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Severe acute pancreatitis (SAP) is a necrotic pancreatic inflammation associated with high mortality rate (up to 70%). Bone
marrow (BM) mesenchymal stem cells (MSCs) have been investigated in pancreatic cellular regeneration, but still their effects
are controversial. Therefore, the present study is aimed at examining the enrichment of the stem cells with ascorbic acid (AA)
and N-acetylcysteine (NAC) and explore their combined action on the expression of the inflammatory cytokines: interleukin
1β (IL 1β), tumor necrosis factor-α (TNF-α), and nuclear factor-κβ (NF-κβ). A total of twenty adult male Sprague-Dawley
albino rats were divided into four groups: the control group, cerulein group (to induce acute pancreatitis), BM-MSCs group,
and combined BM-MSCs with AA and NAC group. Homing and proliferation of stem cells were revealed by the appearance
of PKH26-labelled BM-MSCs in the islets of Langerhans. AA and NAC combination with BM-MSCs (group IV) was
demonstrated to affect the expression of the inflammatory cytokines: IL 1β, TNF-α, and NF-κβ. In addition, improvement of
the biochemical and histological parameters is represented in increasing body weight, normal blood glucose, and insulin levels
and regeneration of the islet cells. Immunohistochemical studies showed an increase in proliferating cell nuclear antigen
(PCNA) and decrease in caspase-3 reactions, detected markedly in group IV, after the marked distortion of the classic
pancreatic lobular architecture was induced by cerulein. It could be concluded that treatment with BM-MSCs combined with
antioxidants could provide a promising therapy for acute pancreatitis and improve the degeneration, apoptosis, necrosis, and
inflammatory processes of the islets of Langerhans. TNF-α, IL 1β, and NF-κβ are essential biomarkers for the evaluation of
MSC regenerative effectiveness.

1. Introduction

Severe acute pancreatitis (SAP) is a serious acute inflamma-
tion of the pancreas. Approximately five to ten percent of

SAP patients develop severe parenchymal necrosis of the pan-
creas [1]. Fulminant or subfulminant pancreatitis is usually
associated with systemic inflammatory response syndrome
(SIRS), multiple organ dysfunction syndrome (MODS), and
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a high mortality rate (up to 70%) [2, 3]. Multiple inflammatory
cytokines are involved in the pathogenesis of SAP, including
proinflammatory cytokines such as interleukin-1 (IL-1), IL-6,
and tumor necrosis factor-α (TNF-α) and anti-inflammatory
cytokines such as IL-10 [4, 5]. Nuclear factor-κβ (NF-κβ) is
one of the Rel protein family of transcription factors that regu-
late the expression of genes related to cellular stress and cyto-
kine production [6], which is comparable to the expression of
the Wnt/β-catenin pathway in chronic mild stress as a poten-
tial regulator of microglia-mediated neuroinflammation [7].
This factor is kept silent in the cytoplasm through the inhibitor
of NF-κβ (Iκβα). Slow degradation of Iκβα has been reported
in induced acute pancreatitis (AP), leading to NF-κβ activation.
NF-κβ activation has been demonstrated in induced AP in
response to the oxidative stress within the acinar cells, which
was associated with upregulation of TNF-α [8].

Experimental therapeutic attempts for the inhibition of
TNF-α production or administration of anti-TNF-α have
been associated with reduced tissue damage and reduced
mortality rate of SAP in animal models [9–12]. Although
the therapeutic role of other cytokines, such as IL-1β and
NF-κβ, is controversial, some studies observed that IL-1β,
prostaglandin E2 (PGE2), and NF-κβ signaling allowed inhi-
bition of SIRS and treatment of experimental SAP [13–16].
Another study proposed that NF-κβ activation resulted in
increased apoptosis and necrotizing pancreatitis associated
with MODS [17].

In previous experimental studies, injection of taurocholic
acid was used to induce the SAP model, by induction of
acute biliary pancreatitis. However, the difficulties of surgery
on small animals held up taurocholic acid usage [18]. There-
fore, researchers used cerulein to produce SAP in the exper-
imental animals. Cerulein was proven to induce rapidly
disseminated pancreatic injury very similar to that of human
pancreatitis [19, 20]. Treatment of AP is still a challenge as
there are no satisfactory therapeutic measures available to
promote pancreatic regeneration.

