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Background and Aim. The impact of Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition on glycemic indices in
diabetes mellitus remains far from clear. We explored the effects of PCSK9 inhibition on glycemic indices in the diabetes rat
model. Methods. To prepare the anti-PCSK9 vaccine, a peptide construct called Immunogenic Fused PCSK9-Tetanus
(IFPT) was linked to the surface of nanoliposome carriers. Healthy rats received four subcutaneous injections of the
vaccine at biweekly intervals. Two weeks after the last vaccination, anti-PCSK9 antibody titers, PCSK9 targeting, and
inhibition of PCSK9–low-density lipoprotein receptor (LDLR) interaction were evaluated. After verification of antibody
generation, the immunized rats were intraperitoneally treated with a single dose (45mg/kg) of streptozotocin (STZ) to
induce diabetes mellitus. The levels of fasting blood glucose (FBG) were measured, and the oral glucose tolerance test
(OGTT) as well as the insulin tolerance test (ITT) were carried out to assess glycemic status. At the end of the study, the
total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride, and high-density lipoprotein cholesterol
concentrations were assayed. Histopathology examination of the liver and pancreas was also performed using the
hematoxylin-eosin staining method. Results. The prepared nanoliposomal vaccine could strongly induce anti-PCSK9
antibodies in the vaccinated rats. Within one week following the STZ injection, the FBG level was lower in the vaccinated
group vs. diabetic control group (49% (−171:7 ± 35mg/dL, p < 0:001)). In the OGTT, the injected rats showed improved
glucose tolerance as reflected by the reduction of blood glucose levels over 180min, compared with the diabetic controls.
Moreover, the ITT demonstrated that, after the insulin injection, blood glucose concentration declined by 49.3% in the
vaccinated group vs. diabetic control group. Expectedly, the vaccinated rats exhibited lower (-26.65%, p = 0:03) plasma
LDL-C levels compared with the diabetic controls. Histopathology examination of pancreas tissue demonstrated that the
pancreatic islets of the vaccinated rats had a slight decline in the population of β-cells and few α-cells. Normal liver
histology was also observed in the vaccinated rats. Conclusion. PCSK9 inhibition through the liposomal IFPT vaccine can
improve the glucose and insulin tolerance impairments as well as the lipid profile in diabetes.
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1. Introduction

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a
plasma protein that is majorly generated and released by
the liver cells. The liver-secreted PCSK9 is principally known
for its role in the regulation of low-density lipoprotein (LDL)
receptor (LDLR) on the surface of hepatocytes and, thereby,
hemostasis of LDL cholesterol (LDL-C) in the bloodstream
[1]. The plasma circulating PCSK9 controls the hepatic
LDLR via posttranslational modification through targeting
the extracellular domain of LDLR, epidermal growth
factor-like repeat A (EGF-A), and subjecting it to the lyso-
somal digestion [2]. Indeed, EGF-A is a responsible domain
for the LDLR recycling to the cell surface [3–5], and PCSK9
binding impedes the regular comeback of the LDLR to the
cellular membrane and facilitates its digestion in lysosome
compartments, leading to reduced liver clearance of the
plasma LDL-C [6, 7].

Notably, patients with diabetes mellitus (DM) suffer
from atherogenic dyslipidemia identified by increased
LDL-C, hypertriglyceridemia, and decreased antiatherogenic
high-density lipoprotein (HDL) particles [8, 9]. LDL-C has
been found as a therapeutic target in diabetic dyslipidemia,
and LDL-reducing approaches have been shown to reduce
cardiovascular (CV) events in individuals with diabetes
[10]. Statins are the main LDL-lowering agents, which act
through suppression of cholesterol biosynthesis [11] plus a
multitude of pleiotropic effects [12–18]. Although statin
therapy shows strong effectiveness in ameliorating the CV
endpoint events [19–21], many meta-analyses of random-
ized controlled trials reveal a documented link of the statin
use to the elevated chance of new-onset DM [22–26].

PCSK9 inhibitors, mainly monoclonal antibodies
(mAbs), provide a strong LDL-reducing approach that, in
combination with statins at maximally tolerated doses, can
decrease LDL-C approximately by 73% [27, 28] and decrease
CV outcomes [29–31]. Although data from various clinical
trials firmly show an appreciable mitigating effect of the
PCSK9 inhibitor evolocumab on hyperlipidemia in T2DM
patients [32], there are still some concerns regarding the cor-
relation between PCSK9 inhibitors and DM complications
[33–36]. Therefore, it is essential to evaluate the impact of
a newly developed PCSK9 inhibitor on glycemic indices
and the progression of diabetes.

