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Objectives. The purpose of this study was to explore the effects of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on urine
albumin to creatinine ratio (UACR) in type 2 diabetes mellitus (T2DM) patients and to recommend appropriate medication
care scheme. Methods. 8371 T2DM patients from four dapagliflozin studies and two canagliflozin studies were collected for
analyzing with nonlinear mixed effect model (NONMEM). The change rates of UACR from baseline were intended to be
evaluation indicators. Results. In the present study, there was no significant difference in the effects on UACR using
dapagliflozin or canagliflozin treatment in T2DM patients. The maximal effect (Emax) and the treatment duration of reaching
half of Emax (ET50) from SGLT-2 inhibitors on UACR in T2DM patients were -19.2% and 0.448 weeks, respectively. Further,
the treatment duration to reach 25%, 50%, 75%, and 80% Emax was 0.150 weeks, 0.448 weeks, 1.344 weeks, and 1.792 weeks,
respectively. Namely, for achieving the plateau period (80% of Emax) of SGLT-2 inhibitors on UACR in T2DM patients, 10mg/
day dapagliflozin (or 100mg/day canagliflozin) should be taken for at least 1.792 weeks. Conclusions. To our knowledge, the
present study explored the effects of SGLT-2 inhibitors on UACR in T2DM patients, meanwhile, recommended appropriate
medication care scheme for the first time.

1. Introduction

Diabetes mellitus (DM) was a serious disease threatening to
human health and a public health problem attracting more
and more worldwide attention [1]. It was reported that in
2010, the estimated prevalence of DM in adults worldwide
was 6.4%, and in 2030, there would be approximately 7.7%

population suffering from DM in the world [2, 3]. China
accounted for about 30% in the world, of which type 2
DM (T2DM) accounted for 90% [1]. What was more impor-
tant was that DM could be complicated with multiple dis-
eases significantly increasing the death risk of DM patient
[1]. As everyone knows, long-term hyperglycemia would
result in chronic damage and dysfunction of various tissues,
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especially kidneys [4], blood vessels [5], nerves [6], and heart
[7], among which kidney damage was one of the most com-
mon microvascular complications in DM patients, which
brought great challenges to the treatment and nursing for
DM patients.

Urine albumin to creatinine ratio (UACR), also known
as urine microalbumin, helps identify kidney diseases that
could occur as a complication of DM [8]. At present, more
and more studies had used UACR as a valuable evaluation
index for kidney damage in T2DM patients [9–11].
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors was a
group of antidiabetic drugs and play a hypoglycemic role
by restraining SGLT-2 who was accounted for approxi-
mately 90% glucose absorption in the kidney [12–14]. In
recent years, it had been reported that SGLT-2 inhibitors
had favourable renal protective effect and safety [15]. How-
ever, the influences from SGLT-2 inhibitors on UACR in
T2DM patients remained unknown. The purpose of this
study was to explore the effects of SGLT-2 inhibitors on
UACR in T2DM patients and to recommend appropriate
medication care scheme.

2. Methods

2.1. Included Patients. T2DM patients with treatment using
SGLT-2 inhibitors from published literatures were included
to analyze [16–21]. Supplementary showed literature search
program and detailed inclusion information such as source,
group, dosage, duration of treatment, number of people, and
age (Table 1S was search details, Figure 1S was search
strategies, and Table 2S was identified studies). The change
rates of UACR from baseline were intended to be
evaluation indicators for eliminating the potential baseline
effect, which was shown in the following formula:

U =
U time −Ubase

Ubase
× 100%: ð1Þ

U was the change rate of UACR from baseline; U time was
the value of UACR at time; Ubase was the value of UACR at
baseline.

