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The burden of diabetic retinopathy (DR) is increasing, and the sensitive biomarkers of the disease were not enough. Studies have
found that the metabolic profile, such as amino acid (AA) and acylcarnitine (AcylCN), in the early stages of DR patients might
have changed, indicating the potential of metabolites to become new biomarkers. We are amid to construct a metabolite-based
prediction model for DR risk. This study was conducted on type 2 diabetes (T2D) patients with or without DR. Logistic
regression and extreme gradient boosting (XGBoost) prediction models were constructed using the traditional clinical features
and the screening features, respectively. Assessing the predictive power of the models in terms of both discrimination and
calibration, the optimal model was interpreted using the Shapley Additive exPlanations (SHAP) to quantify the effect of
features on prediction. Finally, the XGBoost model incorporating AA and AcylCN variables had the best comprehensive
evaluation (ROCAUC = 0:82, PRAUC = 0:44, Brier score = 0:09). C18 : 1OH lower than 0.04μmol/L, C18 : 1 lower than
0.70 μmol/L, threonine higher than 27.0 μmol/L, and tyrosine lower than 36.0 μmol/L were associated with an increased risk of
developing DR. Phenylalanine higher than 52.0 μmol/L was associated with a decreased risk of developing DR. In conclusion,
our study mainly used AAs and AcylCNs to construct an interpretable XGBoost model to predict the risk of developing DR in
T2D patients which is beneficial in identifying high-risk groups and preventing or delaying the onset of DR. In addition, our
study proposed possible risk cut-off values for DR of C18 : 1OH, C18 : 1, threonine, tyrosine, and phenylalanine.

1. Introduction

Diabetic retinopathy (DR) is a common and specific micro-
vascular complication of diabetes and remains the leading
cause of blindness in working-aged people [1]. In a meta-
analysis of 41 studies done in Chinese people between
1990 and 2017, researchers estimated that the pooled preva-
lence rates were 18.45% for any DR in people with diabetes
which revealed that DR has been a heavy public health prob-
lem in China [2]. DR is generally asymptomatic in the early
course and irreversible in the late stages. However, the ther-

apy of DR, such as antivascular endothelial growth factor
(anti-VEGF) therapy, is usually only effective in the late
stages, and not all patients respond optimally [3]. There is
a pressing need for new screening and treatments to prevent
DR and DR-associated blindness.

Metabolites are the biological products of genomic and
proteomic perturbations and also can be influenced by envi-
ronment such as diet and toxins [4]. Previous metabolomic
studies revealed that branched-chain amino acid (BCAA)
and fatty acid (FA) might be useful to monitor the develop-
ment of insulin resistance [5]. For proliferative diabetic
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retinopathy (PDR) in diabetic patients, the AA and acylcar-
nitine (AcylCN) profiles were different from non-PDR
patients [4, 6, 7]. In our previous studies, tyrosine, phenylal-
anine, and several long-chain AcylCN were also found to be
correlated with DR [8, 9]. Thus, AA and AcylCN may have
potential as new biomarkers for predicting DR.

Machine learning (ML) algorithms have great generaliz-
ability and discrimination in high-dimensional data to
analyze complex real-world data [10]. Some studies of pre-
dicting diabetes and its complication risk based on ML algo-
rithms have performed great predictive results [11, 12].
However, evaluation of those studies was not enough. More-
over, due to the black box problem of ML models, we cannot
know exactly how the features in the model affect their judg-
ments on disease classification.

In this study, we investigated the ability of ML models
based on blood metabolites, AA, and AcylCN, to predict
the DR risk in patients with T2D in northern China. Mean-
while, the best prediction model was explained by Shapley
Additive exPlanation (SHAP) to quantify the effects of
metabolites.

2. Materials and Methods

2.1. Research Design and Study Patients. Details of the study
population and methods were described previously [13]. A
total of 1898 T2D inpatients in Liaoning Medical University
First Affiliated Hospital (LMUFAH) from May 2015 to
August 2016 were enrolled. Diagnosis criteria for T2D were
the 1999 WHO’s criteria [14] or treated with antidiabetic
agent. For these patients, we retrieved their electronic medi-
cal records and measured their AA and AcylCN profiles.
Excluding missing age, AA, and AcylCN information, a total
of 1032 patients aged 18 years or older were included in the
current analysis.

