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Objective. To systematically study the mechanism of cordyceps cicadae in the treatment of diabetic nephropathy (DN) with the
method of network pharmacology and molecular docking analysis, so as to provide theoretical basis for the development of
new drugs for the treatment of DN. Methods. TCMSP, Symmap, PubChem, PubMed, and CTD database were used to predict
and screen the active components and therapeutic targets for DN. The network of active components and targets was drawn
by Cytoscape 3.6.0, the protein-protein interaction (PPI) was analyzed by the STRING database, and the DAVID database was
used for the enrichment analysis of intersection targets. Molecular docking studies were finished by Discovery Studio 3.5.
Results. A total of 36 active compounds, including myriocin, guanosine, and inosine, and 378 potential targets of cordyceps
cicadae were obtained. PPI network analysis showed that AKT1, MAPK8, and TP53 and other targets were related to both
cordyceps cicadae and DN. GO and KEGG pathway analysis showed that these targets were mostly involved in R-HSA-
450341, 157.14-3-3 cell cycle, and PDGF pathways. Docking studies suggested that myriocin can fit in the binding pocket of
two target proteins (AKT1 and MAPK8). Conclusion. Active ingredients of cordyceps cicadae such as myriocin may act on DN
through different targets such as AKT1, MAPK8, and TP53 and other targets, which can help to develop innovative drugs for
effective treatment of DN.

1. Introduction

Diabetic nephropathy (DN), also known as diabetic kidney
disease (DKD), is one of the most common secondary
nephrosis with high incidence rate and low cure rate. DKD
develops in approximately 40% of patients who are diabetic
and is the leading cause of chronic kidney disease (CKD)
worldwide [1]. It increases the death rate in diabetic patients
[2]. At present, there are effective approaches that can reduce
the incidence of diabetic kidney disease and postpone its pro-
gression such as controlling blood glucose levels and blood
pressure as well as blockade of the renin-angiotensin-
aldosterone system [3]. Many researches of traditional Chi-
nese medicine have also been carried out in the treatment
of DN and have made some achievement in recent years,

such as berberine [4], Qidan Dihuang grain (QDDHG) [5],
and Danggui Shaoyao San (DSS) [6]. The mechanism of
action may be multifaceted, such as regulating glucose
metabolism, correcting lipid metabolism disorder, inhibiting
the activation of polyol pathway, antioxidative stress,
improving the structure and function of podocytes, inhibit-
ing inflammatory response, and intervening cell signal
transduction. However, there remains an urgent need for
innovative drugs to treat DN.

Cordyceps cicadae, also called “Chan Hua,” belongs to
the family Clavicipitaceae, Ascomycotina, and its anamorph
is Isaria cicadae Miq. Furthermore, cordyceps cicadae has
been used as a substitute for cordyceps sinensis [7]. Cordy-
ceps cicadae is one of the most famous traditional Chinese
medicines and has been used for about 1600 years in China.
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Cordyceps cicadae is a kind of cordyceps fungus produced
by Paecilomyces sp. after infecting cicada. It belongs to the
same insect fungus complex as cordyceps sinensis. Li’s
research has suggested that HEA, one active component of
cordyceps cicadae, could alleviate many diabetes complica-
tions in genetically obese mice and may offer promise as a
supplement for diabetes management [8]. Another study
showed that cordyceps cicadae had the antidiabetic activity
in a diabetic rat model and could be a promising therapeutic
source in managing diabetes mellitus and its associated com-
plications [9]. It was reported that the results indicated that
CCP, one important component of cordyceps cicadae,
improved insulin resistance and glucose tolerance in DN
rats. Furthermore, CCP intervention significantly sup-
pressed the inflammation, renal pathological changes, and

renal dysfunction, slowing down the progression of renal
interstitial fibrosis [10].

Network pharmacology, which is aimed at studying the
complex, diverse relationships between targets, drugs,
diseases, and pathways, presents a new approach for drug
discovery [11]. Network pharmacology explores the rela-
tionship between traditional Chinese medicine and disease
at the overall level, which provides a simple way to explain
the mechanism of traditional Chinese medicine treatment.
Network pharmacology uses bioinformatics to help us get a
better understanding of drug actions and thereby to advance
drug discovery.