2.2. Model Establishment. The placebo control group effects
were eliminated from the sum effects to obtain the actual
SGLT-2 inhibitors effects on UACR in T2DM patients. In
addition, Emax model was used to evaluate the effects of
SGLT-2 inhibitors on UACR in T2DM patients, shown in
the following formulas:

Ua,i,j =Us,i,j −Up,i,j, ð2Þ

Ua,i,j =
Emax, i,j × Time
ET50,i,j + Time

+
Ɛi,j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ni,j/1000
p

: ð3Þ

Us,i,j was the sum effects of SGLT-2 inhibitors on UACR
in T2DM patients; Up,i,j was the placebo control group
effects on UACR in T2DM patients; Ua,i,j was the actual
effects of SGLT-2 inhibitors on UACR in T2DM patients; i
was different studies; j was time point. Emax was the maximal

effects of SGLT-2 inhibitors on UACR in T2DM patients;
ET50 was the treatment time to achieve half of the Emax;
Ɛi,j was the residual error; Ni,j was the sample size.

Formulas (4)–(7) showed variabilities of interstudy
which were described by exponential or additive error
models:

Emax,i,j = Emax × exp b1,ið Þ, ð4Þ

ET50,i,j = ET50 × exp b2,ið Þ, ð5Þ

Emax,i,j = Emax + b1,i, ð6Þ

ET50,i,j = ET50 + b2,i: ð7Þ

b1,i and b2,i were the interstudy variabilities.
Formulas (8)–(10) showed continuous or categorical

covariates:

Ui =UT + COV − COVmð Þ · θc, ð8Þ

Ui =UT ×
COV
COVm

� �θc

, ð9Þ

Ui =UT + COV × θc: ð10Þ
Ui was individual parameter; UT was typical parameter;

COV was covariate; COVm was median value. θc was correc-
tion coefficient. Different SGLT-2 inhibitors and dosages
were also selected as potential covariables to evaluate
whether there were significant difference on UACR in
T2DM patients between different drugs or different dosages.

The nonlinear mixed effect modeling (NONMEM) soft-
ware was used for building up model. Once basic model was
done, potential covariate was considered for adding into
Emax or ET50. The objective function value (OFV) change
was used as covariate inclusion criteria, when OFV
decreased more than 3.84 (χ2, α = 0:05, d:f : = 1), it was con-
sidered sufficient for inclusion, when OFV increased more
than 6.63 (χ2, α = 0:01, d:f : = 1), it was considered sufficient
for significance in the final model [22].

2.3. Model Evaluation. The observations vs. individual pre-
dictions, absolute value of individual weighted residuals
(│iWRES│) vs. individual predictions, conditional weighted
residuals (CWRES) vs. time, observations/predictions vs.
time, individual plots, density vs. CWRES, and quantiles of
CWRES vs. quantiles of normal were used to evaluate the
final model. The visual predictive check (VPC) plot was used
to assess the predictive performance of final model. The
Bootstrap was used to assess the stability of model.

2.4. Prediction. The curve from the final model of effects of
SGLT-2 inhibitors on UACR in T2DM patients was simu-
lated, including the duration time achieving 25%, 50%,
75%, and 80% Emax of SGLT-2 inhibitors on UACR in
T2DM.
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3. Results

3.1. Included Patients. 8371 T2DM patients from four dapa-
gliflozin studies and two canagliflozin studies were collected
for analysis [16–21], including five 10mg/day dapagliflozin
groups, two 100mg/day canagliflozin groups, and one
300mg/day canagliflozin group. Detailed information were
shown in Supplementary. The vast majority of these studies
were multinational sources, and their duration of treatment
were from 16 weeks to 182 weeks.

3.2. Modeling. The Emax and ET50 from SGLT-2 inhibitors
on UACR in T2DM patients were -19.2% and 0.448 weeks,
respectively. Furthermore, in terms of different SGLT-2
inhibitors drugs and dosages, 10mg/day dapagliflozin,
100mg/day canagliflozin, and 300mg/day canagliflozin were
not covariates included in the final model, indicating there
were no significant difference on UACR in T2DM patients
from 10mg/day dapagliflozin, 100mg/day canagliflozin, or
300mg/day canagliflozin. In other words, for clinical use,
10mg/day dapagliflozin or 100mg/day canagliflozin was
available for treatment on UACR in T2DM patients.