2.2. Data Collection and Definitions. Electronic medical
records provided the information on demographic, anthro-
pometric, current status of smoking and alcohol drinking,
duration of T2D, clinical and laboratory measurements,
medicant used, and DR status. The clinical parameters
included systolic blood pressure (SBP), diastolic blood
pressure (DBP), triglyceride (TG), high-density lipoprotein
(HDL) cholesterol, low-density lipoprotein (LDL) choles-
terol, total cholesterol (TC), glycosylated hemoglobin
(HbA1c), and serum creatinine (SCr). Medication informa-
tion included antidiabetic agents, antihypertensive drugs,
and lipid-lowering drugs.

2.3. Clinical Definitions. Body mass index (BMI) was calcu-
lated as weight in kilograms divided by height in meters
squared (kg/m2) [15]. For Chinese people, BMI ≤ 18:5, 24-
27.9, and ≥28 (kg/m2) are the appropriate cut-off points
for underweight, overweight, and obesity [16]. Hyperglyce-
mia was defined as HbA1c ≥ 7%. The definitions of abnor-
mal lipids were HDL cholesterol < 1:0mmol/L in men and
HDL cholesterol < 1:3mmol/L in women and/or LDL − C
≥ 2:6mmol/L and/or TG ≥ 1:7mmol/L [17]. DR was evalu-
ated by the bilateral retinal photography and was defined as

the presence, if any, of the following lesions: microaneur-
ysms, retinal hemorrhages, soft exudates, hard exudates, or
vitreous hemorrhage [9].

2.4. Laboratory Assays. Details of metabolomic approach for
AA and AcylCN were published previously [18]. Briefly,
dry blood spot (DBS) samples of patients were collected
after 8 hours of fasting. The sample preparation process
involved punching wells from DBS paper, adding working
and quality control (QC) solutions, derivatizing and dry-
ing, and finally, dissolving the dried sample in fresh
mobile phase solution. An AB Sciex 4000 QTrap system
(AB Sciex, Framingham, MA, USA) was used to carry
out the mass spectrometry metabolomic analysis. The ion
source was electrospray ionization source. Analyst v1.6.0
software (AB Sciex) was used for system control and data
collection. Isotope-labeled internal standards of AA (NSK-
A) and AcylCN (NSK-B) from Cambridge Isotope Labora-
tories (Tewksbury, MA, USA) were used for preparing
working solutions. AAs and carnitine QC standards were
provided by Chromsystems (Grafelfing, Germany). Aceto-
nitrile (high-performance liquid chromatography grade)
was obtained from Thermo Fisher (Waltham, MA, USA).

2.5. Statistical Analysis. Continuous variables were reported
as means with standard deviation (SD) or medians with
interquartile ranges (IQRs), and categorical variables were
reported as frequencies (%). Nonpaired Student’s t-test,
Mann–Whitney U test, and Chi-square tests (or Fisher’s test,
if appropriate) were conducted to estimate the differences of
continuous and categorical data between patients with DR
and not groups, respectively.

2.5.1. Data Preparation. Data preparation was done as fol-
lowing. Categorical variables were dummy encoded (one
binary variable for each category), and numerical variables
with >30% of missing values were replaced with missing
value indicators, which specify whether a value was missing
(1) or not (0). Other features containing missing values were
processed using multiple interpolations. Multiple imputa-
tions are implemented through the mouse package in R,
with the number of imputations being 5.

2.5.2. Feature Selection. Feature selection was performed by
using least absolute shrinkage and selection operator
(LASSO) regression. LASSO regression contains a regulari-
zation/penalty term in its cost function to prevent overfitting
and ensure that the LASSO model neglects correlated fea-
tures. According to the one standard error rule (1SE rule),
the optimal value corresponds to the simplest model, and
the cross-validation error of which is no more than one stan-
dard error above the minimum [19]. Therefore, we refer to
the shrinkage parameter determined using the 1SE rule as
the optimal value to obtain least features in this study.

2.5.3. Model Training and Validation. Construction of ML
prediction models for DR risk incorporated LASSO postscre-
ening features and traditional clinical features, respectively.
Logistic regression (LR) and extreme gradient boosting
(XGBoost) algorithms were selected as ML classifiers in this
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study. The dataset was split into a training set and testing set
at a ratio of 7 : 3 randomly. The best trained model was
obtained in the training set using grid search. Moreover, we
used the area under the curve (AUC), respectively, of the
receiver operating characteristic (ROC) curve and precision
recall (PR) curve analysis to evaluate its discrimination. The
calibration curve and the Brier score were used to evaluate
the calibration. The closer the calibration curve is to the ref-
erence line and the smaller the Brier score, the better the pre-
dictive calibration of the model. These evaluations were
performed in the testing set.