This study is aimed at exploring the therapeutic effects and
mechanisms of cordyceps cicadae on DN by the network
pharmacology approach. The workflow is shown in Figure 1.
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Figure 1: Network pharmacology workflow of cordyceps cicadae and diabetic nephropathy.
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2. Materials and Methods

2.1. Identification of Candidate Components. Most compo-
nents are collected from the Traditional Chinese Medicine
Systems Pharmacology Database and Analysis Platform
(TCMSP) database (http://tcmspw.com/tcmsp.php). On
account of that, cordyceps cicadae contains almost all the
same active components of cordyceps sinensis; the keywords
are “Cordyceps sinensis” and “cordyceps cicadae” so that the
eligible active components and corresponding targets are
collected. Symmap database (http://www.symmap.org/) was
used to search all the active components and targets with
the keywords of “Cordyceps sinensis” and “cordyceps cica-
dae.” The compounds and corresponding targets with OB
≥ 30% were screened out, and the repetitive compounds
were removed. Moreover, PubMed (https://pubmed.ncbi
.nlm.nih.gov) was used to search the literature for further

information. Finally, the candidate active compounds were
identified.

2.2. Prediction Targets of Candidate Active Compounds. The
targets were obtained from four aspects: (1) PubChem
database (http://pubchem.ncbi.nlm.nih.gov), (2) TCMSP
database, (3) Symmap database, and (4) PubMed database.

2.3. Prediction Targets of Diabetic Nephropathy. With
“diabetic nephropathy” as keywords, the CTD database
was used (http://ctdbase.org/about/) to search genes related
to diabetic nephropathy.

2.4. Network Construction. The active component target
network of cordyceps cicadae was constructed by using the
software Cytoscape 3.6.0 to analyze the association between

Table 1: Candidate compounds of cordyceps cicadae.

No. Name of compounds
Number of
targets

No. Name of compounds
Number of
targets

C1 Oleic acid 24 C32 Cerevisterol 0

C2 EIC 15 C33 Cholesteryl palmitate 0

C3 Arachidonic acid 38 C34 (2R,3S,5S)-5-(6-Aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-ol 3

C4 Linoleyl acetate 4 C35 (2R,3R,4S)-2-(6-Aminopurin-9-yl)-4-(hydroxymethyl)oxolan-3-ol 3

C5 Vitamin C 6 C36 Cordylagenin 1

C6 Uracil 13 C37 CLR 4

C7 Adenine 4 C38 Cinnamaldehyde 12

C8 Styrone 0 C39 Ignavine 0

C9 20-Hexadecanoylingenol 0 C40 Deoxyandrographolide 3

C10 Vitamin G 2 C41 Karakoline 0

C11 D-Mannoheptulose 0 C42 Isotalatizidine 0

C12 Ergosterol 5 C43 Neokadsuranic acid A 0

C13 MTL 2 C44 2,7-Dideacetyl-2,7-dibenzoyl-taxayunnanine F 0

C14 Beta-sitosterol 38 C45 3-Acetylaconitine 0

C15 Caffeine 54 C46 Berberine 12

C16 TGL 0 C47 Neokadsuranic acid C 1

C17 Nicotinic acid 17 C48 Hypaconitine 0

C18 GLB 34 C49 Deoxyaconitine 0

C19 Uralene 15 C50 Adenosine 0

C20 TRE 0 C51 N-(2-Hydroxyethyl)adenosine 0

C21 GUP 23 C52
1-[(2R,3R,4S,5S)-3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-

yl]pyrimidine-2,4-dione
0

C22 Uridine 2 C53 Inosine 89

C23 Thiamine 4 C54 Guanosine 107

C24 Peroxyergosterol 0 C55 GUN 1

C25 Galactomannan 1 C56 Beauverin 0

C26 Palmitic acid 17 C57 N-(4-Aminobenzoyl)-L-glutamic acid 0

C27 Linoleic 14 C58 Myriocin 89

C28 NCA 7 C59 Ergosta-4,6,8(14),22-tetraene-3-one 1

C29 Stearic acid 7 C60 Hyaluronic acid 0

C30 LFA 0 C61 5,6-Epoxyergosta-7,22-dien-3-ol 0

C31 Isoergotamine 0
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components and targets, and the degree between candidate
compounds and targets was analyzed.