The formulas (11) showed the final model of SGLT-2
inhibitors on UACR in T2DM patients:

U = −19:2% × Time
0:448 + Time

: ð11Þ

U was the change rate of UACR; Time was SGLT-2
inhibitors duration time to treat UACR in T2DM
patients.

3.3. Evaluation. The final model evaluation was shown in
Figures 1, 2, and 3, among which Figure 1 was observations
vs. individual predictions,│iWRES│vs. individual predic-
tions, CWRES vs. time, and observations/predictions vs.
time; Figure 2 was individual plots; and Figure 3 was density
vs. CWRES and quantiles of CWRES vs. quantiles of normal.
Overall speaking, individual predictions and observations
had better linear relationship. The VPC plot was shown in
Figure 4, indicating all observed data were included in the
10-90% prediction intervals produced with simulation data
and showing the predictive power of the final model. In
addition, the Bootstrap was shown in Table 1, and the abso-
lute values of bias were all less than 30%.

3.4. Prediction. Figure 5 showed the curve of effects from
SGLT-2 inhibitors on UACR in T2DM patients, where the
treatment duration to reach 25%, 50%, 75%, and 80% Emax
was 0.150 weeks, 0.448 weeks, 1.344 weeks, and 1.792 weeks,
respectively. Namely, for achieving the plateau period (80%
of Emax) of SGLT-2 inhibitors on UACR in T2DM patients,
10mg/day dapagliflozin (or 100mg/day canagliflozin)
should be taken for at least 1.792 weeks.
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Figure 1: Model evaluation. (a) Observations vs. individual predictions, (b) absolute value of individual weighted residuals (│iWRES│) vs.
individual predictions, (c) conditional weighted residuals (CWRES) vs. time, and (d) observations/predictions vs. time.
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Figure 3: Distribution of conditional weighted residuals for model. (a) Density vs. conditional weighted residuals (CWRES), (b) quantiles of
CWRES vs. quantiles of normal, and (c) quantiles of CWRES vs. quantiles of normal for individual. ID: 1-8 were from studies [16–21].
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4. Discussion

In the world, the number of DM patients had quadrupled in
the past three decades, and meanwhile, DM was the ninth
major cause of death, among which Asia had become the
major area of the rapidly emerging T2DM global epidemic,

and most T2DM patients always had at least one complica-
tion [23]. The complexity of T2DM treatment and care were
very challenging because they involved the prevention of
organ damage and complications [23], including chronic
damage and dysfunction of various tissues, especially kid-
neys [4], blood vessels [5], nerves [6], and heart [7], among
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Figure 4: Visual predictive check plots. Median, 10% CI and 90% CI were simulated by Monte Carlo (n = 1000); CI: confidence interval. a-h
were from studies [16–21].

Table 1: Parameter estimates of final model and Bootstrap.

Parameter Estimate
Bootstrap (n = 1000)

Bias (%)
Median (Lower quartile, upper quartile)

Emax, % -19.2 -22.6 (-39.6, -18.6) 17.71

ET50, week 0.448 0.575 (0.010, 1.530) 28.35

ωE max 0.423 0.453 (0.255, 0.642) 7.09

Ɛ 9.965 9.750 (6.033, 12.845) -2.16

Emax was the maximal effect; ET50 was the treatment duration to reach half of Emax; ωE max was the interstudy variability of Emax; Ɛ was the residual error;
Bias = ðMedian − EstimateÞ/Estimate × 100%.
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which kidney damage was one of the most common micro-
vascular complications in DM patients, which brought great
challenges to the treatment and nursing for DM patients.

