion area and leakage
area, respectively, whose ratio to biological standard d2 is
ischemic index and leakage index, and the d2 is determined
by the square of the visible retina. As shown in Figure 2,
the low brightness biomarkers, i.e., nonperfusion area on
UWFA, are obtained from the real image and the fake image
by an automatic detection algorithm. A minimum filter
extracts the local low brightness distribution of an image
which reveals the darker tissue or the nonperfusion area. In
addition, there is a difficulty difference between detection of
leakage and ischemia. To reduce some complexity, we used
a more simple but effective method for leakage detection.

For a UWFA image, the leakage and vessels show the
highest brightness, the perfusion area shows moderate
brightness, and the nonperfusion area shows the lowest
brightness. An eroding and dilating operation expands the
brightness distribution of the perfusion area while the range
of local moderate brightness distribution is maintained.
Based on the fixed local moderate brightness distribution,
the area with lower brightness in the corresponding position
in the image is detected as a suspected nonperfusion area.
The agreement of both the real image and fake image is the
pseudononperfusion area. To combine the distribution of
the nonperfusion area and the distribution of the whole data-
set, each pseudoperfusion area was used as a pseudolabel to
train a U-net. In addition, we employed a label smoothing
strategy [26] to avoid the excessive consistency of pseudola-
bels. Therefore, the nonperfusion area can be automatically
segmented by U-net from real images and fake images, and
the ischemic index is the ratio of the ischemic area to d2.

The bright biomarkers, i.e., leakage and microaneurysms
on UWFA, are obtained from the results of localization and
classification introduced in section A. As shown in Figure 2,

Real normal

Real abnormal

Fake normal

Fake abnormal

GY

GX

CY

CX

Figure 1: Joint optimization of CycleGAN and CNN classifier. A fixed CycleGAN with a pair of extended classifiers was designed to analyze
the DR-related pathological characteristics. We defined the X domain as comprised of normal images and the Y domain as containing
abnormal images. The generators GX and GY mapped X and Y functions, respectively. When given a real X domain image as the input,
the cycle consistency loss constrains the output of GX to be consistent with the input, while a discriminator and a classifier cooperate to
optimize the output of GY to approach domain Y . When the input is a real image of domain Y , the outputs of GX and GY are opposite
to the input of domain X.
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the fake image is close to the normal image domain, where the
abnormally bright areas are replaced by lower brightness
appearance. The difference image of real image and fake image
reveals the anomaly detection of leakage. A thresholding oper-
ation leverages the anomaly map to the segmentation of leak-
age. The leakage index is the ration of leakage area to d2.

3. Results

Two experts defined the location of the macula and the optic
disc as a reference for quantitative comparison. Based on the
location, the range of 7-SF is determined automatically [27],

and the biological standard d2 is determined by the square of
visible retina. As shown in Figure 3, bright microaneurysms
were widely distributed in the NPDR case, in which 7-SF
could not be captured completely. A large nonperfusion area
was located near the temporal retina in the PDR case, while
7-SF captured only the posterior pole perspective.

3.1. Classification. Three disease grades (normal, NPDR, and
PDR) were inferred through the path of generator GX and
classifier CX . In this section, we evaluated classification
results to compare the advantages of UWFA images and tra-
ditional 7-stand field images. The original UWFA images

Fake late image

Real late image

Leakage

ThresholdDifference map

Lesion localization

Detection of leakage

Real early image Pseudo label 

U-net

Fake early image Ischemic

Low brightness fusion

Detection of ischemic 

Figure 2: Detection of biomarkers. The low brightness biomarkers, i.e., nonperfusion areas on UWFA images, were obtained from the real
image and the fake image by an automatic detection algorithm. A minimum filter extracts the local low brightness distribution of an image,
which reveals the darker tissue or the nonperfusion area. The bright biomarkers, i.e., leakage and microaneurysms on UWFA images, are
obtained from the results of localization and classification. The fake image is close to the normal image domain, where the abnormally
bright areas are replaced by a lower brightness appearance. The difference image of the real image and fake image reveals the anomaly
detection of leakage. A thresholding operation leverages the anomaly map to the segmentation of leakage. The leakage index is the ratio
of the leakage area to d2.

Normal

(a)

NPDR

(b)

NPDR

(c)

Figure 3: Comparison of the UWFA and simulated 7-SF. (a) UWFA showed wider retina than simulated 7-SF in the normal eye. (b) UWFA
image on the early phase showed more nonperfusion in the peripheral retina than simulated 7-SF in the NPDR eye (upper), and more
peripheral leakage was found on UWFA image than simulated 7-SF on the late phase (bottom). (c) UWFA image on the early phase
showed more nonperfusion and neovascularization in the peripheral retina than simulated 7-SF in the PDR eye (top), and more
peripheral leakage was found on UWFA image than simulated 7-SF on the late phase (bottom).
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were used to quantitatively evaluate classification perfor-
mance, and the images with the mask of the 7-stand field
were used to the comparison experiment. Two experiments
were trained with the same configuration. The classification
results of the original UWFA images achieved 88.50% accu-
racy, and the images with masks achieved 73.68% accuracy.
In general, the proposed model provides accurate inference
results for disease classification.