To address this, preclinical and clinical studies in dia-
betic models and individuals are inevitable. Our previous
study showed that a nanoliposomal vaccine targeting PCSK9
could significantly induce the generation of antibodies
inhibiting the plasma PCSK9 and thereby reducing the
plasma LDL-C in an experimental model of atherosclerosis
[37–40]. To understand the effect of anti-PCSK9 therapy
on glycemic indices, we evaluated the preventive impact of
the nanoliposomal anti-PCSK9 vaccine in rats with strepto-
zotocin- (STZ-) induced diabetes.

2. Methods

2.1. Nanoliposomal Vaccine Preparation and Characterization.
Nanoliposomal vaccine embracing an immunogenic peptide

conjugated to the surface of liposome nanoparticles was con-
structed according to the previously described method [41].
In brief, the lipid film hydration method was employed to
provide liposome nanoparticles. A peptide construct con-
taining PCSK9 and tetanus epitopes termed immunogenic
fused PCSK9-tetanus (IFPT) peptide was attached to the sur-
face of the prepared nanoparticles using the postinsertion
method. The linkage efficiency and peptide content of the
prepared liposomal IFPT (L-IFPT) formulation were mea-
sured by HPLC (high-performance liquid chromatography)
analysis (Knauer; Berlin, Germany). Physical properties of
the peptide-linked liposomes, including particle size, charge,
and homogeneity, were assessed by the dynamic light scatter-
ing (DLS) approach on a Zetasizer (Nano-ZS, Malvern, UK).
The verified L-IFPT formulation was adsorbed to 0.4% alum
adjuvant (Sigma-Aldrich) at the 1 : 1 (v : v) ratio and used for
in vivo study on STZ-induced diabetic rats.

2.2. The Animal. A total of 24 male Wistar Albino rats
(179 ± 5:5 g) were provided by the Laboratory Animal
Research Center of the Faculty of Medicine Mashhad
University of Medical Sciences, Mashhad, Iran. All animal
handling procedures were conducted strictly based on the
animal welfare guidelines approved by the Institutional
Ethics Committee and Research Advisory Committee. Rats
were weighed weekly and at the end of the experiment,
located in an air-conditioned space at a room temperature
of 22 ± 2°C with 12 : 12 h light/dark cycle, and fed a standard
rodent diet and water ad libitum. Upon starting the experi-
ment and prior to STZ-induced diabetes, rats were adminis-
tered either with vaccine formulation or saline buffer. The
tail vein blood collection was carried out two weeks follow-
ing the last immunization for the titration of the plasma
anti-PCSK9 antibody, and after STZ injection for the FBG
measurement. At the end of the experiment, rat euthanasia
was performed by intravenous injection (30mg/kg) of thio-
pental sodium [42, 43], and blood was collected via heart
puncture to check out the plasma lipid profile. Pancreas
and liver tissues were isolated to determine their weight
and cell destruction.

2.3. The Vaccination Scheme. One week before the study, the
rats were domesticated to be randomly subjected into two
groups, a vaccine-treated group (n = 8, 208 ± 6:14 g) and a
nontreated group (n = 16, 207 ± 15:4 g). The vaccine group
rats were biweekly immunized 4 times subcutaneously (s.
c.) with a 200μL L-IFPTA formulation containing 20μg
peptide, while nontreated group rats simultaneously
received saline buffer. The time point of the first immuniza-
tion is referred to as week 0 (W0). Three boosters were then
implicated at W2, W4, and W6 (Figure 1). The blood was
withdrawn at the time point W6 (Figure 1), and the plasma
samples were prepared and used for antibody titer analysis.
The vaccination schedule, including the dose and the dura-
tion, was planned based on our previous study [41].

2.4. Evaluating the Efficacy of Nanoliposomal Anti-PCSK9
Vaccine in Rats. To determine the efficacy of the liposomal
vaccine in rats, the plasma anti-PCSK9 antibody titer, the
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plasma PCSK9 concentration, antibody-targeted PCSK9,
and antibody-inhibited PCSK9/LDLR interaction were ana-
lyzed as explained in our recent study [41].

