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Background. So far, type 2 diabetes (T2D) is considered as an independent risk factor for various cancers, but the underlying
mechanism remains unclear. Methods. SLC24A2 was first identified as a key gene strongly associated with fasting plasma
glucose (FPG). Then, overlapped differentially expressed genes (DEGs) between T2D verse control and SLC24A2-high verse
SLC24A2-low were extracted and imported into weighted correlation network analysis. Gene Ontology, Kyoto Encyclopedia of
Genes and Genomes, and gene set enrichment analysis were used for functional enrichment analysis of DEGs. Least absolute
shrinkage and selection operator was utilized to build a T2D prediction model. Timer and K-M plotters were employed to find
the expression and prognosis of SLC24A2 in pan cancer. Results. Interestingly, both DEGs between T2D verse control and
SLC24A2-high verse SLC24A2-low enriched in cancer-related pathways. Moreover, a total of 3719 overlapped DEGs were
divided into 8 functional modules. Grey module negatively correlated with T2D and FPG and was markedly involved in
ribosome biogenesis. Ten SLC24A2-related genes (RRP36, RPF1, GRWD1, FBL, EXOSC5, BCCIP, UTP14A, TWISTNB, TBL3,
and SKIV2L) were identified as hub genes, based on which the LASSO model accurately predicts the occurrence of T2D
(AUC = 0:841). In addition, SLC24A2 was only expressed in islet β cells and showed abnormal expression in 17 kinds of
cancers and significantly correlated with the prognosis of 10 kinds of cancers. Conclusion. Taken together, SLC24A2 may link
T2D and cancer by influencing the ribosome function of islet β cells and play different prognostic roles in different cancers.

1. Introduction

Type 2 diabetes mellitus (T2D) is a common chronic disease
characterized by a high incidence rate, high disability rate,
and high mortality worldwide. The World Health Organiza-
tion (WHO) reported that diabetes will become the seventh
leading cause of death by 2030. Epidemiological studies sug-
gest that T2D was associated with various cancers such as
breast cancer [1], liver cancer [2], lung cancer, pancreatic
cancer, and prostate cancer [3–5]. For one thing, the inci-
dence of cancer in T2D patients was higher than that in non-
diabetic patients [6, 7]. Diabetes was also an independent
poor prognostic factor of several cancers [8, 9]. For another,
cancers and anticancer drugs lead to several adverse effects
in T2D patients, such as microalbuminuria, diabetic retinop-

athy, and other acute diseases [10, 11]. Besides, a key gene,
insulin receptor, mainly regulates the transformation of dia-
betes to cancer by enhancing insulin sensitivity, mediating
antiapoptotic effects through combining with insulin growth
factor 2 (IGF2), and leading to drug resistance in immuno-
therapy in immunotherapy [12–14]. Hence, it is urgent to
find biomarkers and targets for early diagnosis of T2D.

Solute carrier (SLC) family, the second largest mem-
brane protein family in human, is mainly responsible for
the absorption and transportation of amino acids, nucleo-
tides, glucose, inorganic ions, and drugs in the cell mem-
brane [15–17]. SLC24A2 is a new Na/Ca exchanger, which
has the ability to regulate calcium homeostasis in mamma-
lian cells or tissues [18]. Studies have shown that calcium
channels on the islet β cell membrane regulated intracellular
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calcium signals, thereby affecting insulin secretion, which
were closely related to the occurrence, development, and
treatment of diabetes [19]. However, the role of SLC24A2
in diabetes remains unclear.

To further clarify the function of SLC24A2 in T2D and
cancer, we comprehensively analyzed the expression and
function of SLC24A2 and its related genes in multiple data-
sets through bioinformatics methods, constructed an effi-
cient T2D prediction model using lasso algorithm, and
then evaluated the correlation with cancer prognosis, which
reveal the potential mechanism linking T2D and cancers and
provided a new target for the diagnosis and treatment of
T2D.

