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Metabolic dysfunction plays a key role in the development of diabetic nephropathy (DN). However, the exact effects and
mechanisms are still unclear. The pyrin domain-containing protein 3 (NLRP3) inflammasome, a member of the nod-like
receptor family, is considered a crucial inflammatory regulator and plays important roles in the progress of DN. A growing
body of evidence suggests that high glucose, high fat, or other metabolite disorders can abnormally activate the NLRP3
inflammasome. Thus, in this review, we discuss the potential function of abnormal metabolites such as saturated fatty acids
(SFAs), cholesterol crystals, uric acid (UA), and homocysteine in the NLRP3 inflammasome activation and explain the
potential function of metabolic dysfunction regulation of NLRP3 activation in the progress of DN via regulation of
inflammatory response and renal interstitial fibrosis (RIF). In addition, the potential mechanisms of metabolism-related drugs,
such as metformin and sodium glucose cotransporter (SGLT2) inhibitors, which have served as the suppressors of the NLRP3
inflammasomes, in DN, are also discussed. A better understanding of NLRP3 inflammasome activation in abnormal metabolic

microenvironment may provide new insights for the prevention and treatment of DN.

1. Introduction

According to the statistics of the International Diabetes Fed-
eration (IDF) in 2019, the number of diabetes patients
between the ages of 20 and 79 was expected to reach 578
million in 2030 [1]. One of the most serious consequences
of diabetes is the development of diabetic vascular disease,
which manifests clinically as microvascular and macrovascu-
lar complications [2]. Diabetic nephropathy (DN) is now
one of the most serious microvascular complications of dia-
betes and is always accompanied by hyperglycemia, lipid
metabolism disorder, oxidative stress, elevated advanced gly-
cosylation end products (AGEs), etc. [3]. Although several
available therapeutic interventions can delay the onset and

progression of DN, the associated morbidity of this disease
remains high due to its complex pathogenesis, suggesting
that the novel therapeutic approaches are still needed to be
explored.

Inflammasomes are a group of cytosolic protein com-
plexes, which are formed to mediate host immune responses
to cellular damage and microbial infection [4]. The pyrin
domain-containing protein 3 (NLRP3) inflammasome is a
classical inflammasome composed of NLRP3, adapter pro-
tein apoptosis-related speck-like protein (ASC), and the
zymogen procaspase-1 [5]. Recent research has shown that
the NLRP3 inflammasome plays an important role in vari-
ous metabolic inflammatory diseases, such as atherosclerosis
(As) and diabetes [6, 7]. NLRP3 monomers are assembled
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into cages and sense abnormal signals in the resting state [8].
The activation of the NLRP3 inflammasome, especially
when stimulated by abnormal metabolites of glucose and
lipids, can aggravate the maturation and secretion of proin-
flammatory cytokines (i.e., IL-13 and IL-18) and further
trigger inflammatory cascades [9]. Furthermore, the activa-
tion of the NLRP3 inflammasome has been implicated in
various pathological conditions, ranging from metabolic
syndrome to kidney diseases [10]. Interestingly, preventing
glomerular NLRP3 inflammasome activation by specific
decrease in mitochondrial reactive oxygen species (ROS)
by mitochondria-targeting antioxidant Mito-TEMPO can
improve nephropathy in diabetic mice [11], suggesting that
the NLRP3 inflammasome is a potential target in the treat-
ment of metabolic inflammatory diseases, including renal
injury in diabetes.

In this review, we discuss the exact roles of diabetic met-
abolic abnormalities in the activation of the NLRP3 inflam-
masome and summarize the underlying mechanism of
NLRP3 inflammasome activation in the pathogenesis of
DN. Moreover, a wide overview of the most promising met-
abolic drugs for the modulation of NLRP3 activation is also
provided, which may offer new insights into the treatment of
DN.

2. The Activation of the NLRP3
Inflammasome by Metabolite Abnormalities

Diabetes is characterized by clustered metabolic abnormali-
ties, such as hyperglycemia and elevated triglycerides [3].
In a diabetic kidney, specific metabolically induced
glucose-dependent pathways are triggered, which induces
oxidative stress, hexosamine flux, polyol pathway flux, and
accumulation of AGEs [3]. Importantly, binding of AGEs
to their receptor (RAGE) promotes the production of cyto-
solic ROS and stimulates intracellular signal molecules such
as nuclear factor-«B (NF-«B) and protein kinase C (PKC),
inducing the activation of transforming growth factor beta
(TGF-P) and vascular endothelial growth factor (VEGF).
Importantly, the metabolite abnormalities in DN can trigger
the activation of the NLRP3 inflammasome. There is a
dynamic mutual regulatory relationship between metabo-
lism and inflammation, called the metabolic-inflammatory
circuit [9]. Chronic inflammatory response increases the risk
of insulin resistance in type 2 diabetes mellitus (T2DM). The
association between the NLRP3 inflammasome and T2DM
is increasingly accepted [12]. As such, we further explore
how metabolite abnormalities regulate the NLRP3 inflam-
masome in kidney-related cells (Table 1 and Figure 1).