In detail, Figure 4 shows the confusion matrix of the
classification results. Normal cases are easy to distinguish
both on the UWFA images and 7-SF images, even though
all normal images are correctly identified on UWFA images.
However, the classification accuracy for NPDR and PDR is
more accurate on UWFA images, which demonstrates the
advantage of a wider visual degree of the retinal range. For
dataset, there are differences in the number of samples in
each category. To balance the evaluation results, the kappa

coefficient is calculated by the confusion matrixes. The orig-
inal UWFA images achieved 0.827 while the images with
masks achieved 0.608, which demonstrates that original
UWFA images achieved very high classification consistency
and much higher than images with masks.

3.2. Statistical Analysis of Indexes. Figure 5 shows the statisti-
cal analysis of the leakage index and ischemic index. The box-
and-whisker plots show that both the ischemic index and leak-
age index are positively correlated with the severity of DR.

Based on the dual biomarker indexes, we implemented a
simple linear regression function to explore the discrimina-
tion of indexes on the grades of DR, shown in Figure 6.
Two thresholds were reached to classify DR severity grades,
which achieved 76.8% accuracy. This demonstrates that
there is a significant relationship between the biomarkers
and the severity of DR.
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Figure 4: The confusion matrix of the classification results. The classification results of the original UWFA images achieved 100.00%
accuracy for normal eyes, 94.50% for PDR, and 76.61% for NPDR, respectively. The classification results of the 7-SF images achieved
94.12% accuracy for normal eyes, 80.73% for PDR, and 54.97% for NPDR, respectively.
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Previous studies have verified the correlation between 2
indexes and the lesion grading. However, deep learning
methods require accurate pixel level standards, and unsuper-
vised methods can only extract one single feature. In this
study, we perform a unified image level supervised model
to implement location, classification, and indexes evaluation,
concurrently. The verification results show that the conclu-
sion of this study is basically consistent with the optimization
of the CycleGAN and CNN model classifier. It means that
this efficient model has great value in UWF data analysis.

4. Discussion

Seventy-five percent of DR patients live in underdeveloped
areaswith insufficient available specialists [28]. Consequently,
millions of people are experiencing vision impairment with-
out proper predictive diagnosis and eye care worldwide. A
few global screening programs have been performed to pre-
vent sight-threatening diseases from devastating; however,
DR exists at too large a scale for such programs to be screened
and managed efficiently on individual level. To address the
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Figure 5: The box-and-whisker plots show that both the ischemic index and leakage index are positively correlated with the severity of DR.
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Figure 6: Canonical discriminant function. In the regression analysis, the arguments were ischemic area and leakage area, and the response
variables were categories, i.e., normal, NPDR, and PDR. It demonstrates that there is a significant relationship between the biomarkers and
the severity of DR.
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shortfalls of current diagnostic workflows, automated solu-
tions for retinal disease diagnosis from screened and graded
fundus images are urgently needed. AI technology has wide
applications in fundus imaging, such as fundus color pho-
tography and optical coherent tomography (OCT) [15, 16,
22]. However, there were few applications of AI in fundus
fluorescein angiography until recently, and AI was merely
used to identifying vascular structures or fluorescein
features [23–25, 29–31].

There are several reasons for this situation. First, fluores-
cein angiography examination is different from other static
examinations, and it is dynamic with varying image collec-
tion times. Dye leakage, staining, and accumulation gradu-
ally appear over time. Therefore, it is difficult to maintain
the homogeneity of the image. Second, when evaluating the
fundus condition, a dozen or even more images from multi-
ple orientations are required. These are the inherent require-
ments of angiography. Moreover, there are great differences
in the fluorescein features and distributions of retinal
diseases at different grades. All of the above reasons present
a great challenge to the application of AI in fundus fluores-
cein angiography in DR.

With the development of AI technology, Pan et al.
achieved multilabel recognition of a single vision field,
including leakage, microaneurysm, neovascularization, non-
perfusion area, and laser spot [24]. This model is closer to
the actual clinical situation than the traditional single-label
model. However, the scope of traditional angiography is lim-
ited, and a single image cannot be used to evaluate the over-
all situation of the fundus. Ultra-widefield images, which
have a wide scope and collect a single image covering most
of the fundus, increase the feasibility for the application of
AI. Ding et al. adapted algorithms that realized the extrac-
tion of blood vessels and the identification of nonperfusion
areas [25]. Nunez do Rio et al. segmented and quantified
nonperfusion of retinal capillaries in UWFA based on deep
learning [29]. However, neither of them achieved the goal
of staging disease.

In this study, we did not extract and analyze any single
features in UWFA images but focused on two indicators:
ischemic index and leakage index. Diabetic retinopathy is a
microvascular lesion, and the mechanism is clear [32]. The
increase in retinal vascular permeability leads to the destruc-
tion of the blood-retinal barrier, causing fluid to leak from
the blood vessel [33]. On the other hand, the destruction of
endothelial cells leads to the occlusion of capillaries and the
formation of ischemia without blood perfusion [6]. The
above results showed the corresponding relationship
between nonperfusion and leakage and the pathogenesis of
diabetic retinopathy, and previous studies also indicated that
the severity of DR is related to the ischemic index and leakage
index [10–13]. We concluded that the ischemic index and
leakage index are good evaluation factors for DR staging.