2. Materials and Methods

2.1. Data Collection and Preprocessing. The transcriptome
and clinical data of 4 type 2 diabetes- (T2D-) related datasets
(GSE76896, GSE20966, GSE25724, and GSE154126) were
downloaded from the Gene Expression Omnibus (GEO)
database. GSE76896 based on the GPL570 platform consists
of pancreatic samples from 55 diabetic (T2D) patients and
116 nondiabetic (ND) patients. Pancreases of 10 control
and 10 T2D subjects from GSE20966 based on the
GPL1352 platform were obtained. GSE25724 based on the
GPL96 platform consists of human islets of 6 T2D patients
and 7 ND subjects. Affymetrix Human Genome U133 Plus
2.0 Array (HG-U133_Plus_2), Affymetrix Human X3P
Array (U133_X3P), and Affymetrix Human Genome
U133A (HG-U133A) Array platform annotation informa-
tion was used to annotate genes. Single-cell RNA-seq data
of islets of T2D donors were obtained from GSE154126.
The “limma” [20] R package was utilized to identify the dif-
ferentially expressed genes (DEGs) between both T2D verse
control and SLC24A2-high T2D verse SLC24A2-low T2D
patients with a significance threshold of adjusted P < 0:05
and jlogFCj > 1:0.

2.2. Weighted Gene Coexpression Network Analysis
(WGCNA). The overlapped DEGs in T2D verse control
and SLC24A2-high T2D verse SLC24A2-low T2D patients
were utilized to construct the weighted gene coexpression
network analysis (WGCNA) with the “WGCNA” [21] R
package. Firstly, the hierarchical clustering analysis of all
genes was performed by hclust function. Then, the soft
threshold was filtered with picki soft threshold function
and selected when the independence was greater than 0.8.
The correlation between gene module and clinical informa-
tion was calculated. The minimum number of genes in the
module was set to 30. A unique color label was assigned to
each module.

2.3. Identification of Hub Genes. The gene contained in the
grey module, which is the most closely related to T2D, was
introduced into the STRING (http://www.string-db.org)
database to construct the protein-protein interaction net-
work. After that, the hub gene of the grey module was iden-
tified with “Cytohubba” [22] application of Cytoscape
software (version 3.8.0).

2.4. Gene Set Enrichment Analysis. Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Gene Set Enrichment Analysis (GSEA) were analyzed using
“clusterProfiler” [23] R package. The c5.bp.v7.3.symbols.gmt
and c2.cp.kegg.v7.3.symbols.gmt in the MsigDB V7.2 data-
base (http://www.gsea-msigdb.org/gsea/msigdb/) were used
as reference genesets.

2.5. Construction of LASSO Model and Receiver Operating
Characteristic (ROC) Curve Analysis. Least absolute shrink-
age and selection operator (LASSO) was constructed by
“glmnet” [24] R package. According to the obtained regression
coefficients, a model index was created for each sample. The
weighted expression value of all selected genes was calculated
as the following formula: index = “ExpGene1 × Coef1 +
ExpGene2 × Coef2 + ExpGene3 × Coef3 + :⋯”. The “Coef”
derived from lasso Cox regression represents the regression
coefficient of each gene, while “Exp”means themRNA expres-
sion value of each gene. Then, GSE76896 dataset was ran-
domly divided into training set (70%) and test set (30%). To
evaluate the performance of LASSO model to recognize T2D
independently, the ROC curves of the training set, test set,
and SLC24A2 alone were analyzed by using “pROC” [25] R
package.

2.6. Bioinformatics Analysis. The expression and prognosis
of SLC24A2 in pan-cancer were analyzed by the TIMER
2.0 database (http://timer.comp-genomics.org/) and
Kaplan-Meier plotter (http://www.kmplot.com/analysis/
index.php?p=background), respectively.

2.7. Statistical Analysis. The “ggstatsplot” [26] R package was
utilized to analyze the correlation between SLC24A2 and
FPG in T2D patients. The “ggcorrplot” [27] R package was
used to analyze the correlation among 10 hub genes in the
grey module. The comparison between SLC24A2 in T2D
and non-T2D was analyzed by two independent sample t
-tests. P < 0:05 was considered statistically significant.