Bone marrow (BM) mesenchymal stem cells (MSCs) have
been reported to allow tissue regeneration and release soluble
factors which modulate the immune response, in addition to
their high differentiation ability to many other lineages. MSCs
were previously proven to differentiate and allow cellular
regeneration of many tissues such as the gastrointestinal cells,
nerve cells, cardiomyocytes, cartilage, and liver tissue. Jiang
et al. [21] and Takahashi et al. [22] have reported that admin-
istration of BM-MSCs alleviated SAP in rats. Therefore, stem
cell biology and BM-MSC transplantation are becoming a field
of interest for many therapeutic studies [23].

N-acetylcysteine (NAC) is a thiol compound. It is
considered a synthetic precursor of the glutathione. NAC is
a nucleophile that can bind with the reactive metabolites and
increase the activity of the glutathione transferase enzyme
[24]. NAC has potent antioxidant and anti-inflammatory
properties [25]. Another antioxidant is ascorbic acid (AA) or
vitamin C which is one of the essential water-soluble vitamins.
AA is needed for many physiological functions in the human
body mainly through inhibition of oxidative stress [26].
Several human studies have demonstrated the reduction of
the harmful oxidation in the stomach and blood vessels

through the antioxidant effect of vitamin C. The role of
vitamin C in the improvement of biochemical parameters,
including blood glucose level and insulin secretion, has been
reported also in albino rats [27]. It remains uncertain, whether
the protective antioxidant effect of NAC and AA can enhance
the regenerative efficacy of BM-MSC transplantation in SAP.
Currently, there are no definite efficient therapeutic measures
for SAP. The high differentiation potential of BM-MSCs
makes them a promising therapeutic option. In the present
study, the authors investigated the therapeutic feasibility of
BM-MSCs individually and in combination with ascorbic acid
and N-acetylcysteine antioxidants on cerulein-induced SAP in
albino rats.

2. Material and Methods

2.1. Isolation and Culture of MSCs. Fluorescent-labelled bone
marrow MSCs were prepared at the Biochemistry and Molec-
ular Biology Unit, Faculty Medicine, Cairo University. Bone
marrow stromal cells were harvested by flushing the femurs
and tibiae of albino rats with Dulbecco’s modified Eagle’s
medium (DMEM) (Sigma, USA, D5796) with the addition
of 10% fetal bovine serum (FBS) (Sigma, USA, F6178). The
cells were layered in a ratio of 2 : 1 over Ficoll-Hypaque
(Sigma, USA, F8016) in sterile conical tubes and then centri-
fuged. Aspiration of the mononuclear cells was done, and they
were suspended in complete culture medium supplemented
with 1% penicillin-streptomycin (Sigma, USA, P4333) and
incubated at 37°C in 5% humidified CO2 for 14 days with
change of the media every 4 days. The cultures were washed
twice with phosphate buffer saline (PBS) (Sigma, USA,
P5493) at 80% confluence indicated by development of large
colonies. The cells were trypsinzed with 0.25% trypsin (Sigma,
USA, T1426) in 1ml ethylene diamine tetra acetate (EDTA)
(Sigma, USA, E6758) for 5 minutes at 37°C and centrifuged
at 2400 rpm for 20 minutes. The cell pellets were suspended
with serum supplemented medium and incubated in 25 cm2

culture flasks forming the first passage cultures [28, 29].

2.2. Immunophenotyping of the MSCs. The bone marrow
MSCs were washed and suspended in PBS. CD29 (Sigma,
USA, SAB4501582) and CD45 (Sigma, USA, OX-1
84112004) monoclonal antibodies were added to the cells
and kept for 1 hour in 4°C. Incubation of the cells with anti-
mouse immunoglobulin G fluorescein-conjugated secondary
antibody (Millipore Corp., Temecula, CA) was implemented
for 45 minutes on ice. Cell suspensions were washed twice
and then analyzed on a FACSCalibur flow cytometer [30, 31].

2.3. Labelling of the MSCs with PKH26. MSCs were labelled
with fluorescent PKH26 (Sigma, USA, MINI26) according
to the manufacturer’s recommendations [32]. Detection of
cell viability was done by adding 1 : 1 ratio of cell suspension
and 0.4% trypan blue stain. Viable cells appeared shiny with-
out staining under the phase contrast microscope [33].