2.1. Glucose. The high blood sugar state caused by glucose
metabolism disorder is the basic and necessary link of diabe-
tes. In human cell models and in murine models of diabetes,
hyperglycemia stimulated NLRP3 inflammasome activation,
subsequently causing injury to pancreatic islet cells, glucose
intolerance, and insulin resistance [13]. Therefore, we sum-
marize these mechanisms. Most typically, high glucose can
mediate external discharge of K™ and inward flow of Cat,
which induces ROS overproduction and activation of the
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NLRP3 inflammasome in monocytes [14, 15]. When
exposed to high glucose, ROS in mesangial cells increases
expression of p38 and forkhead box protein O1 (FOXOL1),
and thioredoxin-interacting protein (TXNIP) separates from
its conjugate with TRX and binds directly to NLRP3, induc-
ing activation of the NLRP3 inflammasome assembly
[16-19]. Also, NF-«B is a nuclear transcription factor with
enhanced transcriptional activity in high glucose states. It
was recently found that the NLRP3 inflammasome is acti-
vated due to the direct interaction of p50 (a subunit of NF-
xB) with the NLRP3 promoter when exposed to high glucose
[20]. In addition, hyperglycemia may contribute to the acti-
vation of the NLRP3 inflammasome mediated by pyruvate
kinase M2 (PKM2) in macrophages [21]. In conclusion,
NLRP3 is an important critical point between metabolism
and inflammation. Currently, it has been demonstrated that
epigenetic transcription (e.g, m6a) can trigger NLRP3
inflammasome activation [22] and high glucose can affect
epigenetic transcription [23]. It remains to be further inves-
tigated whether high glucose affects NLRP3 by affecting epi-
genetic transcription.

2.2. Fatty Acids. Fatty acids (FAs) are one of the most abun-
dant lipids in plasma, including saturated fatty acids (SFAs)
(e.g., palmitic acid), monounsaturated fatty acids (MUFAs)
(e.g., oleic acid), and polyunsaturated fatty acids (PUFAs)
(e.g., omega-3FAs and omega-6FAs). SFA levels in plasma
of patients with T2D on a high-fat diet were elevated [24].
SFAs, especially their crystals (e.g., palmitate), is known to
directly influence inflammatory processes [25]. Specifically,
palmitate can activate the NLRP3 inflammasome through
lysosomal destabilization in macrophages [26]. Additionally,
palmitate inhibits adenosine 5'-monophosphate-activated
protein kinase (AMPK) phosphorylation and blocks autoph-
agy, leading to increased levels of ROS in macrophages,
which in turn activates the NLRP3 inflammasome and IL-
1 secretion during T2D [27]. MUFAs can inhibit the NF-
kB and NLRP3 activation through direct binding to
GPR120 (G protein-coupled receptor 120) or PPARs (perox-
isome proliferator-activated receptors) and through AMPK
phosphorylation [28]. SFA-induced NLRP3 activation can
obviously be inhibited in the presence of MUFAs [29], indi-
cating that the balance of SFAs and MUFAs is a critic point
for NLRP3 inflammasome activation. Interestingly, it is con-
troversial whether regular PUFA intake can be used as a
pharmacological replacement therapy for diabetes. A
double-blind randomized clinical trial showed that n-3
PUFAs improve glycemic control in Asians [30]. However,
increasing PUFAs had little to no effect on the prevention
and treatment of T2D, based on studies of randomized par-
ticipants from around the world [31]. It is recommended
that the protective effect of w-3 PUFAs on T2D may be
influenced by ethnicity.

2.3. Cholesterol. Cholesterol is a multifunctional lipid that
can be ingested from the diet or synthesized by the endo-
plasmic reticulum (ER). In patients with poorly controlled
and/or insulin-resistant diabetes, both cholesterol produc-
tion and cholesterol genesis are increased [32]. The
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TaBLE 1: Aberrant metabolites activate the NLRP3 inflammasome in kidney-associated cells.

Stimulus Kidney-related cells Mechanism Ref.
Monocytes K" outflow, Ca®* inward flow/ROS/NLRP3 inflammasome (14, 15]
Gl 1 Glomerular mesangial cells ROS/p38/FOXO1/TXNIP/NLRP3 [17-19]
ucose
P50(NF-xB)/NLRP3 inflammasome [20]
Macrophages PKM2/NLRP3 inflammasome [21]
. Macrophages Lysosomal destabilization/NLRP3 inflammasome [26]
Saturated fatty acids T )
AMPK/ROS/NLRP3 inflammasome [27, 55]
Cholesterol | Macrophages Lysosomal destabilization/histone B/NLRP3 inflammasome/IL-1f3 [34]
olestero
ER to Golgi translocation/SREBP2/NLRP3 inflammasome [35, 36]
. Macrophages ROS/NLRP3/IL-13/NF-«B [40]
Uric acid T
Macrophages ROS/TXNIP/NLRP3/caspase [43]
Homocysteine T Vascular endothelial cells HMGBI/cathepsin V/NLRP3/caspase-1 [47]