3. Results

3.1. Identification of SLC24A2 or T2D-Related Differentially
Expressed Genes (DEGs). In the GSE76896 dataset, the
mRNA expression level of SLC24A2 in the T2D group was
significantly higher than that in the non-T2D group
(logFC = 1:023, P = 3:01e − 03) (Figure 1(a)) and signifi-
cantly negatively correlated with fasting plasma glucose
(FPG) level (r = −0:43, P = 0:002) (Figure 1(b)). Compared
with healthy individuals, 7108 differentially expressed genes
(DEGs) were identified in the T2D group, of which 3576
were upregulated and 3532 were downregulated
(Figure 1(c)). The heat map showed all the gene expression
with jlogFCj > 1:5 in T2D verse and non-T2D group
(Figure 1(d)). In addition, compared with the SLC24A2-
low group, a total of 5952 DEGs were identified in the
SLC24A2-high group, including 3414 upregulated genes
and 2538 downregulated genes (Figure 1(e)). The heat map
showed all the gene expression with jlogFCj > 1:5 in the
SLC24A2-high verse SLC24A2-low group (Figure 1(f)).
Finally, a total of 3719 overlapped genes were obtained in
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the T2D/non-T2D group and SLC24A2-high/SLC24A2-low
group, which were considered as both SLC24A2- and T2D-
related genes.

3.2. Weighted Correlation Network Analysis (WGCNA)
Identifies T2D-Related Modules. To identify the key modules
related to T2D, WGCNA was performed to analyze the
mRNA expression matrix of the 3719 DEGs obtained in
the previous step. The results showed that a total of 8 mod-
ules (Figure 2(b)) were identified when 17 was selected as the
optimal soft threshold (Figure 2(a)). Grey module was nega-
tively correlated with disease type (r = −0:48, P = 5e − 11)
and fasting blood glucose (FPG) (r = −0:38, P = 2e − 07),
while turquoise module was positively correlated with dis-
ease type (r = 0:36, P = 2e − 06) and FPG (r = 0:31, P = 3e
− 05) (Figure 2(c)). In addition, the green module was also
negatively correlated with T2D (r = −0:41, P = 3e − 08) and
FPG (r = −0:34, P = 4e − 06) (Figure 2(c)). Next, the genes
contained in the grey module, which is the most relevant
to T2D and FPG, were selected for further analysis. GO

enrichment analysis results showed that genes in the grey
module were significantly enriched in several biological pro-
cesses, such as ribonucleoprotein complex biogenesis, ribo-
some biogenesis, and positive regulation of fat cell
differentiation, and mainly participated in cellular compo-
nents, such as exoribonuclease complex and exosome
(Figure 2(d)). Finally, the Cytohubba algorithm was used
to identify 10 hub genes, including RRP36, RPF1, GRWD1,
FBL, EXOSC5, BCCIP, UTP14A, TWISTNB, TBL3, and
SKIV2L (Figure 2(e)). The correlation analysis showed an
extensive regulatory relationship between 10 hub genes and
SLC24A2 (Figure 2(f)).

3.3. Gene Set Enrichment Analysis (GSEA) of SLC24A2 or
T2D-Related DEGs. Gene set enrichment analysis (GSEA)
showed that compared with the SLC24A2-low group, the
DEGs in the SLC24A2-high group were mainly enriched in
some biological processes including anatomical structure
formation involved in morphogenesis, animal organ mor-
phogenesis, antimicrobial humoral response, and biological
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adhesion (Figure 3(a)) and several KEGG pathways, such as
bladder cancer, pathways in cancer, prostate cancer, small-
cell lung cancer, and type II diabetes mellitus (Figure 3(c)).
Similarly, compared with the control group, the DEGs in
the T2D group were significantly enriched in several biolog-
ical processes, such as anatomical structure formation
involved in morphogenesis, cytokine-mediated signaling
pathway, epithelial cell differentiation, and epithelium devel-
opment (Figure 3(b)) and notably enriched in pathways in
cancer, small-cell lung cancer, bladder cancer, autoimmune
thyroid disease, and type I diabetes mellitus KEGG pathways
(Figure 3(d)). Interestingly, they shared anatomical structure
formation involved in morphogenesis biological process and
4 cancer or diabetes-related KEGG pathways including path-

ways in cancer, bladder cancer, small-cell lung cancer, and
type I/II diabetes mellitus, suggesting that SLC24A2 may be
a linkage between T2D and multiple cancers.

3.4. The Cell Source of SLC24A2 and Hub Genes Was
Determined with scRNA-seq Dataset. The higher expression
of SLC24A2 in T2D patients was significantly observed in
GSE20966 (P = 0:0011) and GSE25724 (P = 0:0023) datasets
(Figures 4(a) and 4(b) ). After excluding cells with the mito-
chondrial gene expression ratio more than 5%, all cells from
T2D samples were clustered into 7 clusters (islet α cells, islet
β cells, ductal cells, acinar cells, mesenchymal cells, pancre-
atic polypeptide cells, and PP cells) by UMAP dimension
reduction method in the GSE154126 dataset (Figure 4(c)).
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Results showed that SLC24A2 and its related 8 hub genes
were all expressed in islet β cells (Figure 4(d)).