Concisely, the liposomal vaccine-induced anti-PCSK9
antibody was evaluated by the ELISA method using serially
diluted plasma (1 : 4 × 1 : 400). A microwell plate reader
(Sunrise, Tecan, Switzerland) was employed to detect the
optical density (OD) at 450nm. The dilution factor attrib-
uted to 50% of the maximal optical density (ODmax/2) was
measured to define the antibody titer [41]. To quantify the
level of the free plasma PCSK9 in vaccinated mice, a PCSK9
ELISA kit (CircuLex™, Cy-8078, MBL, Woburn, MA) was
employed as instructed by the manufacturer. This PCSK9
ELISA kit was also used to assay the interaction of vaccine-
produced antibodies with PCSK9 and, thereby, determine
inhibition of the rat plasma PCSK9 by the generated
antibodies [41]. To find the functionality of the induced
antibodies, the ability of the vaccinated rat’s plasma for inhi-
bition of the PCSK9-LDLR interaction in vitro was assessed
by a PCSK9-LDLR in vitro binding assay kit (CircuLex™,
Cy-8150, MBL, Woburn, MA). The higher ELISA OD shows
a higher amount of PCSK9-LDLR interaction, in which in
the presence of anti-PCSK9 antibodies, such interaction is
impeded and, as a result, detected ELISA OD is reduced [41].

2.5. STZ-Induced T1DM. 14 days following the last vaccina-
tion (W8, when the antibody titer was at the peak level,
based on our previous finding [41]), both vaccine-treated
and nontreated groups were subjected to a diabetes experi-
ment to evaluate the antidiabetic effects of the anti-PCSK9
vaccine. Therefore, T1DM condition was induced in
overnight-fasted (12 h) rats by a single intraperitoneal injec-
tion of STZ (45mg/kg, Sigma-Aldrich) freshly dissolved in
citrate-buffered saline (0.1M, pH4.5) [44]. The rats in the
nonvaccinated group were randomized into two groups:
the normal control (NC) group (n = 8; unvaccinated and
received citrate buffer) and the diabetic control (DC) group

(n = 8; unvaccinated and received STZ). The vaccine-
treated group (n = 8) received STZ and was assigned as the
vaccinated STZ-injected (VS) group. The first week after
STZ injection, rats in the DC group had FBG concentrations
> 250mg/dL that confirmed the T1DMmodel [44].

2.6. Oral Glucose Tolerance Test (OGTT). To assess the glu-
cose tolerance ability of each rat, an OGTT was conducted
on rats that were fasted overnight with a glucose dose of
2 g/kg at W9. Briefly, glucose solution was orally given, and
blood glucose concentrations were checked by a glucometer
(EasyGluco, South Korea) at time point 0min (before glu-
cose load) and 30, 60, 90, 120, 150, and 180min after the oral
glucose load [45]. The resultant data were expressed as an
integrated area under the curve for glucose (AUCglucose),
which was calculated by trapezoid rule using GraphPad
Prism version 7.04.

2.7. Insulin Tolerance Test (ITT). An insulin tolerance test
was performed to determine the measure of peripheral utili-
zation of glucose. At W10, insulin (0.8U/kg) was intraperi-
toneally administered to overnight-fasted rats. Blood
glucose was measured at time point 0min (before the insulin
injection) and 15, 30, 45, 60, 75, 90, and 120min after the
insulin injection [46]. The results were expressed as
AUCglucose.

2.8. Lipid Profile Analysis. The plasma levels of LDL-C, HDL
cholesterol (HDL-C), triglyceride (TG), and total cholesterol
(TC) were assessed at the end of the study (W10) with com-
mercial kits (BioSystems) as instructed by the manufacturer.

2.9. Histopathology Examination. At last, rats were eutha-
nized, and organ samples were collected. Immediately upon
removal, small pieces of the isolated pancreas and liver tis-
sues were cut and immersion fixed in 10% buffered formalin.
The formalin-embedded tissues were gradually dehydrated,
embedded in paraffin, cut into 5μm sections, deparaffinized,
and eventually stained using the hematoxylin and eosin

Vaccination

STZ injection

Sacrificing and final sampling

Figure 1: Schematic of animal interventions during the study.
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(H&E) method. The histology of H&E-stained sections was
checked out by an expert pathologist, using light microscopy
supplied with a digital camera under a magnification
of 400x.