2.5.4. Model Interpretation. The effects of features on predic-
tion scores were measured by SHAP, which assessed the
importance of each feature using a game-theoretic approach
based on the testing set [20]. The SHAP value quantifies the
marginal contribution of each feature to the final prediction,
which in our case is a T2D patient developing DR or not. In
other words, SHAP value is the contribution of a given feature
i in the predictionmodel and is the difference between the pre-
diction using the value of i and the mean prediction [21].

P values of <0.05 were considered statistically significant
in all these analyses. Data preparation and feature selection

Table 1: Characteristics of patients with T2D according to DR status.

Totala DRb No-DRc P valued

n 1032 162 870

Age, years 57 (14) 58 (10) 57 (14) .491

Sex, male 549 (53.2%) 73 (45.1%) 476 (54.7%) .030

Duration of T2D, years 5 (0-10) 13 (6-20) 4 (0-10) <.001
Body mass index, kg/m2 25.3 (3.9) 25.1 (3.3) 25.3 (4.0) .368

~18.5 27 (2.6%) 1 (0.6%) 26 (3.0%) .162

18.5~ 23.9 352 (34.1%) 64 (39.5%) 288 (33.1%)

24.0~ 27.9 430 (41.7%) 66 (40.7%) 364 (41.8%)

28.0 ~ 223 (21.6%) 31 (19.1%) 192 (22.1%)

Systolic blood pressure, mmHg 145.6 (25.2) 139.5 (23.6) .004

Diastolic blood pressure, mmHg 82.0 (73.3-90.0) 81.0 (74.0-90.0) .647

Glycosylated hemoglobin, % 9.5 (7.4-11.0) 9.6 (7.8-11.1) .380

<7 15 (15.8%) 62 (11.6%) .323

≥7 80 (84.2%) 474 (88.4%)

Missing 67 334

Triglyceride, mmol/L 1.72 (1.14-2.46) 1.66 (1.11-2.37) .544

<1.70 46 (48.9%) 337 (51.8%) .676

≥1.70 48 (51.1%) 313 (48.2%)

Missing 68 220

High-density lipoprotein cholesterol, mmol/L 1.04 (0.87-1.31) 1.01 (0.85-1.25) .254

<1.00 in men or <1.30 in women 57 (60.6%) 429 (66.3%) .335

≥1.00 in men or ≥1.30 in women 37 (39.4%) 218 (33.7%)

Missing 68 223

Low-density lipoprotein cholesterol, mmol/L 2.83 (2.27-3.36) 2.78 (2.20-3.38) .583

<2.60 269 (41.6%) 38 (40.4%) .921

≥2.60 378 (58.4%) 56 (59.6%)

Missing 68 223

Total cholesterol, mmol/L 4.84 (4.00-5.66) 4.63 (3.83-5.27) .043

Serum creatinine, μmol/L 56.65 (48.77-72.49) 60.22 (49.39-74.49) .314

Current smoking 42 (25.9%) 289 (33.2%) .083

Current drinking 42 (25.9%) 248 (28.5%) .565

Antidiabetic agents 137 (84.6%) 730 (83.9%) .925

Lipid-lowering agents 63 (38.9%) 325 (37.4%) .778

Hypotensive agents 86 (53.1%) 457 (52.5%) .964

Notes: data are mean (standard deviation), median (IQR), or n (%). aAll subjects were analyzed for age, sex, duration of type 2 diabetes, body mass index, and
body mass index categories. bType 2 diabetic patients with retinopathy. cType 2 diabetic patients without retinopathy. dP values were derived from
independent sample Student’s t-test for normally distributed variables, Mann–Whitney U test for skewed distributions, and Chi-square test (or Fisher’s
test if appropriate) for categorical variables. P < 0:05 was defined as statistically significant. Abbreviations: T2D: type 2 diabetes; DR: diabetic retinopathy.
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were conducted using R V.4.1.1. Modeling, evaluation, and
interpretation of ML models were conducted using Python
V.3.10. The whole technical details and machine learning
pipeline are given in supplementary figure 1.