3.5. The LASSO Model Is an Effective Prediction Tool for
T2D. Firstly, the expression matrices of 10 hub genes were
extracted. After calculation by the LASSO algorithm, the non-
zero regression coefficients of 8 genes were obtained, and the
value of lambda.min is 0.04065766 (Figures 5(a) and 5(b)).
The detailed risk score is calculated as the following formula:
index = RRP36 × ð−0:6333954Þ + RPF1 × ð−1:4930099Þ +
GRWD1 × ð−0:4587730Þ + FBL × ð−0:3610982Þ + BCCIP ×
ð−0:4258075Þ + TWISTNB × ð−2:3570415Þ + TBL3 × ð−
0:1784551Þ + SKIV2L × ð−0:4068790Þ. ROC curve showed
that the AUC of SLC24A2 for independently predicting T2D
was 0.6856 (Figure 5(d)), while 8-gene model reached 0.8410
in the training set and 0.6712 in the test set, indicating that
the LASSOmodel may be an efficient tool to explore early bio-
markers for diagnosis of T2D (Figure 5(c)).

3.6. Pan-Cancer Analysis of SLC24A2. Consistent with previ-
ous enrichment analysis of DEGs, SLC24A2 showed the
abnormal expression in 17 cancers including bladder cancer
(BLCA), prostate cancer (PRAD), and lung cancer (LUAD
and LUSC) (Figure 6(a)). In detail, SLC24A2 was notably
lower expressed in glioblastoma (GBM), kidney renal clear
cell carcinoma (KIRC), and kidney renal papillary cell carci-
noma (KIRP) (all P < 0:05) than in adjacent tissues

(Figure 6(a)), whose lower expression significantly corre-
lated with high survival time in KIRC (HR = 1:49, P =
0:011) and KIRP (HR = 2:05, P = 0:016) (Figure 6(b)). Addi-
tionally, SLC24A2 observably elevated in other cancers
(Figure 6(a)), which was significantly correlated with the
poor prognosis of BLCA (HR = 1:37, P = 0:045), head and
neck squamous cell carcinoma (HNSC) (HR = 1:43, P =
0:016), lung adenocarcinoma (LUAD) (HR = 1:33, P =
0:062), stomach adenocarcinoma (STAD) (HR = 1:78, P =
0:00061), and uterine corpus endometrial carcinoma
(UCEC) (HR = 1:97, P = 0:00086) but significantly corre-
lated with the good prognosis of patients with esophageal
cancer (ESCA) (HR = 0:39, P = 0:044), liver hepatocellular
carcinoma (LIHC) (HR = 0:62, P = 0:0071), and lung squa-
mous cell carcinoma (LUSC) (HR = 0:72, P = 0:017)
(Figure 6(b)). That is to say, although SLC24A2 may play
different roles in different cancers, they were all closely
related to prognosis.

4. Discussion

As we all know that type 2 diabetes (T2D) is a common
chronic disease, usually accompanied by a variety of compli-
cations including cancer, however, the association between
T2D and cancer has not yet been fully elucidated. Mean-
while, this lacks effective biomarkers for early diagnosis of
T2D. Increasing evidences have demonstrated that the SLC
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family plays a key role in the pathogenesis and diagnosis of
both T2D and cancer [28–30]. However, the function of
SLC24A2 needs to be fully clarified and further explored.

Firstly, we found that SLC24A2 was significantly upregu-
lated in T2D patients within 3 datasets (GSE76896,

GSE76896, and GSE76896) and negatively correlated with
fasting plasma glucose (FPG) in GSE76896, suggesting that
SLC24A2might be a potential inhibitor of T2D through low-
ering blood glucose. SLC24A2, also known as NCKX2, is a
sodium/potassium/calcium exchanger of the solute carrier
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Figure 6: Expression and prognostic analysis of SLC24A2 in pan cancer. (a) The expression of SLC24A2 in pan cancer. (b) Prognostic
analysis of SLC24A2 in pan cancer.
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family, which was first reported to be associated with retinal
diseases [18]. In recent years, SLC24A2 has been found as a
tumor microenvironment-related gene to be related to the
prognosis of esophageal squamous cell carcinoma [31].
Nonetheless, no reports have confirmed the association
between SLC24A2 and T2D. It is well known that islet alpha
cells and islet beta cells jointly regulate the level of blood glu-
cose. In this study, scRNA-seq analysis revealed that
SLC24A2 was only expressed in islet beta cells, suggesting
that SLC24A2 may regulate blood glucose by affecting the
function of islet beta cells. Therefore, this is the first study
to clarify the potential mechanism of SLC24A2 in the occur-
rence and development of T2D.