2.10. Statistical Analysis. GraphPad Prism (version 7.04) and
IBM SPSS Statistics for Windows, version 20 (IBM Corp.,
Armonk, NY, USA) were used for statistical analysis. The
results were analyzed using the one-way ANOVA and
Bonferroni post hoc multiple comparison test to evaluate
the significance of the differences between the animal
groups. Values were expressed as the mean ± SD or the
mean ± SEM, lower-upper 95% confidence interval of the
mean. Results with p < 0:05 were considered as statistically
significant.

3. Results

3.1. Nanoliposomal Formulation. The empty nanoliposomes
and the IFPT-linked nanoliposomes were found to have a
size range from 150nm to 180nm in diameter, in which

the polydispersity index was <0.2, revealing the preparation
of nanovesicles with high homogeneity. Analysis of surface
charge also showed that the prepared formulations had neg-
ative zeta potential. As revealed by HPLC analysis, 96% of
IFPT peptides added at the beginning were linked to lipo-
some nanoparticles.

3.2. Efficacy of Liposomal Anti-PCSK9 Vaccine in Rats. The
L-IFPTA vaccine could induce a high-titer IgG antibody against
the PCSK9 peptide in rats upon 4 vaccinations in biweekly
intervals (Figure 2(a)). Vaccine-generated anti-PCSK9 antibod-
ies showed specific targeting of the plasma PCSK9 in the vacci-
nated rats. As demonstrated in Figure 2(b), the plasma
concentrations of the free PCSK9 in the vaccine group
(89 ± 7 ng/mL) were significantly (p = 0:002) lower than that
in the control group (154 ± 10 ng/mL). The plasma PCSK9
concentration was significantly reduced by 57.8% in the vacci-
nated rats when compared with the control rats. As revealed
by the PCSK9 inhibition assay using the ELISA method, the
plasma of vaccinated rats could emerge as a noticeably higher
OD450 signal than that of the control rats (Figure 2(c)),
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Figure 2: The function of liposomal anti-PCSK9 vaccine in rats upon 4 vaccinations. (a) Anti-PCSK9 peptide IgG titers (ODmax/2) in
vaccinated and control rats (n = 8/group). (b) Concentrations of the plasma PCSK9 in vaccinated and control rats were 89 ± 7 ng/mL and
154 ± 10 ng/mL, respectively (n = 3 replicates of the pooled samples of 8 rats per group). (c) Direct detection of vaccine-generated anti-
PCSK9 antibodies targeting plasma PCSK9. Increased OD450 is indicative for evaluating the direct binding of anti-PCSK9 antibodies to
plasma PCSK9 from vaccinated and control rats (n = 3 replicates of the pooled samples of 8 rats per group). (d) In vitro evaluation of
PCSK9/LDLR interaction. Plasma sample of vaccine rats contained vaccine-generated anti-PCSK9 antibodies that could decrease PCSK9
interaction to LDLR by 30% when compared with the plasma sample of control rats (n = 3 replicates of the pooled samples of 8 rats per
group). Bars show mean values, error bars show ±SD.

4 Journal of Diabetes Research



showing a direct and specific targeting of the plasma PCSK9
by liposomal vaccine-induced anti-PCSK9 antibody in rats.
Additionally, the induced antibodies could markedly inhibit
in vitro binding of PCSK9 to LDLR, showing the functional-
ity of the induced antibodies. Of note, it was found that in
the attendance of the vaccinated rat’s plasma, in vitro inter-
action of murine PCSK9 and LDLR was significantly hin-
dered by 30%, compared with the plasma sample of the
control group (Figure 2(d)). In sum, the L-IFPTA vaccine
could induce specific and functional antibodies that inhibit
PCSK9-LDLR interaction through specific targeting of the
plasma PCSK9 in rats.