2.4. Animals. A total of twenty adult male Sprague-Dawley
albino rats weighing 200-250 g each and 4-6 months old were
used in the current study. They were locally bred at the animal
house at the Faculty of Medicine, Cairo University, Egypt. The
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animals were given two weeks’ acclimatization period before
starting the experiment. The animals had access to food and
water ad libitum and were housed at room temperature. The
experiment proposal was approved by the Ethics Committee,
College of Medicine, Cairo University. The rats were treated
in accordance with the international guidelines for the care
and use of laboratory animals including the way of animal treat-
ment, anesthesia, methodology of the collection of the MSCs
from the animal’s bone marrow, and their use in the experi-
mental research. Minimal animal sufferings were ensured.

2.5. Experimental Design. The animals were divided ran-
domly into four groups of five rats each as follows.

2.5.1. Group I (Control Group). The rats received two intra-
peritoneal injections of 0.9% saline at two-hour intervals,
one systemic injection (through the caudal vein) of 0.5ml
phosphate-buffered saline (PBS) (P5493, Sigma, USA) with-
out MSCs and 1ml saline orally with gastric gavage once
daily for 30 days.

2.5.2. Group II (Cerulein-Treated Group). Two intraperito-
neal injections of 100μg/kg body weight of cerulein
(Sigma-Aldrich Co., Taufkirchen, Germany) was applied to
the five rats of the group at a two-hour interval; each injec-
tion contained 50% of the dose [34].

2.5.3. Group III (Cerulein and MSCs-Treated Group). The
rats received one systemic injection (through the caudal
vein) of MSCs (1 × 106) diluted in 0.5ml of PBS just before
cerulein injection at the same dose of group II [29, 35].

2.5.4. Group IV (Cerulein, MSCs, and Antioxidant Mixture-
Treated Group). The rats received 100mg/kg body weight of
L-ascorbic acid [36] and a similar dose of N-acetylcysteine
(SEDICO Pharmaceutical Company, 6th of October, Egypt)
[37], orally with gastric gavage in 1ml saline vehicle per dose,
once daily for 30 days, one systemic injection (through the
caudal vein) of MSCs (1 × 106) diluted in 0.5ml of PBS and
cerulein at the same dose of group II.

At the end of the experiment, on the 30th day, blood
samples were collected from the retroorbital plexus using
capillary glass tubes. The rats were weighted and sacrificed
by intraperitoneal injection of overdose of pentobarbital:
40mg/kg body weight. The pancreas of each animal was
dissected. Specimens were fixed for light microscopic, fluo-
rescent, and immunohistochemical studies. Other specimens
were prepared directly for gene expression studies [38].

2.6. Biochemical Studies

2.6.1. Blood Glucose Level. Three days after injection with cer-
ulein, random blood glucose levels were detected using a gluc-
ometer (ACON Laboratories, Inc., USA). The rats were tested
for hyperglycemia and diagnosed diabetic when the random
blood glucose level became higher than 220mg/dl [39]. Blood
glucose levels weremeasured also at the end of the experiment.

2.6.2. Fasting Serum Insulin. Fasting serum insulin level was
determined using the Ultra-Sensitive Mouse Insulin Enzyme-
Linked Immunosorbent Assay (ELISA) Kit (Crystal Chem)

from the blood samples collected just before rat scarifica-
tion [40].

2.7. Detection of Studied Genes by Quantitative Real-Time
Polymerase Chain Reaction (QRT-PCR). The specimens
obtained from the pancreas of all rats (0.2mg) were homoge-
nized in PBS, pH7.4 using tissue Lyzer (Qiagen; Hilden,
Germany). The homogenate was centrifuged at 8000 xg for
20 minutes; then, the supernatant was used for total RNA
extraction. Total RNA was extracted using the RNeasy Mini
Kit; cat no: 217004 (Qiagen, Hilden, Germany) according to
the manufacturer’s protocol. cDNA was synthesized by
reverse transcription reaction using QuantiTect Reverse Tran-
scription Kit; cat no: 205311; (Qiagen, Hilden, Germany). The
gene expression for the tumor necrosis factor alpha (TNF-α),
interleukin 1 beta (IL-1β), and nuclear factor kappa β (NF-
κβ) levels was amplified from cDNA using the QuantiTect
SYBR Green PCR Kit cat no: 204141 (Qiagen, Germany)
and the QuantiTect primer assays cat no: 249900 ((Rn_
Tnfrsf1a_1_SG QuantiTect Primer Assay, ID QT00388346),
(Rn_Il1b_1_SG QuantiTect Primer Assay, ID QT00181657)
and (Rn_Nfkb2_1_SG; ID: QT00396823)), , respectively. The
ACTB primer sequence was used as a housekeeper gene. All
samples were analyzed using the 5plex Rotor-Gene PCR Ana-
lyzer (Qiagen, Germany). The 2ΔΔCt method was conducted
for the analysis of gene expression levels, using ACTB as an
endogenous reference control for normalization purposes [41].