ROS: reactive oxygen species; TXNIP: thioredoxin-interacting protein; FOXO1: forkhead box protein O1; NF-«B: nuclear factor kappa B; PKM2: pyruvate
kinase M2; AMPK: adenosine 5’ -monophosphate-activated protein kinase; ER: endoplasmic reticulum; SREBP2: sterol regulatory element-binding protein
2; HMGBI: high mobility group box-1 protein; HIFla: hypoxia inducible factor-1a; PDK1: 3-phosphoinositide-dependent kinase-1.
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accumulation of cholesterol can form crystals in lysosomes
and further disrupt the lysosomal membrane and lysosomal
stabilization after entering the cell [33]. Importantly, this
destabilization can aggravate the release of histone B into
the cytoplasm, which activates the NLRP3 inflammasome
and causes the secretion of mature IL-1f [34]. Moreover,
the redundant cholesterol in lysosomes can be transported
to the ER and further stimulate the NLRP3 inflammasome
[35]. In addition, Guo et al. showed that sterol regulatory

element-binding protein 2 (SREBP2) cleavage-activating
protein- (SCAP-) SREBP2 promotes NLRP3 inflammasome
activation, which is largely dependent on cholesterol ER to
Golgi translocation [36], indicating that interorganelle cho-
lesterol mobility is essential for the activation of the NLRP3
inflammasome. However, it still needs to be explored why
and how cholesterol, as an important regulator of the mem-
brane integrity and fluidity, stimulates the NLRP3 inflam-
masome in different organelles.



2.4. Uric Acid. Uric acid (UA) is a purine metabolite that is
produced in high quantities upon cellular injury [37]. Its
level is affected by the amount of its production and reab-
sorption by the kidneys and intestines. Both clinical and epi-
demiological studies have confirmed that UA plays a vital
role in the occurrence and development of insulin resistance,
lipid metabolism disorders, and metabolic syndrome [38].
Cohort studies have shown that increased levels of UA are
associated with the increased risk of diabetes and DN [39].
Mitochondrial ROS activated by high levels of UA mediates
NLRP3 activation and IL-1p secretion and activates NF-xB
in cocultured macrophages and proximal renal tubular cells
[40]. Notably, when UA exceeds the threshold, it precipitates
out of different tissues and body fluids and forms crystals
[41]. The elevated UA crystals can activate the NLRP3
inflammasome to trigger IL-1p3-mediated inflammation by
directly binding to the lipids on the surface of macrophages
[42]. Interestingly, an earlier study also demonstrated that
UA crystals induced the dissociation of TXNIP from thiore-
doxin (TRX) in the presence of ROS, allowing it to bind to
NLRP3 and enhance caspase activation [43]. Furthermore,
the synergistic effect between FFAs and urate crystals leads
to activating the NLRP3 inflammasome [44], suggesting that
different metabolites associated with diabetes interact with
each other to promote the development of inflammation.
With further development of metabolomic technologies, a
deeper understanding of the currently known metabolite
interaction pathways and possible mechanisms can be
gained.

2.5. Homocysteine. Homocysteine (HCY), a sulfur-
containing amino acid, is derived from protein catabolism.
Elevated levels of plasma HCY (to more than 15 uM, defined
as hyperhomocysteinemia (HHCY)) are an independent risk
factor in diabetes [45]. Recent findings demonstrated that
the increased HCY in the blood can promote NLRP3 inflam-
masome formation by different mechanisms [46]. For exam-
ple, HCY is involved in NLRP3 inflammasome and caspase-
1 activation and increased vascular endothelial inflammation
by raising high mobility group box-1 protein (HMGB1),
lysosomal permeability, and lysosomal cysteine protease tis-
sue proteinase V [47]. Additionally, in vascular smooth mus-
cle cells (VSMCs), HCY stimulates NLRP3 inflammasomes
through regulating extracellular regulated protein kinases1/
2 (ERK1/2) and p38 MAPK pathways [48]. Furthermore,
elevated levels of HCY have been found to activate the gua-
nine nucleotide exchange factor Vav2 [49]. Other studies
show that Vav2-mediated Racl GTPase activity can trigger
NLRP3 inflammasome activation by leading to oxidative
stress via increasing nicotinamide adenine dinucleotide
(NADPH) oxidase activity [50, 51]. It is suggested that the
role of HCY in NLRP3 activation partly relies on the
Vav2-mediated pathway. Meanwhile, HHCY can increase
oxidative stress and its downstream signaling pathway, so
whether HHCY activates NLRP3 through oxidative stress
activation pathway is worth exploring. HCY has also been
shown to increase the hypoxia inducible factor-1a (HIF1la)
protein levels [52]. Moreover, HIF-1a upregulates pla2gl6
(a novel HIF-1a target gene) gene expression to activate
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the NLRP3 inflammasome pathway [53]. It is suggested that
HCY may activate the NLRP3 inflammasome through
hypoxia-related pathways. Besides, HCY induces inflamma-
tion in adipocytes in a manner that affects lipid status and
causes NLRP3 activation [54], so it is worth exploring
whether NLRP3 can be activated in other tissues and cells
in a similar manner.