3.3. Body Weight Change. The body weight changes during
the vaccination period in the vaccine-treated (V) and non-
treated control (C) groups were calculated by initial weight
(W0) subtraction from the final weight of the animal at the
time point of STZ injection (W8). The body weight was sig-
nificantly raised in the V group (129:5 ± 8:87 g weight gain,
p < 0:001) and the C group (138:5 ± 12:75 g weight gain,
p < 0:001) (Figure 3(a)). Likewise, the integrated areas
under the weight curve (AUCweight) over the vaccination
period were not statistically different (p > 0:05) in the V
group (1812 ± 22:75 g) and the C group (1806 ± 48 g)
(Figure 3(b)). After STZ injection, body weight gain signif-
icantly failed in the VS and DC groups but not in the NC
group. Hence, during the two weeks after STZ injection,
the body weights of the VS and DC groups had signifi-
cantly dropped by -16:17 ± 6:3% (−50:56 ± 21 g, p = 0:009)
and −14:35 ± 4% (−41:35 ± 10 g, p = 0:01), whereas the
NC group showed a significant body weight gain by 10
± 2:4% (31:85 ± 9:8 g, p = 0:02) (Figure 3(c)).

3.4. Liposomal Anti-PCSK9 Vaccine Reduces FBG Levels.
Within one week following STZ injection, the FBG measure-
ment indicated that the DC rats suffered a significant
(p < 0:0001) hyperglycemia (351:7 ± 23:58mg/dL, 95% CI:

301-402mg/dL) compared to the NC group (87 ± 2mg/dL,
95% CI: 82-91mg/dL), verifying STZ-induced diabetes mel-
litus. Interestingly, there was no significant increase in the
FBG levels in the VS group (180 ± 36mg/dL, 95% CI: 94-
266mg/dL) in comparison to the NC group. The FBG level
was 49% (−171:7 ± 35mg/dL, p < 0:001) lower in the VS
group versus the DC group (Figure 4(a) and Table 1).

3.5. Liposomal Anti-PCSK9 Vaccine Improves Glucose
Sensitivity. To evaluate glucose sensitivity in the vaccinated
STZ-injected rats (VS), OGTT was performed one week
after STZ injection (W8). Oral glucose administration
(2 g/kg) in the DC rats showed a significant elevation in
the blood glucose levels (after 60min) and exhibited that
exogenous glucose administration significantly impaired
glucose tolerance compared to the NC rats. The VS rats
had significantly improved glucose tolerance ability com-
pared to the DC rats. Further, the VS rats recorded a signif-
icant reduction in the level of blood glucose over a period of
180min compared to the DC rats (Figure 4(b)). The inte-
grated area under the glucose curve (AUCglucose) over
180min of the DC rats was significantly (p < 0:0001) higher
than that of the NC rats. The measurement of AUC values
demonstrated that blood glucose levels were significantly
(p = 0:007) decreased by 34.5% in the VS rats compared to
the DC rats (Figure 4(c)). In the VS rats, glucose levels after
60min started a markedly decreasing trend to reach baseline
levels at time 180, while in the DC group, a consistent level
of glucose was indicated between 60 and 120min. Although
glucose levels had slowly dropped after 120min in the DC
rats, it did not reach baseline levels at 180min (Figure 4(b)).

3.6. Liposomal Anti-PCSK9 Vaccine Improves Insulin
Sensitivity. To measure the insulin sensitivity, an insulin
challenge (0.8U/kg, i.p.) was performed four days after the
OGTT. Blood glucose concentration and AUCglucose in the
DC group were significantly (p < 0:0001) higher at different
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Figure 3: The body weight gain (a) and corresponding areas under the weight curve (AUC weight) (b) in the vaccine-treated and nontreated
control groups during the vaccination period, from week 0 (W0) to week 8 (W8). Data are expressed as the mean ± SD. (c) The body weight
changes two weeks after STZ injection in the vaccinated STZ-injected (VS), diabetic control (DC), and the normal control (NC) rats, from
week 8 to week 10. Data are expressed as the mean ± SEM. ∗∗∗p < 0:001 compared to the NC group.
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time points after insulin administration compared to the NC
rats. Blood glucose concentration and AUCglucose in the VS
rats were significantly (p = 0:006) lower during ITT in com-
parison to the DC rats. Blood glucose concentrations in the
VS rats were not significantly higher at 90 and 120min after