2.8. Light Microscopic Study. The dissected pancreatic speci-
mens were fixed in 10% formaldehyde solution, processed
and embedded to obtain paraffin blocks, and cut at 5μm
thickness sections. The sections were deparaffinised in xylol
solution then rehydrated in 100%, 95%, and then 70% alco-
hol and washed in distilled water. Sections were prepared for
fluorescent study, and others were subjected for the follow-
ing examinations.

2.9. Hematoxylin and Eosin (H&E) Stain. Half of the sec-
tions, prepared from the pancreatic specimens for light
microscopic studies, were stained with hematoxylin for ten
minutes. The basophilic structures of the cytoplasm and
the nuclei were stained with blue color. Then, the sections
were stained in one percent aqueous eosin for three minutes.
The acidophilic structures of the cytoplasm were stained
with red color. The sections were dehydrated in alcohol
(70%, 90% then 100%) then cleared by xylene. The slides
were removed from xylol and mounted in Canada balsam
and put on the cover slip [42].

2.10. Immunohistochemical Reaction. The rest of the pancre-
atic specimens prepared for light microscopic studies were
cut at 5μm thickness and then collected on poly-L-lysine-
coated slides. The sections were deparaffinised into two
changes of xylene and rehydrated through graded washes
of ethanol in water and finally rinsed in pure water. Then,
they were treated with 0.9% hydrogen peroxide in absolute
methanol for 10min. Antigen retrieval was achieved by heat-
ing the sections in 10mm sodium citrate buffer, in a water
bath at 95°C for 30 minutes. The sections were rinsed twice
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in PBS Tween 20 for 2 minutes. Then, they were blocked
with 5% normal mice serum for 30 minutes at room temper-
ature. Incubation with the following primary antibodies was
performed for 30 minutes:

(1) Proliferating cell nuclear antigen (PCNA): this anti-
gen is a cofactor of DNA polymerase-δ which is
essential for DNA replication, DNA repair, and
chromatin remodelling. It was detected by rabbit
polyclonal IgG (FL-261; catalog number SC-7907,
200μg/ml, dilution 1 : 50, Santa Cruz Biotechnology,
USA). Brown discoloration of the nuclei, in the pro-
liferating cells, indicates positive reaction of nuclear
regeneration [43]

(2) Caspase-3 antibody: caspase-3 is an essential media-
tor of programmed cell death: apoptosis. Anti-
caspase-3 mouse monoclonal primary antibody
(Dako Company, Cairo, Egypt; catalog no. IMG-
144A at a dilution 1/200) was used [44]. The slides
were rinsed in PBS, incubated with 2 drops of bio-
tinylated secondary antibody for each section for 20
minutes, and then rinsed with PBS. Substrate chro-
magen (DAB) mixture was applied for 5 minutes
then rinsed with distilled water. The slides were
stained with hematoxylin and then dehydrated and
mounted. Brown discoloration of the cytoplasm
indicates positive reaction of the apoptotic cells [45].

2.11. Histomorphometric Measurements. Ten nonoverlap-
ping fields, randomly chosen per sections stained for immu-
nohistochemical reactions, at a magnification of 400 were
examined by an independent observer, using Leica LAS,
V3.8 image analyzer computer system (Switzerland). The
image analyzer was calibrated automatically to convert the
measurement units (pixels) into micrometer units. The area
percent of positive immune reaction for PCNA- and
caspase-3-stained sections was measured. The area percent
represented the areas of the positive reaction, masked by a
binary blue color to the area bounded within a standard
measuring frame (7286.783μm2) [46].

2.12. Statistical Analysis. All the measurements were
expressed as mean and standard deviation (±SD) and sub-
jected to statistical analysis using “SPSS 22” (SPSS, Inc., Chi-
cago, Illinois, USA) software. Analysis of variance using one-
way (ANOVA) and post-hoc tests were utilized for compar-
ison between quantitative variables. Results were considered
significant when the p value was less than 0.05 [47].