SGLT-2 inhibitors were a group of antidiabetic drugs,
which had the ability to reduce the blood sugar via inhibiting
SGLT-2 [24]. Furthermore, except for lowering blood sugar
[25–30], SGLT-2 inhibitors also had abilities to lose weight
[24, 31, 32], reduce cardiovascular outcomes and mortality
risk [33], and play renal protective effect [15]. It was also
reported that SGLT-2 inhibitors could observably lower the
response of inflammatory and smaller infarct size compared
with other oral antidiabetic drugs, not dependent on blood
sugar control [34]. In addition, as everyone knows, UACR,
also known as urine microalbumin, helps identify kidney
disease that could occur as a complication of diabetes [8].
More importantly, numerous studies had used UACR as a
valuable evaluation index for kidney damage in T2DM
patients [9–11], where the efficacy of treatment could be
quantified by analyzing changes in UACR after continuous
treatment. However, the effects of SGLT-2 inhibitors on
UACR in T2DM patients remained unknown. The purpose
of this study was to explore the effects of SGLT-2 inhibitors
on UACR in T2DM patients and to recommend appropriate
medication care scheme.

In the present study, 8371 T2DM patients from four dap-
agliflozin studies and two canagliflozin studies were collected
for analysis [16–21], including five 10mg/day dapagliflozin
groups, two 100mg/day canagliflozin groups, and one
300mg/day canagliflozin group. The change rates of UACR
from baseline were intended to be evaluation indicators for
eliminating the potential baseline effect. Additionally, the pla-
cebo control group effects were eliminated from the sum
effects to obtain the actual SGLT-2 inhibitors effects on UACR
in T2DM patients, and Emax model was used to evaluate the
effects of SGLT-2 inhibitors on UACR in T2DM patients.

Through model analysis, this study finally found that the
Emax and ET50 from SGLT-2 inhibitors on UACR in T2DM
patients were -19.2% and 0.448 weeks, respectively. Further-
more, in terms of different SGLT-2 inhibitors drugs and dos-
ages, 10mg/day dapagliflozin, 100mg/day canagliflozin, and
300mg/day canagliflozin were not covariates included in the
final model, indicating there were no significant difference
on UACR in T2DM patients from 10mg/day dapagliflozin,
100mg/day canagliflozin, or 300mg/day canagliflozin. In
addition, the lack of a dose-response relationship between
SGLT2 inhibitors and a series of safety or efficacy outcomes
had been already indicated in Mirabelli et al.’s study [35]. In
other words, for clinical use, 10mg/day dapagliflozin or
100mg/day canagliflozin was available for treatment on
UACR in T2DM patients. Additionally, the present study
simulated the curve from the final model of effects of
SGLT-2 inhibitors on UACR in T2DM patients including
the duration time achieving 25%, 50%, 75%, and 80% Emax
of SGLT-2 inhibitors on UACR in T2DM and found that
the treatment duration to reach 25%, 50%, 75%, and 80%
Emax was 0.150 weeks, 0.448 weeks, 1.344 weeks, and 1.792
weeks, respectively. That was to say, for achieving the pla-
teau period (80% of Emax) of SGLT-2 inhibitors on UACR
in T2DM patients, 10mg/day dapagliflozin (or 100mg/day

canagliflozin) should be taken for at least 1.792 weeks, which
could provide reference for clinical medication care.

However, there were also objective limitations in the
present study. As the number of relevant studies about
SGLT-2 inhibitors on UACR in T2DM patients were limited
on account of the current SGLT-2 inhibitors treatment for
UACR in T2DM patients was a new discovery. In addition,
most original studies that had looked at the effects of SGLT2
inhibitors on UACR had relied on post hoc analysis, and its
calculations of ET50 and Emax may require farther confirma-
tion and validation in future investigations.

5. Conclusion

To our knowledge, the present study explored the effects of
SGLT-2 inhibitors on UACR in T2DM patients, meanwhile,
recommended appropriate medication care scheme for the
first time.
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