3. The Role of the Abnormal Metabolite-
Induced NLRP3 Inflammasome
Activation in DN

NLRP3 inflammasome-mediated inflammation is recently
recognized in the development of kidney injury [56]. DN
undergoes a transition from renal inflammation to fibrosis
[57]. Renal NLRP3 overexpression is associated with macro-
phage infiltration and fibrosis [58]. When the microenviron-
ment is altered, the kidney is in an acute kidney injury (AKI)
state, and as the first defender, immune cells maintain cellu-
lar homeostasis. In a mild AKI, a renal tubular injury is fully
recovered. Notably, a severe AKI becomes chronic with high
levels of NLRP3 in serum or urine. This induces a glomeru-
lar injury affecting glomerular endothelial cells, thylakoid
cells, and podocytes [20, 59, 60]. When the disease pro-
gresses further, dominant NLRP3 is predominantly distrib-
uted in abnormal renal tubules surrounded by
inflammatory infiltration and fibrosis, and tubular epithelial
cells are atrophied and dispersed, indicating maladaptive
repair [58].

3.1. NLRP3-Mediated Inflammation in DN

3.1.1. Immune Cells. Renal inflammation includes the release
of cytokines and chemokines and infiltration of immune
cells, and upregulation of inflammatory signaling pathways
is involved in the development and progression of DN
[61]. Evidence from clinical laboratory studies suggests that
infiltration of immune cells (mainly macrophages) is com-
monly observed in the glomeruli and interstation of renal
biopsy specimens at all stages of DN [62]. Overexpression
of NLRP3 leading to elevated proinflammatory cytokines
IL-1p and IL-18, followed by inflammatory cell infiltration
in the glomerulus, was discovered in a study of diabetic
nephropathy rats regarding hyperuricemia and dyslipidemia
[56]. However, the results of a bone marrow transplantation
study suggest that NLRP3 among renal nonhematopoietic
cells plays a more important role than natural immune cells
in mediating the inflammatory process of DN [63].

3.1.2. Renal Resident Cells. The inflammasome activation is
detected in podocytes and endothelial cells during the early
stages of nephropathy in db/db mice [11]. In the kidneys
of STZ-induced diabetic mice, hyperglycemia induces
TXNIP expression, activates Nox to produce ROS, and sub-
sequently triggers the inflammasome activation in podocytes
leading to podocyte loss and albuminuria [64]. The inhibi-
tion of NLRP3 and ASC by shRNA inhibits the high
glucose-induced activation of IL-1f expression and attenu-
ates the podocyte injury [65]. As the disease progresses, the
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renal tubular injury becomes one of the key determinants of
DN. The role of the NLRP3 inflammasome in the tubular
injury has been confirmed in different studies. For example,
in proximal renal tubular cells, the activation of the NLRP3
inflammasome by high glucose was also inhibited by the
inhibition of the tyrosine protein kinase SYK, suggesting a
role for SYK-JNK-NLRP3 signaling in the pathogenesis of
DN [66]. Expression of optineurin (an autophagic receptor
for damaged mitochondria during mitochondrial phagocy-
tosis) during the process of mitophagy was reduced in tubu-
lar epithelial cells from patients with DN compared with
those from nondiabetic healthy individuals and was nega-
tively correlated with renal interstitial inflammation [67].
In mouse renal tubular epithelial cells, optineurin overex-
pression enhanced mitophagy and inhibited high glucose-
induced NLRP3 expression, CASP1 cleavage, and IL-1f
and IL-18 release [67]. Furthermore, ischemia, toxins, and
albuminuria can cause tubulointerstitial inflammation,
which can cause an extracellular matrix injury and further
exacerbate tubulointerstitial inflammation [68]. A cycle
between the extracellular matrix injury and inflammation
can be formed, and regulating its balance may be essential
for inhibiting the progression of renal fibrosis. Resident
fibroblasts also display a more proinflammatory phenotype
and actively drive the inflammatory response during renal
injury [69].

3.2. NLRP3-Mediated Renal Fibrosis in DN. In essence, renal
fibrosis is an integral pathological development in DN [70].
The main mechanisms involved in fibrosis are massive
inflammatory cell infiltration [71], epithelial-mesenchymal
transition (EMT) [72], endothelial-mesenchymal transition
(EndoMT) [71], the activation of interstitial myofibroblasts
[73], and the resulting accumulation of extracellular matrix
components, which eventually replace the normal renal
structure and form scarring, resulting in the loss of renal
function (Figure 2).