2.5. Protein-Protein Interaction (PPI) Network Construction.
The intersection targets of candidate compound and dia-
betic nephropathy were obtained by using the omicshare
website (http://www.omicshare.com/). The intersection tar-
gets of candidate compound and diabetic nephropathy
were imported into the STRING database (https://string-
db.org/) to obtain protein interaction information. The
condition was limited to “Homo sapiens.” The confidence
score with correlation degree was set to ≥0.700. The PPI
data was imported into the software Cytoscape 3.6.0 to
construct the network diagram of intersection target pro-
tein interaction.

2.6. GO and KEGG Enrichment Analysis for Targets. In order
to further analyze the function of the selected targets and
their role in the signal pathway, the intersection targets of

the active components and diabetic nephropathy were
uploaded to the DAVID database for biological process
enrichment analysis and pathway enrichment analysis.

2.7. Prediction of Binding Modes between Myriocin and
Candidate Two Target Proteins. Docking studies were fin-
ished by Discovery Studio 3.5 to explore the predicted bind-
ing modes of myriocin in AKT1 (PDB code: 3OCB) and
MAPK8 (PDB code: 4G1W), respectively, which were
downloaded from RCSB Protein Data Bank (http://
www.pdb.org/). The proteins were prepared using the Pre-
pare Protein protocol in DS3.5, to remove all crystallo-
graphic water, add hydrogen atoms, repair broken chains,
and add CHARMm force field. A sphere binding site was
generated using the define site tool in DS3.5. Before docking,
the small molecule myriocin was prepared using the Prepare
or Filter Ligands protocol in DS3.5. The CDOCKER protocol
in DS3.5 was used to perform the molecular docking. The
images were created by PyMOL.

Figure 2: The active components and target network of cordyceps cicadae. The blue circle represents the component of cordyceps cicadae;
the red diamond represents the target; the size of the node represents the size of the node degree.
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3. Results

3.1. Screening of Bioactive Compounds from Cordyceps
Cicadae. 38 compounds of cordyceps sinensis were found
by TCMSP database. 31 compounds of cordyceps sinensis
were screened by Symmap database with OB ≥ 30%. 12
active compounds of cordyceps cicadae were found by liter-
ature. A total of 61 candidate compounds were found.
According to these methods, 378 targets related to candidate
compounds were found (Table 1).

3.2. Targets and Active Compounds of Cordyceps Cicadae
Network Construction. Targets related to the candidate com-
pounds were obtained by using the above methods, the com-
ponents and targets were imported into the Cytoscape 3.6.0
software, and the network of active compounds and targets
of cordyceps cicadae was obtained (shown in Figure 2). A
total of 61 compounds were screened out, of which 25 com-
pounds were not found corresponding targets in the data-
base. Therefore, Figure 2 only showed the interaction
network between 36 compounds and their related targets.

The blue circle represented the candidate compounds, and
the red diamond represented the targets. The more edges
connecting to the node were, the higher the degree value of
the node was. In this network, guanosine (C54) had 107 tar-
gets, myriocin (C58) had 89 targets, and inosine (C53) had
89 targets. Guanosine and inosine were the common compo-
nents of cordyceps sinensis and cordyceps cicadae, and myr-
iocin was the unique component of cordyceps cicadae. These
multitarget compounds might be the core components of
cordyceps cicadae. PTGS2 (prostaglandin endoperoxidase
synthase 2) and PTGS1 (prostaglandin endoperoxidase syn-
thase 1) were the targets with high degree value in the net-
work, respectively. The targets with higher degree value
might be the key targets for the efficacy of cordyceps sinensis
and cordyceps cicadae.

3.3. Target-DN PPI Network. 377 genes related to DN were
obtained in the CTD database with the inference score > 40.
The 378 targets of compounds were intersected with 377 tar-
gets related to DN, and 85 important targets were obtained.
These 85 targets were uploaded to the STRING database.