3. Results

3.1. Biochemical Results

3.1.1. Body Weight. The mean body weight of the rats of
group II (cerulein-treated group) was significantly decreased
(43.6%) compared with the control group (group I). How-
ever, in group III (cerulein+MSCs-treated group), the body
weight was significantly decreased (66.79%) compared with
the control group (group I) and significantly increased com-

pared with group II (cerulein-treated group). In addition, it
was significantly decreased in group IV (cerulein+antioxi-
dants+MSCs-treated group) compared with the control group
(82.33%) and significantly increased compared with both
group II (cerulein-treated group) and group III (cerulein
+MSCs-treated group) (Table 1).

3.1.2. Fasting Blood Glucose. The mean fasting blood glucose of
the rats of group II (cerulein-treated group) was significantly
increased compared with the control group (group I). How-
ever, in group III (cerulein+MSCs-treated group), the fasting
blood glucose was significantly increased compared with the
control group and significantly decreased compared with
group II (cerulein-treated group). In addition, it was signifi-
cantly increased in group IV (cerulein+antioxidants+MSCs-
treated group) compared with the control group and signifi-
cantly decreased compared with group II (cerulein-treated
group) and group III (cerulein+MSCs-treated group) (Table 1).

3.1.3. Fasting Serum Insulin. The mean fasting serum insulin
of the rats of group II (cerulein-treated group) was signifi-
cantly decreased compared with the control group (group
I). However, in group III (cerulein+MSCs-treated group), it
was significantly decreased compared with the control group
and significantly increased compared with group II (ceru-
lein-treated group). In group IV (cerulein+antioxidants
+MSCs-treated group), it was significantly increased com-
pared with only group II (cerulein-treated group) (Table 1).

3.2. Real-Time PCR for IL-1β, TNF-α, and NF-κβ Gene
Expressions. The mean of the real-time PCR for IL-1β gene
expression of the rats of group II (cerulein-treated group)
was significantly increased compared with the control group
(group I). However, in group III (cerulein+MSCs-treated
group) and group IV (cerulein+antioxidants+MSCs-treated
group), it was significantly increased compared with the control
group and significantly decreased compared with group II (cer-
ulein-treated group). Themean of the real-time PCR for TNF-α
gene expression of the rats of group II (cerulein-treated group)
was significantly increased compared with the control group
(group I). In addition, in group III (cerulein+MSCs-treated
group) and group IV (cerulein+antioxidants+MSCs-treated
group), it was significantly decreased compared with group II
(cerulein-treated group). The mean of the real-time PCR for
the NF-κβ gene expression of the rats of group II (cerulein-
treated group) was significantly increased compared with the
control group (group I). However, in group III (cerulein
+MSCs-treated group), it was significantly increased compared
with the control group and significantly decreased compared
with group II (cerulein-treated group). In addition, it was signif-
icantly increased in group IV (cerulein+antioxidants+MSCs-
treated group) compared with the control group and signifi-
cantly decreased compared with group II (cerulein-treated
group) and group III (cerulein+MSCs-treated group) (Table 2).

3.3. Light Microscopic Results

3.3.1. PKH26 Fluorescence Stain. MSCs with the cerulein-
treated group (group III) showed homing of PKH26-labelled
red fluorescent cell masses within the pancreatic tissue. While
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the specimens of the rats of group IV (MSCs, antioxidant mix-
ture, and cerulein-treated group) revealed increase density of
homing and proliferation of the PKH26-labelled masses of
MSCs inside the pancreatic tissue (Figure 1).

3.3.2. Hematoxylin and Eosin (H&E) Stain. The sections of
the pancreatic specimens of the rats of the control group
(group I) showed normal architecture of the islets of Langer-
hans. They appeared lightly stained, well defined with a
regular outline and contained a large number of islet cells.
The cells revealed vesicular nuclei and prominent nucleoli.
The islets were surrounded by closely packed serous acini
with a regular outline, rounded nuclei, and dark cytoplasm.
Group II (cerulein-treated group) showed degenerative and
necrotic changes in the form of a reduced dimension of the
islet of Langerhans with an ill-defined border. Fewer islet
cells were shown, compared to the control group, with pyk-
notic nuclei and intracytoplasmic vacuolations. Necrotic
cells were found with many empty spaces indicating total

cell necrosis. The islets were surrounded with distorted acini
containing degenerated cells (Figure 2).

The pancreatic specimens of group III (MSCs and
cerulein-treated group) showed a lightly stained, well-defined
islet of Langerhans with some cellular intracytoplasmic vacuo-
lations and few necrotic cells. Distorted acini with degenerated
cells also appeared. Many islet cells appeared normal with
vesicular nuclei and prominent nucleoli, while some of them
were necrotic with pyknotic nuclei. Group IV (MSCs, antiox-
idant mixture, and cerulein-treated group) revealed marked
improvement of islets of Langerhans in the form of lightly
stained, well-defined islets with a regular outline containing
normal islet cells and surrounded by closely packed normal
serous acini. The islet cells possessed vesicular nuclei, promi-
nent nucleoli with few pyknotic nuclei (Figure 3).