3.3. Immune Cells. Immune cells have received much atten-
tion for their pathogenic role in renal fibrosis. The activation
of IL-36 signaling in macrophages and dendritic cells posi-
tively regulates IL-1f3 secretion in a MyD88-dependent man-
ner through NLRP3 inflammasome initiation signaling and
promotes the development of kidney inflammation and
fibrosis in mice [74]. Other evidence suggests that the inhibi-
tion of the NF-xB-ROS-NLRP3 signaling pathway in the
macrophage activation attenuates IgA progressive nephrop-
athy and blocks glomerulosclerosis [75]. Moreover, the
NLRP3 inflammasome activation in macrophages can pro-
mote chemokine signal transduction in the proximal tubule
through intercellular crosstalk and eventually contribute to
macrophage infiltration and tubulointerstitial fibrosis in
the diabetic kidney [40].

3.4. Renal Resident Cells. A study showed the activation of
the TLR4-NF-xB-NLRP3 signaling pathway causing EMT
and further transition to a fibrotic state [76]. Similarly, the
role of the NLRP3 inflammasome in the tubular injury was
demonstrated by the attenuation of high-glucose-induced

EMT and inhibition of the phosphorylation of SMAD3,
MAPK p38, ERK1, and ERK2 (key signaling molecules with
roles in proinflammatory and profibrotic responses in tubu-
lar cells) in NLRP3-silenced HK-2 cells [77]. NLRP3 inflam-
masomes, an essential element of the innate immune
response, are present in the progression of endothelial dys-
function associated with chronic kidney disease (CKD). Spe-
cifically, it was shown that the TLR4-Akt-NF-xB-ROS-
NLRP3 pathway contributes to inflammation-mediated
endothelial dysfunction in CKD [78]. Since NLRP3 is
involved in renal lesions, its involvement in the renal
EndoMT process can be postulated. A study established
the SIRT3-Foxo3a-Parkin pathway as a key factor in main-
taining endothelial homeostasis and pointed to an important
role of EndoMT in the vascular pathology of renal fibrosis
[79]. Moreover, it was shown that the activation of the
NLRP3 inflammasome in atherosclerosis via the SIRT3-
SOD2-mtROS signaling pathway promotes inflammation
in HUVEC:s [80]. Therefore, it deserves further investigation
whether the NLRP3 activation induces renal EndoMT
through SIRT3-related pathways. The aberrant activation
and proliferation of fibroblasts are thought to be a key cause
of renal fibrosis. Evidence exists that the inhibition of PERK-
Akt-mTOR-NLRP3 signaling inhibits the renal fibroblast
activation and fibroblast proliferation [81]. In addition to
this, NF-«B translocation and ROS production in renal thy-
lakoid cells exposed to angiotensin II activate NLRP3
inflammasomes, which can lead to glomerular fibrosis [82].
Several studies have emphasized the importance of immuno-
cyte activation, but it should be kept in mind that no single
type of cells can initiate and sustain the overall renal fibrosis
in isolation. Renal fibrogenesis explicitly necessitates the
participation and interaction of many types of infiltrating
cells, as well as resident kidney cells.

Moreover, NLRP3 has inflammasome-independent
(noncanonical) effects leading to renal fibrosis in DN [83].
Inflammasome-independent NLRP3 in renal tubular cells
plays an important role in the mitochondrial ROS injury
by binding to mitochondrial antiviral signaling proteins after
the hypoxic injury. In the absence of NLRP3, this mitochon-
drial regulation increases autophagy and attenuates renal
tubular interstitial fibrosis [84]. Furthermore, NLRP3 pro-
motes renal tubular EMT by enhancing TGF-f1 signaling
and the R-Smad activation. The effect of NLRP3 on TGF-
Bl signaling is independent of inflammasome components
[83]. These data identify a novel inflammasome-
independent and direct profibrotic role for NLRP3 in the
renal tubular epithelium. Moreover, renal fibroblast
inflammasome-independent NLRP3 also promotes fibrosis
by enhancing TGF-f and Smad signaling without IL-1p pro-
duction [74]. Thus, in the context of direct injury to renal
tubular epithelial cells and fibroblasts, inflammasome-
independent NLRP3 plays a key role in renal disease by reg-
ulating apoptosis, fibrosis, and the mitochondrial injury.
This unique role of NLRP3 in the kidney can be clarified
by conditional, cell type-specific regulation of the NLRP3
gene [85]. Activation of these signaling pathways leads to
infiltration of circulating inflammatory cells, which amplifies
and maintains the inflammatory process in the kidney and
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ultimately mediates or contributes to the diabetic renal
fibrosis cascade response [86]. In addition to the proinflam-
matory cascade with NLRP3, the kinin-releasing enzyme-
kinin system and protease-activated receptor signaling and
the complement system (C5a and C3a) also play a role in
fibrosis in diabetic kidney injury [61]. There are still a lot
of underlying mechanisms waited to be further explored.