Figure 3: Target-diabetic nephropathy protein-protein interaction (PPI) network. AKT1, MAPK8, TP53, INS, MAPK1, IL6, TNF, JUN,
MAPK3, and CASP3 were the targets with higher degree (>30).
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Figure 5: Top 20 of pathway enrichment. The circle size stands for gene numbers, the red color and higher rich factor indicate greater
enrichment of pathways.
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The PPI data was obtained by setting the confidence level to
0.7, and then, the PPI data was imported into the Cytoscape
3.6.0 software to construct the network of protein target inter-
action (shown in Figure 3). Figure 3 shows a network of 85
interacting proteins with 1466 edges. The average degree of
nodes is 34.5. AKT1, MAPK8, TP53, INS, MAPK1, IL6,
TNF, JUN, MAPK3, and CASP3 were the targets with higher
degree (>30).

3.4. Enrichment Analysis by GO and KEGG. 85 intersection
targets were imported into the DAVID database for GO
enrichment analysis and pathway enrichment analysis. The
GO enrichment analysis is shown in Figure 4. The results
of GO enrichment analysis showed that the key intersection
targets were mainly concentrated in BH3 domain binding,
release of cytochrome c from mitochondria, regulation of
mitochondrial membrane potential, and other processes.
The results of pathway enrichment analysis are shown in
Figure 5. Rich factor represented the ratio of the number
of genes in the pathway of differentially expressed genes to
the total number of target genes in the pathway of all genes.

The larger the rich factor was, the greater the degree of
enrichment was. The key targets of this study were mainly
enriched in the R-HSA-450341 signaling pathway, 157.14-3-
3 cell cycle signaling pathway, and PDGF signaling pathway.

3.5. Molecular Docking. Molecular docking studies were car-
ried out to investigate the binding modes of myriocin with
ATK1 and MAPK8. As shown in Figure 6(a), myriocin
bound to AKT1 with four key hydrogen bonds. The carbox-
ylic acid group of myriocin formed two hydrogen bonds
with side chain of LYS179 (length: 2.1Å) and backbone of
GLY294 (length: 2.4Å), respectively. One of hydroxyl
formed one hydrogen bond with side chain of LYS179
(length: 2.1Å). An additional hydrogen bond (length:
2.1Å) was formed between carbonyl of myriocin and back-
bone of ASP439. Similarly, myriocin was docked into the
binding pocket of MAKP8 through two hydrogen bonds
with MET111 (length: 1.7Å) and PHE170 (length: 2.1Å),
shown in Figure 7(a). Figures 6(b) and 7(b) show the inter-
actions between myriocin and ATK1 and MAPK8, respec-
tively, in 2D diagram.
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Figure 6: (a) Proposed binding mode of myriocin with AKT1 (PDB code: 3OCB). (b) 2D presentation of interaction between myriocin and
AKT1.
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4. Discussion

Diabetic nephropathy is one of the most frequent microvas-
cular complications in diabetic patients and is the leading
cause of end-stage renal disease all over the world [12]. In
recent decades, many studies on DN have been carried out,
and some results have been achieved. However, no better
treatment drugs or measures have been produced so far. In
recent years, Chinese traditional medicine in the treatment
of DKD has also carried out a lot of researches and has made
achievements. Wang et al.’s study has shown that cordyceps
sinensis can protect renal tubules and promote renal tubules
repair in animal models of drug-induced acute renal injury,
thus improving renal function [13]. Researches showed that
cordyceps cicadae could alleviate glomerulosclerosis and
improve the chronic renal failure [14–16].

This study systematically studied the potential mecha-
nism of cordyceps cicadae for the treatment of DN by the
method of network pharmacology and molecular docking