3.3.3. Immunohistochemical Reaction. The sections of the pan-
creatic specimens of the rats of the control group (group I)
showed few PCNA reactions in the form of brown nuclei of

Table 1: Mean and standard deviation of body weight, fasting blood glucose, and fasting serum insulin among the studied groups.

Groups I (control) II (cerulein) III (cerulein+MSCs) IV (cerulein+antioxidants+MSCs)

Mean ± SD and percentage of the body weight (gm) 225:2 ± 14:13 98:2 ± 8:87a
43.6%

150:4 ± 7:7ab
66.79%

185:4 ± 8:56abc
82.33%

Mean ± SD of the fasting blood glucose (mg/dl) 101:80 ± 9:37 286:2 ± 8:1a 147:4 ± 5:03ab 132:3 ± 5:72abc

Fasting serum insulin (μU/ml) 3:04 ± 0:38 0:99 ± 0:31a 1:9 ± 0:34ab 2:52 ± 0:4b
aSignificant to group I (p < 0:05); bsignificant to group II (p < 0:05); csignificant to group III (p < 0:05).

Table 2: Mean and standard deviation of real-time PCR for IL-1β, TNF-α, and NF-κβ gene expressions among the studied groups.

Groups I (control) II (cerulein) III (cerulein+MSCs) IV (cerulein+antioxidants+MSCs)

IL-1β 0:60 ± 0:10 3:03 ± 0:13a 1:54 ± 0:22ab 1:31 ± 0:15ab

TNF-α 1:00 ± 0:16 201:49 ± 23:67a 8:99 ± 0:33b 5:69 ± 0:79b

NF-κβ 1:52 ± 0:46 819:90 ± 35:85a 318:74 ± 69:8ab 121:52 ± 23:62abc
aSignificant to group I (p < 0:05); bsignificant to group II (p < 0:05); csignificant to group III (p < 0:05).

200 𝜇m

(a)

200 𝜇m

(b)

Figure 1: Photomicrographs of sections of the pancreatic specimens of the rats. (a) Group III showing homing of the PKH26-labelled
masses of MSCs inside the pancreatic tissue. (b) Group IV showing increased density of homing and proliferation of the PKH26-labelled
masses of MSCs inside the pancreatic tissue (PKH26 ×100).
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islet cells. Group II (cerulein-treated group) revealed also few
PCNA reactions. The pancreatic specimens of group III
(MSCs and cerulein-treated group) revealed a moderate num-
ber of brown nuclei of islet cells. Group IV (MSCs, antioxidant
mixture, and cerulein-treated group) showed a larger number
of brown nuclei of islet cells (Figure 4).

Regarding the reaction to caspase-3, the islets of Langer-
hans of groups I, III, and IV showed absence of brown discol-
oration of islet cells denoting absence of caspase-3 reaction,
while that of group II (cerulein-treated group) revealed brown
discoloration of islet cells and acini (Figure 5).

Themean area percent of the positive immune reaction for
PCNA in group III (cerulein+MSCs-treated group) was signif-
icantly increased compared with the control group and group
II (cerulein-treated group). In addition, it was significantly
increased in group IV (cerulein+antioxidants+MSCs-treated
group) compared with the other three groups. The mean area

percent of the positive immune reaction for caspase-3 in group
II (cerulein-treated group) was significantly increased com-
pared with the control group (group I) and was significantly
decreased in group III (cerulein+MSCs-treated group) and
group IV (cerulein+antioxidants+MSCs-treated group) com-
pared with group II (cerulein-treated group) (Table 3).