the insulin injection compared with the glucose levels at the
corresponding time points in the NC rats (Figure 4(d)). As
found by comparison of AUC values, blood glucose levels
showed a 49.3% decrease in the VS group compared to the
DC group (Figure 4(e)).
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Figure 4: The levels of fasting blood glucose (FBG) in the vaccinated STZ-injected (VS), diabetic control (DC), and normal control (NC)
rats during the week after STZ injection. Data are represented as the mean ± SEM. ∗∗∗ indicates p < 0:0001 compared to both the VS and
NC groups (a). Oral glucose tolerance test (OGTT) (b) and corresponding areas under the glucose curve (AUCglucose) over 180min (c)
following feeding (2 g/kg) of the vaccinated STZ-injected (VS), diabetic control (DC), and normal control (NC) rats with oral glucose.
Data are represented as the mean ± SD. The mean values of AUCglucose in the VS and DC groups showed a significant difference
(p < 0:0001) compared to the NC group. When compared to the DC group, the mean values of AUCglucose in the VS group were
significantly (p = 0:007) different. The insulin tolerance test (ITT) (d) and corresponding areas under the glucose curve (AUCglucose) over
120min (e) following insulin administration (0.8U/kg) in the vaccinated STZ-injected (VS), diabetic control (DC), and normal control
(NC) rats. Data are represented as the mean ± SD. The mean values of AUCglucose in the VS and DC groups showed a significant
difference (p < 0:0001) compared to the NC group. When compared to the DC group, the mean values of blood glucose levels and
AUCglucose in the VS group were significantly (p = 0:006) lower.
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3.7. Liposomal Anti-PCSK9 Vaccine Reduces the Plasma
LDL-C. At the end of the experiment, the measurement of
lipid indices displayed no significant difference in the plasma
TC and TG between different groups. No difference was
indicated in the plasma HDL-C between the DC and VS
groups. A significantly and appreciably raised LDL-C (90%,
p = 0:001) and HDL-C (45.8%, p = 0:047) were found in the
DC rats compared to the NC rats. The VS rats showed
appreciably lower (-26.65%, p = 0:03) plasma LDL-C levels
than those in the DC rats. Compared to the NC group, the
VS rats exhibited significantly higher plasma levels of LDL-
C (39.4%, p = 0:041) and HDL (51.56%, p = 0:01) (Figure 5).

3.8. The Relative Weights of the Pancreas and the Liver. The
relative organ weights were measured as ðorganweight/
body weightÞ × 100, at the last week of the experiment
(W10). Relative pancreas weights were 0:424 ± 0:045, 0:28
± 0:039, and 0:376 ± 0:017 g/100 g body weight in the VS,
DC, and NC rats, respectively. The relative pancreas weight
of the VS group was significantly higher (51 ± 14:6%,
p = 0:001) than that of the DC group, while there was no sig-
nificant difference when compared to the NC group. How-
ever, the relative pancreas weights of the DC group showed
a 34 ± 23% (p = 0:02) decrease compared to the NC group.
In the case of the liver, the relative weights were found to
be 3:33 ± 0:42, 3:73 ± 0:25, and 4:01 ± 0:62 g/100 g body

weight in the VS, DC, and NC rats, respectively. Statistical
analysis demonstrated that the relative liver weights were
not significantly different between all experimental groups.

3.9. Pancreas Histopathology. The histopathology alterations
in pancreas were exhibited after H&E staining in all rats
(Figure 6). Microscopic examination of pancreas sections
demonstrated the normal morphology and proportion of
exocrine acinar architecture and Langerhans islets without
evidence of cellular degeneration and necrosis, in the NC
rats. Pancreatic islets stained lighter than the surrounding
acinar cells. The normal islet cells showed predominantly
insulin-producing β-cells with granular basophilic cyto-
plasm and few eosinophilic glucagon-producing α-cells.
The acinar cells including pyramidal cells with apical acido-
philic cytoplasm, which stained intensely, were settled in
lobules with prominent basal nuclei (Figure 6(a)). In the
DC rats, pathological alterations of both exocrine and endo-
crine compartments were observed. Swollen-acinar cells
containing small vacuoles were noted. Interlobular ducts
were lined by flattened epithelium. The pancreatic islets
demonstrated a remarkably reduced population of baso-
philic β-cells and several eosinophilic α-cells. The islets con-
tained eosinophilic shapeless deposits, suggestive of cellular
necrosis. The endocrine pancreas demonstrated areas of
degeneration and necrosis among the endocrine cells com-
prising the islets of Langerhans (Figure 6(b)). The pancreatic
islet of the VS rats showed a slightly diminished population
of β-cells and only a few α-cells. Again, cellular degeneration
and necrosis were observed within the islets of Langerhans.
Atrophic acinar cells were evident and the border between
exocrine and endocrine compartments were notably less dis-
tinct. Overall, the VS pancreas exhibited a lesser intensity of
eosin compared to the NC rats (Figure 6(c)).