analysis and analyzed and constructed the “active
ingredient-target-disease” network diagram of cordyceps
cicadae for the treatment of DN. 36 main active ingredients
of cordyceps cicadae and 85 common targets of DN, includ-
ing myriocin, guanosine, and adenosine, were screened out
through the database search and screening. Besides, key tar-
gets such as AKT1, MAPK8, MAPK1, TP53, IL6, and TNF
were screened out. Molecular docking studies showed the
binding modes of myriocin with ATK1 and MAPK8. AKT
is a serine threonine kinase, a central regulator of cell
growth, proliferation, survival, and metabolism. Podocyte
injury is a predictive indicator of DN. It has been reported
that can inhibit podocyte autophagy and aggravate its apo-
ptosis through the AKT pathway [17]. IL-6 is a proinflam-
matory factor, and one of the important factors in the
occurrence of DN is inflammation. DN patients showed a
higher level of IL-6, which positively correlated with the
extent of proteinuria [18]. IL-6 seemed to be a good bio-
marker of chronic kidney injury; the signal transduction
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Figure 7: (a) Proposed binding mode of myriocin with MAPK8 (PDB code: 4G1W). (b) 2D presentation of interaction between myriocin
and MAPK8.
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inflammatory response it participated in was critical to the
progression of DN. Study suggests that these IL-6 responses
were mediated through a gp130-STAT3-dependent mecha-
nism [19]. TP53 is also called TRIAP1. Under high-glucose
conditions, TRIAP1 is a small conserved protein containing
76 amino acids. It is induced by TP53 under low-level geno-
toxic stress and helps reduce cell death. It has been reported
that TRIAP1 interacts with heat shock protein 70 (HSP70)
to regulate the apoptosis pathway [20, 21]. Studies have
shown that TRIAP1 is a direct target of miR-770-5p. The
expression of miR-770-5p in podocytes is upregulated under
high-glucose conditions, and the downregulation of miR-
770-5p by targeting TRIAP1 can eliminate podocytes
induced by high glucose and inhibit cell apoptosis, which
further proves that TP53 has a potential role in the occur-
rence and development of DN [22]. In a diabetic environ-
ment, the increasing production of glycation end products
activates NF-κB, MAPK, and other signaling pathways,
which in turn mediates the activation of TGF-β signaling
pathways and promotes the synthesis and deposition of
extracellular matrix [23]. MAPK8 is related to lipid metabo-
lism [24], and lipid metabolism disorder is an important risk
factor for the occurrence of DN. GO enrichment analysis
results showed that the key targets were mainly enriched
in BH3 domain binding, release of cytochrome c from
mitochondria, and regulation of mitochondrial membrane
potential biological processes. It was reported in the litera-
ture that the BH3 domain was involved in the process of
cell apoptosis and autophagy [25]. Mitochondria also play
a very important role in the process of cell apoptosis
[26]. The results of pathway enrichment indicated that R-
HSA-450341, 157.14-3-3 cell cycle, and PDGF signal path-
ways may be related to the treatment of DN by cordyceps
sinensis. Among the active compounds of cordyceps cica-
dae, the candidate compounds that may be related to these
targets include myriocin, β-sitosterol, guanosine, arachi-
donic acid, inosine, berberine, cinnamaldehyde, linoleyl
acetate, uralene, linoleic acid, and deoxyandrographolide.
Myriocin (ISP-1, thermozymocidin), an atypical amino
acid, was isolated from the culture broth, mycelia, and
sporoderm-broken spore powders of cordyceps cicadae
[27]. The molecular docking studies showed that myriocin
bound to AKT1 with four key hydrogen bonds as well as
to MAKP8 through two hydrogen bonds. The results
revealed that myriocin, one active compound of cordyceps
cicadae, may act on AKT1 and MAPK8. However, the
main active compounds of cordyceps cicadae such as myr-
iocin that may act on the DN targets require further exper-
imental verifications and explorations. The interaction of
active compounds from cordyceps cicadae needs further
research. In order to verify the effectiveness of network
pharmacological screening of active compounds and tar-
gets, we will further use molecular biology methods to
investigate the effects and molecular mechanism of candi-
date compounds on targets and their effects on DN. These
potential mechanisms for the treatment of DN by cordy-
ceps cicadae will provide good ideas and directions for
the next step of experimental verification and innovative
drug development.

In conclusion, our study predicted target proteins related
to candidate compounds of cordyceps cicadae by network
pharmacology and verified by molecular docking. Since tra-
ditional Chinese medicine contains a variety of active com-
pounds, they can act on multiple targets and signal
pathways at the same time and produce a synergistic effect,
which can be an effective method for the treatment of DN.
Moreover, we can find particularly active compounds of
traditional Chinese medicine. It is possible to develop inno-
vative drugs for the treatment of DN diseases and to break
through the difficult problems in the treatment of DN.
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