3. Result

3.1. Characteristics of the Study Patients. The 1032 patients
had a mean age of 57.2 (SD 13.8) years and a median dura-
tion of T2D of 5 (IQR 0–10) years. Of these patients, 53.2%
were male. The mean BMI of the cohort was 25.3 (SD 3.9)
kg/m2. Of these patients, 162 were with prior DR, while
870 were not. Subjects with DR composed more women and
had longer duration of diabetes and higher SBP and TC.
Age, BMI, DBP, current smoking and drinking, HbA1c, creat-
inine, and drug use were similar in the two groups (Table 1).

We observed 11AAs and 19AcylCNs demonstrating lower
levels (P < 0:05) in T2D patients with DR. Other AAs and
AcylCNs were similar in the two groups (see Supplementary
table 1 & table 2).

3.2. Feature Selection. After LASSO regression screening, the
number of features was reduced from the initial 82 to 15
(Figure 1). Metabolite features included 7 AAs (alanine, cit-
rulline, glutamate, ornithine, phenylalanine, threonine, and
tyrosine) and 3 AcylCNs (octacarbonylcarnitine (C18 : 1),
3-hydroxy-octadecylcarnitine (C18 : 1OH), and octadecadie-
nylcarnitine (C18 : 2)). Additionally, patients’ age, SBP, TC,
duration of T2D, and missing value indicator of HbA1c have
also been contained. Considering that the missing value
indicator is not clinically significant for the disease, it was
not included in the follow-up modeling.
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Figure 1: (a) LASSO coefficient profiles of the 82 features. (b) Tuning parameter (λ) selection in the LASSO model used 10-fold cross-
validation via minimum criteria. The area under the receiver operating characteristic curve (AUC) was plotted versus log ðλÞ. Dotted
vertical lines were drawn at the optimal values by using the minimum criteria and the 1SE criteria. 14 features with nonzero coefficients
were selected according to the 1SE criterion.

Table 2: Discriminant evaluation of predictive models.

Model Accuracy ROCAUC (95% CI) P valuea PRAUC (95% CI) P valueb

LR model 1 87.42% 0.73 (0.68, 0.74) Ref 0.30 (0.24, 0.32) Ref

XGBoost model 1 83.87% 0.64 (0.61, 0.72) .023 0.26 (0.21, 0.39) .312

LR model 2 87.10% 0.78 (0.73, 0.81) .156 0.34 (0.27, 0.40) .283

XGBoost model 2 88.39% 0.82 (0.75, 0.82) .006 0.44 (0.31, 0.47) <.001
Notes: features in model 1: sex, age, duration of type 2 diabetes, body mass index, systolic blood pressure, diastolic blood pressure, triglyceride, high-density
lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol. Features in model 2: duration of type 2 diabetes, age, systolic blood
pressure, total cholesterol, alanine, citrulline, glutamate, ornithine, phenylalanine, threonine, tyrosine, C18 : 1, C18 : 1OH, and C18 : 2. aDelong test for
area under the curve of receiver operating characteristic curve. bDelong test for area under the curve of precision recall curve. Abbreviations: ROC:
receiver operating characteristic; AUC: area under the curve; CI; confidence interval; PR: precision recall; LR: logistic regression; XGBoost: extreme
gradient boosting; Ref: reference.
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Figure 2: (a) Receiver operating characteristic curves of predictive models. Red line means XGBoost model with LASSO selection features
(AUC = 0:82), green line means logistic regression model with LASSO selection features (AUC = 0:78), blue line means XGBoost model with
conventional features (AUC = 0:64), and yellow line means logistic regression model with conventional features (AUC = 0:73). (b) Precision
recall curves of predictive models. Red line means XGBoost model with LASSO selection features (AUC = 0:44), green line means logistic
regression model with LASSO selection features (AUC = 0:34), blue line means XGBoost model with conventional features (AUC = 0:26),
and yellow line means logistic regression model with conventional features (AUC = 0:30).
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3.3. Model Training and Validation. Four ML models were
eventually constructed, LR model 1 and XGBoost model 1
using traditional clinical features and LR model 2 and
XGBoost model 2 using LASSO selection features. The dis-
crimination of each model was assessed by AUC (Table 2
and Figure 2). Among them, the ROCAUC of XGBoost
model 2 in the testing set was 0.82 (95% CI, 0.75-0.82),
increasing significantly 9% than LR model 1 (ROCAUC,
0.73; 95% CI, 0.68-0.74; P = 0:006). Considering the imbal-
ance of patient dataset, we used the AUC of PR curve as a
secondary evaluation metric for differentiation. Results
showed that there was still room for improvement in these
models, but XGBoost model 2 still performed best (PRAUC,
0.44; 95% CI, 0.31-0.47).