3.10. Liver Histopathology. The H&E-stained slides of the
liver in the NC, DC, and VS rats displayed the normal
hepatic histological architecture consisting of hepatic lobules
with a normal central vein. Each lobule was made up of radi-
ating sheets, strands of polygonal hepatocytes forming a net-
work around a central vein. Hepatocytes have well-defined
cell borders with pink eosinophilic cytoplasm and mostly
central single nuclei; inclusions were not found. There were
no hemorrhagic areas or fibrosis evident (Figures 6(d)–6(f)).

4. Discussion

A direct association between DM and elevated risk of “ath-
erosclerotic CV disease” has been documented [47, 48].

Table 1: Statistical analysis∗ of FBG values in the different experimental groups, one week after STZ injection.

Groups Mean 1 (mg/dL) Mean 2 (mg/dL) Mean difference SE of difference 95% CI of difference p value

DC vs. NC 351.7 87 264.8 32.6 184.5 to 345 <0.0001
VS vs. NC 180 87 93 37.8 -186.4 to 0.2 0.0506

VS vs. DC 180 351.7 -171.7 35 85 to 258 <0.0001
∗Statistical analysis was performed using one-way ANOVA and Tukey-Kramer’spost hoc multiple comparison test. CI: confidence interval; DC: diabetic
control group; FBG: fasting blood glucose; NC: normal control group; SE: standard error; VS: vaccinated STZ-injected group; vs.: versus.
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Figure 5: The plasma levels (mg/dL) of total cholesterol (TC), low-
density lipoprotein cholesterol (LDL-C), triglyceride (TG), and
high-density lipoprotein cholesterol (HDL-C) in the vaccinated
STZ-injected rats (the VS group), diabetic control rats (the DC
group), and normal control rats (the NC group) at the end of the
study. N = 8. Data are expressed as the mean ± SEM.
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The most established therapeutic target for managing
diabetes-related CV complications is LDL-C [10]. PCSK9
inhibition is a safe and effective LDL-lowering approach.
However, experimental and Mendelian randomization
investigations demonstrated that genetic variants of PCSK9
manifesting reduced LDL-C levels are accompanied with
increased FBG levels and an elevated chance of DM
[34–36]. Hence, the safety and efficacy of PCSK9 inhibitors,
especially those apart from mAbs, regarding the regulation
of glycemic indices in diabetes require further investigations.

Here, we demonstrated for the first time the impact of
PCSK9 inhibition via the vaccination approach on STZ-
induced DM in diabetic rats. Interestingly, the results
showed that prophylactic administration of the anti-PCSK9
vaccine can drop LDL-C levels and protect against the pro-
gression of STZ-induced diabetes, which was related to a sig-
nificant improvement of glycemic indices including FBG,
OGTT, and ITT, together with lower histopathological
changes in the liver and the pancreas tissues. The liposomal
anti-PCSK9 vaccine was shown to decrease the plasma

(a) (b)

(c) (d)

(e) (f)

Figure 6: Histopathology of the pancreas in the normal control (NC) group (a), the diabetic control (DC) group (b), and the vaccinated
STZ-injected (VS) group (c) at 400x magnification. Histopathology of the liver in the normal control (NC) group (d), the diabetic
control (DC) group (e), and the vaccinated STZ-injected (VS) group (f) at 400x magnification.
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concentrations of functional free PCSK9 in diabetic rats
through direct and specific targeting, which was associated
with suppression of PCSK9/LDLR interaction, causing an
alleviation of plasma LDL-C.