4. Discussion

SAP is a life-threatening condition associated with high
morbidity and fatality rate. Despite the therapeutic trials, till
now, SAP has a poor prognosis and represents the four-
teenth leading cause of death from digestive system disease
[18]. In AP, the pancreatic acinar cell damage induces a
cascade of premature activation of proenzymes, acute
inflammation, autodigestion, necrosis, and loss of both
endocrine and exocrine functions of the pancreas. In AP,

50 𝜇m

(a)

20 𝜇m

(b)

50 𝜇m

(c)

20 𝜇m

(d)

Figure 2: Photomicrographs of sections of the pancreatic specimens of the rats. (a) Group I showing normal architecture of the islet of
Langerhans (I). It appears lightly stained, well defined with regular outline. It contains a large number of islet cells. The islet is
surrounded by closely packed serous acini (A) with regular outline, rounded nuclei and dark cytoplasm. (b) Higher magnification of the
islet of Langerhans of group I showing large number of islets cells having vesicular nuclei with prominent nucleoli (arrows). (c) Group II
showing reduced dimension of islet of Langerhans (I) with ill-defined border. Fewer islet cells with pyknotic nuclei (P) and
intracytoplasmic vacuolations (v) and distorted acini with degenerated cells (A) appeared. (d) Higher magnification of group II showed
necrotic cells (N) with many empty spaces (arrows) (H&E: a, c ×400; b, d ×1000).
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the imbalance between the production of proinflammatory
cytokines and the systemic anti-inflammatory response
results in the systemic inflammatory reaction, multiple
organ damage, and high mortality rate [1, 2, 48, 49].

As MSCs have an immunomodulatory function and high
differentiation ability into many cell types, they developed
extended traction in the treatment of various inflammatory,
degenerative, and immune disorders [50–52]. Jiang et al.
[21] have shown that BM-MSCs can differentiate into endo-
thelium, ectoderm, and endoderm at the single-cell level
[53]. Migration and homing of MSCs to different injured
tissues were detected both in human and animal models
[54]. An emerging novel concept has been postulated, under
extensive investigation, to use the MSCs as a promising ther-
apy in numerous gastrointestinal diseases including AP [55].
Previous studies have shown conflicting results about the
therapeutic abilities of transplanted MSCs to the injured

pancreas. Multiple studies recorded that MSCs can differen-
tiate into islet β cells [56–58]. Although other studies could
not prove if MSCs can differentiate into pancreatic exocrine
β cells [18], the current work investigated the therapeutic
efficacy of BM-MSCs and the adjuvant therapeutic effect of
ascorbic acid and NAC antioxidants on experimentally
cerulein-induced AP in albino rats. The regenerative effects
of BM-MSCs, on the engrafted groups (group III, IV) of
the present work, were detected by homing of BM-MSCs
within the pancreatic tissue, while the added protective role
of antioxidants, AA, and NAC (group IV) have been shown
by increased density of homing and proliferation of BM-
MSC masses inside the pancreatic tissue. Reduction of the
severity of SAP in the BM-MSCs transplanted groups
(groups III and IV) was indicated by the improvement of
the clinical parameters; the significantly higher levels of
serum insulin, higher body weight, and lower blood glucose
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Figure 3: Photomicrographs of sections of the pancreatic specimens of the rats. (a) Group III showing lightly stained, well-defined islet of
Langerhans (I) with some cellular intracytoplasmic vacuolations (v) and empty spaces (arrows) denoting cellular necrosis. Distorted acini
with degenerated cells (A) appeared. (b) Higher magnification of group III showed islets cells having vesicular nuclei with prominent
nucleoli (arrows) and some necrotic cells (N) with pyknotic nuclei (P). (c) Group IV showing lightly stained, well-defined islet of
Langerhans (I) with regular outline containing normal islet cells and surrounded by closely packed normal serous acini (A). (d) Higher
magnification of group IV showed islets cells having vesicular nuclei with prominent nucleoli (arrows) and few pyknotic nuclei (P)
(H&E: a, c ×400; b, d ×1000).
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levels, in addition to the significant downregulation of three of
the most important tissue inflammatory cytokines: IL-1β,
TNF-α, and NF-κβ compared with the untreated group
(group II). Similarly, previous studies demonstrated decreased
blood glucose, proinflammatory cytokines, increased body
weight, and serum insulin in MSCs-treated AP [59]. Another
study showed reduced IL-1β and TNF-α mRNA expressions
after MSC transplantation in both the lung and the pancreas
in induced SAP [18]. These results could provide evidence
on the therapeutic abilities of the transplanted BM-MSCs on
AP most likely through their immune-modulatory effects, by
reduction of T-cell infiltration and increased recruitment of
regulatory T-cells. Moreover, the antioxidant therapeutic
activity of vitamin C and NAC was demonstrated in experi-
mentally induced tissue damage in albino rats [60]. As demon-
strated in the present study, the adjuvant therapeutic value of
AA and NAC antioxidants to BM-MSCs was confirmed by
detection of significant higher body weight, lower blood
glucose levels, and lower NF-κβ expression levels in combined
therapy-treated group (group IV) compared with the BM-

MSCs-treated group (group III). In concordance with these
findings, the combined treatment with ascorbic acid and N-
acetylcysteine has been demonstrated to reduce the pancreatic
and hepatic damage in induced AP through the restoration of
antioxidant enzyme activities [34]. In another study, NAC has
been reported to delay NF-κβ activation in induced AP.
Accordingly, pancreatic acinar cells failed to produce TNF-α
[61]. Downregulation of pancreatic IL-6 has also been previ-
ously detected in response to NAC treatment in cerulein-
induced AP models [62].