We proposed a unified generation model, to automati-
cally detect and locate lesions by different category labels,
extract nonperfusion and leakage in ultra-widefield images,
and grade the grade categories of severity. This model
enables us to mark and delineate lesions in batches automat-
ically, while current standard practice consumes consider-

able manpower and time when performed manually. A
GAN consists of a generator network and a discriminator
network, which are trained alternately to achieve the goal
of common optimization. The general guideline is to detect
and locate the nonperfusion area and leakage area through
the classical unpaired generating networks CycleGAN and
CNN, respectively. CycleGAN can generate more realistic
and reliable images with the help of cyclic consistency loss,
and then the CNN classifier classifies the different images
by subtracting the generated images from the real images.
The discriminator and the generator obtain the local optimal
solution in a confrontational way, and CycleGAN and the
classifier cooperate to enhance the ability to generate results
from the lesion area. After that, the prediction model could
be used to differentiate NPDR and PDR based on the ische-
mic index and leakage index, which is in line with routine
clinical diagnostics and has high credibility.

Intuitively, different severity of DR in UWFA corre-
sponds to specific performance. And there is a specific
clinical distinction between the biomarkers of severity. The
collected clinical data in this study includes DR cases of dif-
ferent severity, where each period contains more than 100
cases. For training stage, the augmented training images
supported the model to learn the potential features. The
results show that the AI model can learn the biomarkers that
are consistent with the disease regulars from our dataset.

Previous studies have obtained some encouraging results
of some single indices of DR. However, different indices
come from different models. A unified model that can obtain
multiple indicators is meaningful for the study of multiple
manifestations disease such as DR. To this end, this study
tries to use an extended CycleGAN to discover the potential
indices of DR. Besides, this model only needs the category
labels, instead of the unavailable region labels of previous
deep learning methods. The statistics of indices support the
same conclusion as other studies, which demonstrates the
feasibility of this model.

In addition, this study established a prediction model in
simulated 7-SF for DR grading based on the leakage index
and ischemic index. There is satisfactory accuracy in the rec-
ognition of normal eyes and PDR eyes in 7-SF. At the same
time, we compared the predictive accuracy between the
ultra-widefield vision images and the simulated 7-SF range
and found that more lesions could be found on ultra-
widefield vision images, and the predictive accuracy of
UWFA was slightly better than that of 7-SF. Previous studies
have shown that diabetic retinopathy lesions mainly involve
the middle and posterior pole; most of the lesions appear in
the 7-SF area, so ultra-widefield and 7-SF show some consis-
tency [34]. With the increase in the severity of the disease,
the posterior pole is increasingly vulnerable, and the possi-
bility of its survival decreases. In summary, the algorithm
is applicable for both UWFA and traditional 7-SF angiogra-
phy images and performs better on UWFA images.

The following limitations of this study must be acknowl-
edged. First, the training procedure was based on data
collected from only one clinical center and may not be
generalizable to the overall population with diabetes.
Second, to obtain the leakage index and ischemic index
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accurately, cases with preretinal hemorrhage and vitreous
hemorrhage were excluded, so the universality of the model
is limited and needs to be further optimized in the future.
Additionally, there are distortions and differences in image
brightness in UWFA images, which prevents the accurate
extraction and quantification of the ischemic index and leak-
age index.

Overall, in this study, we adopted a deep learning model
based on the ischemic index and leakage index in diabetic
retinopathy staging for the first time, and the accuracy of
the model was comparable to that of diagnoses made by res-
ident doctors. If this model is widely adopted, it will bring
great convenience to DR patients and clinicians. For exam-
ple, this algorithm could be used as an intelligent UWFA
image analysis system and an electronic medical report man-
agement system in hospitals. Patients can obtain AI diagno-
sis reports immediately after angiography examination and
receive timely information on their condition. Meanwhile,
such a tool could alleviate the workloads of trained special-
ists, allowing untrained technicians to screen and process
many patients objectively without dependence on clinicians.
Specifically, first, the classification results can provide a
quick diagnosis, to assist doctors to quickly locate the image
area that should be paid attention to and give a snapshot of
DR severity classification. Additionally, it is convenient for
doctors to manage and trace patient data, so as to better
grasp the patient’s condition and meet the needs of doctors’
learning and scientific research. Last but not the least, these
visual indexes are reasonable clinical auxiliary diagnostic
indexes, which are classified on this basis, breaking the blind
box dilemma of the application of imaging in artificial intel-
ligence at this stage. In the future, we will continue to opti-
mize the model, including classifying the images in the
limited area of the posterior pole, image quality enhance-
ment, and embedding a supplementary program in the
model to identify vitreous hemorrhage and retinal hemor-
rhage. Finally, we hope that our model can be applied to
general clinical situations and benefit doctors and patients
in county hospitals and rural areas.
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