4. Metabolic Drugs Reverse the NLRP3
Inflammasome Activation in the
Treatment of DN

Downregulation of inflammatory responses by therapeutic
strategies can effectively prevent kidney disease development
and improve renal function in patients with diabetes [87]. A
growing body of evidence demonstrates that drugs reversing
NLRP3 inflammasome activity have therapeutic potential
for the treatment of DN, as discussed below (Table 2).

4.1. Metformin. Metformin is currently a first-line antidia-
betic agent that reduces glucose through several different
pathways: (i) inhibition of hepatic gluconeogenesis, (ii)
improved insulin signaling through AMPK activation, (iii)
enhanced peripheral insulin sensitivity due to increased glu-
cose consumption, and (iv) induction of glucose transporter
protein type 4 (GLUT-4) localization [88]. It has recently
been suggested that some glucose lowering may be mediated
through the enteroendocrine axis [89, 90]. Recently, there
are some data showing that metformin exerts anti-
inflammatory effects [91]. For example, upregulated NLRP3
inflammasome activation was found in macrophages col-
lected from T2D patients and was downregulated after treat-
ment with metformin [92]. A clinical randomized placebo-

controlled study by Bhansali et al. underscores that in
patients with T2D, metformin upregulated mitochondrial
autophagy and subsequently improved alterations in mito-
chondrial morphology and function, independent of a hypo-
glycemic effect [93]. Then, further research is needed into
whether metformin inhibits NLRP3 activation through
mitochondrial autophagy. Furthermore, in APOE-/- male
mice, metformin can reverse the decreased expression of thi-
oredoxin-1, a stimulator of the NLRP3 inflammasome,
which is induced by high glucose [94]. These studies hypoth-
esized that metformin can partly treat diabetic kidney injury
by combining with NLRP3 inflammasome-related multiple
mechanisms, and whether new mechanism of this pathway
exists deserves further investigation.

4.2. SGLT 2 Inhibitors. Sodium glucose cotransporter 2
inhibitors (SGLT-2is) reduce plasma glucose and hemoglo-
bin Alc (HbAlc) levels in patients with T2D by increasing
glucose excretion through inhibition of the proximal renal
tubular reabsorption segment [95]. SGLT-2is, including dap-
agliflozin, ertugliflozin, and empagliflozin, are commonly
used as clinical drugs. Kawanami et al. have demonstrated
that SGLT-2is attenuate DN in diabetes animal models, sug-
gesting a potential renal protective effect in addition to glu-
cose reduction [96]. Recently, in a systematic evaluation
and meta-analysis of clinical cardiovascular trials, explor-
atory results have shown that drugs such as SGLT-2is
improve renal regression in patients with T2D [95, 97]. With
in-depth studies, the inhibition of the NLRP3 inflammasome
comes to the fore role in the process of SGLT 2 treatment
[98]. For example, T2D patients treated with dapagliflozin
showed reduced IL-1f secretion with increased serum f-
hydroxybutyrate (BHB) and reduced serum insulin, and
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TaBLE 2: The partly regulation role of drugs that target the NLRP3 inflammasome in DN treatment.
Medication Related mechanisms Experimental subjects Ref.
. Inhibiting the NLRP3 inflammasome Macrophages in T2D patients,
Metformin Improving phagocytosis, morphology, and function APOE-/- male mice [92-94]
SGLT-2is Inhibiting the NLRP3 inflammasome/IL-1f3 axis T2D patients (99, 100]
DPP-4is Inhibiting the NLRP3 inflammasome T2D patients, diabetic mice [106]
DPP-4is and SGLT-2is Inhibiting the NLRP3/ASC inflammasome T2D mice [105]
- . Mice with IgA nephropathy,
RES Inhibiting the TXNIP/NLRP3 axis diabetic rats with renal /R injury [116-118]
s . T2D in Chinese urban adults,
IL-22 Inhibiting the NLRP3/caspase-1/IL-1f3 axis diabetic patients, DN mice [122, 123]
TXNIP DNAzyme Inhibiting the TXNIP/NLRP3 axis DN rats [124]
Sar Inhibiting NLRP3 DN rats [125, 126]
Dabrafenib Inh1b1t1ng the RIPK3/NLRP3 DN rat model [127]
inflammasome axis

Quercetin and allopurinol Inhibiting the caspase-1/IL-1f3/IL-18 axis STZ-induced DN [56]
DHQ Inhibiting the ROS/NLRP3 inflammasome DN rats [128]
Catalpol Inhibiting ASC/NLRP3/caspase-1/IL-1/3 DN mice [129]
PIO Inhibiting NLRP3/caspase-1/IL-18/IL-1p3 DN mice [130]
Curcumin Inhibiting caspase-1/NLRP3 DN mice [131]

SGLT?2: sodium glucose cotransporter 2; DPP4: dipeptidyl peptidase-4; RES: resveratrol; Sar: sarsasapogenin; DHQ: dihydroquercetin; PIO: pioglitazone;

TXNIP: thioredoxin-interacting protein.

the inhibitory effect of both on NLRP3 inflammasome acti-
vation was verified in vitro [99]. Similarly, Benetti et al. dem-
onstrated that empagliflozin significantly reduces diabetic
renal NLRP3 inflammasome activity and attenuates down-
stream inflammatory responses [100]. In conclusion,
although more research is needed, SGLT-2is appear to exert
anti-inflammatory effects by inhibiting NLRP3 inflamma-
some activity, thereby benefiting the diabetic kidney.