To further reveal the role of SLC24A2 in the pathogene-
sis of T2D, we used the WGCNA algorithm to find key mod-
ules among DEGs both related to SLC24A2 and T2D.
WGCNA is an effective way to search for coexpressed gene
modules and to explore the association between gene net-
works and different phenotypes, which has been applied to
the exploration of key genes in various diseases including
T2D [32–34]. On this basis, we further identified 10 hub
genes by the Cytohubba algorithm, namely, RRP36, RPF1,
GRWD1, FBL, EXOSC5, BCCIP, UTP14A, TWISTNB,
TBL3, and SKIV2L. One study showed that the methylation
level of GRWD1 was associated with insulin resistance [35].
GWAS analysis revealed that SKIV2L was associated with
inflammation status in patients with metabolic diseases such
as diabetes [36]. Previous studies showed that RRP36, RPF1,
FBL, and BCCIP affected ribosomal function and rRNA pro-
cessing [37–39]. In addition, EXOSC5, UTP14A, TWISTNB,
and TBL3 were closely related to the occurrence or prognosis
of several cancers [40–43]. Together with the results of GO
enrichment analysis, we believed that abnormal ribosome
function may be one of the causes of T2D complicated with
cancer. Coincidently, Peng et al. also found that the shared
DEGs of T2D and colorectal cancer (CRC) patients were sig-
nificantly enriched in the ribosomal pathway in the study of
T2D complicated with CRC patients [44].

Interestingly, we found broad correlations between 10
hub genes and SLC24A2, indicating that a comprehensive
analysis of SLC24A2-related regulatory network members
could serve as potential markers for early diagnosis of
T2D. Therefore, the LASSO algorithm was introduced to
further analysis. The LASSO algorithm could construct a
penalty function to obtain a more refined model based on
regularization, which has been widely used in the explora-
tion of tumor biomarkers [45]. After that, an efficient 8-
gene (RRP36, RPF1, GRWD1, FBL, BCCIP, TWISTNB,
TBL3, and SKIV2L) T2D prediction model was obtained,
whose AUC reached 0.84 and 0.67, respectively, in training
set and test set. Thus, LASSO is a promising tool for early
diagnosis of T2D and has a high potential value.

It is also noteworthy that the DEGs between high- and
low- SLC24A2 groups were enriched in T2D and several
cancer pathways such as bladder cancer and non-small-cell
lung cancer. Meanwhile, the DEGs between T2D and nor-
mal controls were also enriched in some cancer pathways
including bladder cancer and non-small-cell lung cancer.
That is to say, the shared DEGs imported into WGCNA,

as well as SLC24A2, could explain the coexistence of T2D
and cancer to some extent. Therefore, in addition to the
analysis of PPI network and LASSO-prediction model for
shared DEGs mentioned above, we also focused on the prog-
nostic value of SLC24A2 in pan cancers. The results showed
that SLC24A2 played opposite roles in different types of can-
cers due to the tissue specificity of SLC24A2.

In order to achieve better clinical application, we could
make full use of SLC24A2 and its related genes for early clin-
ical diagnosis. In addition, we could develop SLC24A2 inhib-
itors for clinical research. Although we explored the role of
SC24A2 between T2D and cancers through a multiomics
approach, this study still has some limitations. On the one
hand, it is necessary to verify the prognostic value and
robustness of the model in expanded samples. On the other
hand, we also need to further verify the potential mechanism
through in vivo and in vitro experiments to promote clinical
application and transformation.

5. Conclusion

In summary, we used bioinformatics methods and multiple
algorithms to integrate multiple RNA-seq datasets and
scRNA-seq dataset and found that SLC24A2 may prevent
the occurrence of T2D complicated by cancer via maintain-
ing the ribosome function of islet beta cells and play differ-
ent prognostic roles in cancers.
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