The participation of BM-MSC in the reconstruction of
the injured pancreatic tissue was demonstrated, in the
current work in both groups III and IV. In group III (BM-
MSCs-treated group), the pancreatic specimens showed
well-defined normal islets of Langerhans with few necrotic
cells and pyknotic nuclei, while group IV (combined BM-
MSCs and antioxidant-treated group) revealed marked
improvement of islets of Langerhans with normal islet cells.
Previous studies have confirmed the regeneration capabili-
ties of BM-MSCs on the injured pancreatic tissue through
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Figure 4: Photomicrographs of sections of the pancreatic specimens of the rats showing islets of Langerhans (I). (a) Group I showing few
brown nuclei of islet cells (arrows). (b) Group II showing also few brown nuclei of islet cells (arrows). (c) Group III showing a moderate
number of brown nuclei of islet cells (arrows). (d) Group IV showing larger number of brown nuclei of islet cells (arrows) (PCNA ×400).
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the protection of the integrity of acinar cells, promotion of
pancreatic angiogenesis, significant lessening of inflamma-
tion, and inhibition of cellular apoptosis [46, 63, 64].

The histopathological evidence of the adjuvant therapeu-
tic effect of combined NAC and AA on induced AP has been
demonstrated to reduce the degree of acinar cell degenera-
tion, pancreatic edema, inflammatory infiltration, and intra-
cellular vacuolization in the rat model [34]. Therefore, it
could be concluded that oxidative injury plays an important
role in the pathogenesis of acute tissue necrosis. Antioxidant
agents, such as AA and NAC, are capable of limiting the tis-

sue damage produced during AP through the restoration of
tissue antioxidant enzyme activities [65]. In the present
study, two distinct diagnostic biomarkers were quantitatively
measured by histomorphometric measurements to evaluate
the response to various treatment lines used, the degree of
PCNA expression as a biomarker for tissue regeneration
[66, 67] and of caspase-3 expression as a biomarker of cellu-
lar apoptosis. The combined therapy of antioxidants and
BM-MSCs showed very good prognostic indicators with a
significantly high level of PCNA and low level of caspase-3
compared to the other groups of rat models. Caspases are
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Figure 5: Photomicrographs of sections of the pancreatic specimens of the rats showing islets of Langerhans (I). (a) Group I, (c) group III,
and (d) group IV showing absence of brown discoloration of islet cells. (b) Group II showing brown discoloration of islet cells and acini
(arrows) (caspase-3 ×400).

Table 3: Mean and standard deviation of the area percent of the positive reaction of PCNA and caspase-3 among the studied groups.

Groups I (control) II (cerulein) III (cerulein+MSCs) IV (cerulein+antioxidants+MSCs)

PCNA 8:61 ± 0:69 5:22 ± 0:44 48:82 ± 5:25ab 81:40 ± 12:70abc

Caspase-3 0:04 ± 0:03 57:89 ± 5:50a 0:07 ± 0:04b 0:03 ± 0:02b
aSignificant to group I (p < 0:05); bsignificant to group II (p < 0:05); csignificant to group III (p < 0:05).
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essential components of mammalian apoptotic machines.
Caspase-3 is a prototypical enzyme that is activated during
apoptosis in a wide diversity of tissues [68].

5. Conclusion

From the present study, it could be concluded that pancreatic
tissue regeneration in AP could be achieved by BM-MSC
transplantation as a promising, efficient, and reliable treat-
ment. However, adjuvant antioxidants such as NAC and AA
combined therapy with MSCs showed more enhancement of
cellular regeneration. TNF-α, IL 1β, and NF-κβ are helpful
biomarkers for the assessment of MSC therapeutic efficiency.
Therefore, further studies on BM-MSCs-based SAP therapy
would be conducted for experimental evaluation and valida-
tion, to be translated into clinical practice.
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