4.3. DPP4 Inhibitors. Dipeptidyl peptidase-4 (DPP4) is a
family member of serine proteases. DPP4 inhibitors (DPP-
4is) exert hypoglycemic effects by inhibiting the release of
DPP4 and glucagon, which in turn leads to increased release
of insulin secretion and elevated circulating insulin levels
[101]. Sitagliptin, linagliptin, saxagliptin, alogliptin, and vil-
dagliptin are DDP-4is that can be used alone or in combina-
tion with other types of antidiabetic drugs. For example,
many meta-analyses have found that in patients with T2D
without adequate insulin control, DPP-4is show better glyce-
mic control compared to placebo [102, 103]. Meanwhile, in
another meta-analysis, the addition of DPP-4is in patients
with T2D with inadequate alpha-glycosidase inhibitor
(AGI) control resulted in better glycemic control [104].
More recently, studies have shown that DPP-4is can be used
to fight inflammatory kidney damage caused by diabetes
[105]. Birnbaum et al. found that saxagliptin reduces kidney
injury and prevents DN progression by inhibiting NLRP3 in
diabetic mice [106]. Similarly, combination of DPP-4i and
SGLT-2i reduces NLRP3/ASC inflammasome activation
and attenuates the development of diabetic nephropathy in
type 2 diabetic mice [105]. More clinical research is needed
to determine the role of DPP-4i in diabetic kidney injury.
Currently oral DPP-4is do not reduce adipose inflammation
or improve insulin resistance. Meanwhile, an article reported

that intrahepatocellular but not intestinal DPP4 reduces adi-
pose inflammation and improves insulin resistance while
lowering blood glucose [107, 108]. Therefore, it could be
considered that DPP-4i drugs could be redirected by packag-
ing them into nanoparticles delivered to the liver, or attach-
ing siRNAs to certain sugar molecules with specific affinity
for hepatocytes could be a potential new target for the treat-
ment of T2D and metabolic diseases.

4.4. Resveratrol. Resveratrol (3,5,4'-trihydroxy-trans-stil-
bene; RES) is a highly concentrated natural plant polyphenol
found in red grapes and is also abundant in knotweed, soy-
beans, peanuts, and mulberries [109]. RES is known to have
antioxidant, anticancer, antiobesity, anti-inflammatory, and
antiaging effects [110]. Furthermore, current clinical trials
have shown that RES also has antihyperglycemic effects
[111, 112]. For example, resveratrol has been shown not only
to lower blood glucose levels and protect 3-cells in patients
with type 1 diabetes [113] but also to improve insulin sensi-
tivity in patients with T2D [114]. Notably, a study has
shown that anti-inflammatory effects of RES may play a
kidney-protective role in different diseases, including in dia-
betes [115]. Saldanha et al. show that RES inhibits or coun-
teracts NF-xB activity and coordinates the inflammatory
response, thereby improving CKD [116]. More importantly,
RES administration attenuated glomerulosclerosis and
inflammation, and these were associated with reduced renal
mononuclear leukocyte infiltration and inhibition of renal
NLRP3 inflammasome activation in progressive IgA
nephropathy in mice [117]. Similarly, RES treatment signif-
icantly inhibited oxidative stress in diabetic rats with renal I/
R injury undergoing TXNIP-mediated NLRP3 activation
[118]. However, the biological effects of RES are greatly lim-
ited by its low water solubility, poor stability, and rapid
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metabolism in vivo. Therefore, it is important to consider
whether advanced technologies such as nanoparticles can
be used to improve pharmacokinetics, achieve targeted
drug delivery, improve drug utilization, achieve sustained
inhibitory effects on the NLRP3 inflammasome, and ame-
liorate diabetic kidney injury. It also remains to be con-
firmed whether the effect of different RES doses on
inflammation affects these results in terms of efficacy and
safety (Figure 3).