The LDL-lowering effect of the liposomal anti-PCSK9
vaccine has been also found in our other preclinical studies
where the preventive [37, 38] and the therapeutic [39, 40]
effects in hypercholesterolemic mice as well as the safety of
the vaccine in healthy nonhuman primates [49] were evalu-
ated. Such an effect has been similarly reported by the stud-
ies using other PCSK9 inhibiting vaccines, including the
AFFITOPE®-based anti-PCSK9 vaccine [50, 51], a human
recombinant protein-based anti-PCSK9 vaccine [52], and a
vaccine comprised of virus-like particles displaying PCSK9
peptides [53]. Interestingly, the just-mentioned vaccine
approaches significantly ameliorated hypercholesterolemia
in mouse models, such as APOE∗3Leiden.CETP mice used
by the AFFiRiS group for developing the AFFITOPE®
vaccine [51].

STZ-induced diabetes is a model of DM characterized by
hyperlipidemia and β-cell dysfunction, causing the insulin
deficiency and subsequent hyperglycemia and loss of body
weight in the experimental animals. In our study, markedly
elevated blood glucose, as well as intemperate intake of food
and water, were seen in STZ-treated rats (DC group), in
comparison to the normal control rats (NC group). STZ-
induced hyperglycemia was found to be inhibited in vacci-
nated rats (VS group). The FBG measurement revealed that
the blood concentration of glucose in VS rats was not signif-
icantly different from the normal control, which was both
markedly lower compared with DC rats. As shown by OGTT
analysis, glucose tolerance was significantly impaired in the
DC group compared to NC. The anti-PCSK9 vaccine pro-
tected VS rats against STZ-induced glucose intolerance and
improved glucose sensitivity in the VS group when com-
pared with the DC group. ITT assessment revealed that the
insulin sensitivity in STZ-treated rats was profoundly
decreased, and the PCSK9 vaccine inhibited such deficiency
in VS rats, leading to the enhanced peripheral utilization of
glucose via the anti-PCSK9 vaccination. Hence, STZ-
treated rats on the insulin challenge did not show a signifi-
cant drop in their blood glucose concentrations, underlying
that these diabetic rats lost their peripheral insulin sensitivity
and therefore could not use the exogenously administered
insulin to decrease glucose concentrations. Such finding
shows that the anti-PCSK9 vaccination can protect VS rats
against STZ-induced insulin resistance.

Our findings can be supported by the Fourier trial [54]
that showed the HbA1c and fasting blood glucose levels are
comparable among patients with diabetes, prediabetes, or
normoglycaemia treated either with evolocumab or placebo.
Moreover, results from a comprehensive analysis of several
independent phase 3 clinical trials including subjects with-
out DM show that alirocumab exerts no significant effect
on the incidence of DM, or on fasting blood glucose (FBG)
and HbA1c, in comparison to either ezetimibe or placebo
after a 6–18-month follow-up period [55]. However, several
Mendelian randomization studies have revealed that loss-of-
function mutations in the PCSK9 gene are correlated with

lower LDL-C but higher plasma concentrations of fasting
glucose and elevated risk of DM [34–36]. Besides, local defi-
ciency—but not plasma levels—of PCSK9 has been shown to
be responsible for overexpression of LDLR in pancreatic
cells, which leads to increased intracellular cholesterol
amount and β-cell damage [56]. These results suggest that
anti-PCSK9 mAbs, which inhibit PCSK9 merely in the blood
circulation, may exert no negative influence on the function
of β-cells, while in the mentioned Mendelian study, the
impact of global PCSK9 deficiency was evaluated.

Furthermore, weight loss is a hallmark of DM due to the
destruction of structural proteins and muscle damage, which
are complications of insulin deficiency. Lack of insulin-
induced nutrient uptake promotes hyperphagia, while
hyperglycemia induces polyuria and ensuing polydipsia.
Although the anti-PCSK9 vaccine could protect the vaccinated
rats against STZ-induced hyperglycemia and improved glu-
cose hemostasis to the same extent as the control rats, the loss
of body weight gain in the VS group was evident in a similar
fashion to the DC group. Such contradictory effects of the vac-
cination on STZ-induced diabetes can be explained by the
exacerbated lipolysis and the elevated lipid peroxidation lead-
ing to weight loss in STZ-treated rats [57].

In summary, the aforementioned findings suggest that
LDL lowering via liposomal vaccine-induced anti-PCSK9
antibodies not only does not exert side effects on glycemic
control but also can improve glycemic indices and insulin
sensitivity in diabetic animals. The present findings call for
additional studies in other experimental models of diabetes
to confirm the positive impact of PCSK9 immunization on
glycemic indices.
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