4.5. IL-22. TL-22, an important member of the IL-10 family,
is a key cytokine that regulates tissue responses during
inflammation [119]. The downregulation of IL-22 in vivo
has recently been recognized as a risk factor for diabetes
[120]. Clinical research shows that plasma IL-22 levels were
negatively and dose-dependently associated with the preva-
lence of T2D in Chinese urban adults [121]. IL-22 gene ther-
apy significantly reduced hyperglycemia and metabolic
disorders in diabetic rats. In this context, it has also been
investigated whether IL-22 has a therapeutic effect on dia-
betic kidney injury [122]. Notably, Wang et al. show that
IL-22 gene therapy significantly reversed the renal activation
of NLRP3 to exert anti-inflammatory functions in DN rats
[122]. Clinically, IL-22 gene therapy significantly reduced
renal fibrosis and proteinuria excretion in DN 138. Further-
more, Shen et al. developed a novel antivascular endothelial
growth factor B (VEGFB)/IL22 fusion protein that was
found to improve the inflammatory response associated with
NLRP3 and reduce renal lipid accumulation in diabetic
patients [123]. Although more clinical studies are needed,
IL-22 can be predicted to have great potential in DN therapy
in targeting NLRP3 inflammasome activation. Moreover,

investigators can focus on the therapeutic opportunities of
IL-22 and its involved metabolic regulation in various dia-
betic kidney diseases.

4.6. Other Drugs. In addition to the above-mentioned drugs,
other drugs with potential effects on the upstream activation
and downstream transduction mechanisms of the NLRP3
inflammasome are currently being explored. TXNIP is an
upstream partner to NLRP3, and the association between
them is necessary for downstream inflammasome activation
[43]. Tan et al. used TXNIP deoxyribozyme (DNAzyme) to
restrain the expression of TXNIP, subsequently downregu-
lating the level of NLRP3 in the renal tubule interstitium
of diabetic rats [124]. Two other studies show that sarsasa-
pogenin (Sar), a steroidal sapogenin, markedly constrains
the activation of NLRP3 in the renal cortex to play a protec-
tive role in diabetic rats [125, 126]. Similarly, Shi et al. used
dabrafenib to inhibit receptor-interacting protein kinase-3
(RIPK3), which has been implicated as a regulator of NLRP3
inflammasome signaling. The dabrafenib-induced RIPK3
deficiency alleviates diabetes-induced renal fibrosis, in asso-
ciation with reduced activation of the NLRP3 inflammasome
[127]. Additionally, since there is crosstalk between metabo-
lism and inflammation, researchers have attempted to
inhibit NLRP3 inflammasome activation by improving met-
abolic pathways. Quercetin and allopurinol also repress
renal NLRP3 inflammasome activation, at least partly, via
their antihyperuricemia and antidyslipidemia effects, leading
to the amelioration of STZ-induced superimposed nephro-
toxicity in rats [56]. In addition, dihydroquercetin (DHQ)
[128], catalpol [129], pioglitazone (PIO) [130], and curcu-
min [131] were also found to possess kidney protection
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effects associated with inhibiting NLRP3 activation in dia-
betic mice. These evidences suggest that targeting the
NLRP3 inflammasome in DN may serve as a beneficial strat-
egy for treatment.

5. Conclusions and Future Perspectives

It has become apparent that inflammation is an important ele-
ment to initiate diabetic microvascular complications, includ-
ing DN. Activation of the NLRP3 inflammasome is critical for
the development of many kidney disorders including CKD,
IgA nephropathy, lupus nephritis, and more. However, the
onset and offset of these diseases are different due to their eti-
ology and pathological features, but all have sustained NLRP3
inflammasome activation during the disease process, and inhi-
bition of NLRP3 inflammasomes and related pathways may be
a convergent strategy for the treatment of many renal diseases.
Future research should focus on whether NLRP3 regulates the
release of other mediators and thus exacerbates inflammation.

With the advent of epigenetics, it was found that not
only can NLRP3 inflammasomes trigger epigenetic alter-
ations [132] but also SAMETTL3 as used by Chien et al.
blocks NLRP3 upregulation [133]. These data suggest a
possible bidirectional feedback regulatory mechanism
between epigenetic modifications and NLRP3-related
inflammation. Additionally, red raspberry polyphenols
were found to attenuate high-fat diet-induced NLRP3
inflammasome activation and inhibit adipogenic paracrine
secretion through histone modifications [134], suggesting
that NLRP3 may be a key hub bridging genetics and epi-
genetics. Now it needs to be further addressed which cell
types of NLRP3 inflammasome activation can induce epi-
genetic reprogramming and further affect the physiological
and pathological processes of the organism. The rise of
single-cell sequencing able to reveal cellular heterogeneity
in cell populations provides a desirable solution for this
purpose.

Meanwhile, almost all epigenetic modification pro-
cesses require the participation of metabolites, and the
spatial regionalization of metabolites reveals the impor-
tance of metabolic enzyme translocation in epigenetic reg-
ulation. Therefore, discovering the role of metabolites in
other organelles, such as lysosomes, the endoplasmic retic-
ulum, and the Golgi apparatus, will be the key to under-
standing how metabolism and epigenetics interact and
how organelles interoperate. Research has shown that the
small molecule natural product xanthone can inhibit
NLRP3 inflammasomes by configuring the cellular meta-
bolic profile, leading to changes in glucose metabolism
[135]. Therefore, systematic screening can identify novel
NLRP3 inflammasome inhibitors to obtain new bioactive
substances as potential drugs.
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