The evaluation of calibration in testing set have been
shown in Figure 3 that XGBoost model 2 demonstrated the
best agreement between prediction and observation. The
Brier score of XGBoost model 2 was 0.09.

3.4. Model Interpretation. A SHAP summary plot of
XGBoost model 2 showed the importance of features
(Figure 4). When the Shapley value of each feature exceeds
zero, it indicates an increased risk of DR. The scatter colors
in the graph reflect the magnitude of the eigenvalues (larger
in red, smaller in blue). As shown in Figure 4, the duration
of T2D, C18 : 1OH, phenylalanine, C18 : 1, threonine, TC,

and tyrosine contributed more to the model. Furthermore,
the high value of duration of T2D, threonine, and TC and
low value of C18 : 1OH, phenylalanine, C18 : 1, and tyrosine
corresponded to a Shapley value greater than zero. This sug-
gested that these features were important risk factors to DR.

When most features are normal and for new-onset
diabetes patients, the risk of developing DR is low
(Figure 5(a)). When the duration of T2D is longer and most
features (C18 : 1OH, phenylalanine, C18 : 1, glutamate, and
SBP) are abnormal, the risk of DR increases (Figure 5(b)).

To further explain the impact of each risk factor on the
DR forecast, we have created the SHAP dependence plots
(Figure 6). These features all showed clearer cut-off values.
Duration of T2D more than 10 years, C18 : 1OH lower than
0.04μmol/L, C18 : 1 lower than 0.70μmol/L, threonine
higher than 27.0μmol/L, TC higher than 4.75mmol/L, and
tyrosine lower than 36.0μmol/L is associated with increased
risk of developing DR. When patients’ blood level of phenyl-
alanine is higher than 52.0μmol/L, it might be associated
with a decreased risk of developing DR.

4. Discussion

In this study, a machine learning DR risk model with good
predictive ability was constructed, and the effect of the pre-
dictive features on DR was analyzed. The results showed that
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metabolomic features such as C18 : 1OH, phenylalanine,
C18 : 1, threonine, and tyrosine played a great role in the
prediction model.

In the early stage of DR, there are no obviously clinical
symptoms and signs occurred, but pathophysiological
changes are quietly progressing [22]. When the disease pro-

gresses to an advanced stage, the resulting lesions are irre-
versible. Therefore, early detection of high-risk group of
DR and providing timely fundus screening for patients are
important. Glycemia played a central role in the develop-
ment and progression of microvascular complications of
diabetes. But studies had shown that DR still progressed
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under good glycemic control in patients [23, 24]. Therefore,
it is essential to explore new biomarkers and develop disease
prediction models. Dagliati et al. used electronic medical
record data to construct ML prediction models for diabetic
complications [25]. Their study demonstrated that ML algo-
rithms were powerful tools for clinical model development
and medical data mining. However, electronic medical
record data contains features from a wide range of sources,
making it difficult to collect and prone to missing data. In
the present study, the features incorporated into the model
were simplified, relying primarily on AAs and AcylCNs for
prediction of disease. Not only it is easy to implement, but
it identifies the early stages of disease.

The pathogenesis of DR is complex, involving a variety
of endothelial dysfunction, inflammation, oxidative stress,
and neural mechanisms [22, 26]. In addition, DR patients
also have the characteristics of disorders of glucose and lipid
metabolism of patients with T2D. AAs and AcylCNs that
have been incorporated into the ML model are likely to be
involved in these pathogenic mechanisms.

4.1. Acylcarnitine in Type 2 Diabetes and Diabetic Retinopathy.
Fatty acid oxidation (FAO) defect and metabolic derange-
ments, such as insulin resistance, could be screened by the
mass spectrometric analysis of carnitine profile [27]. There
are some studies shown that levels and abundance of several
long-chain AcylCNs were significantly decreased in T2D and
DR patients. Reasonable speculation for results was an inhib-
ited carnitine palmitoyltransferase-1- (CPT1-) mediated
entry of free fatty acid (FA) into mitochondria and impaired
mitochondrial β-oxidation of retinal FA in the retina
[28–30]. From this perspective, reduced levels of long-chain

AcylCN might be considered as a biomarker for metabolic
abnormalities or a risk factor for disease, which was consis-
tent with our results. However, there were also inconsistent
studies showing a higher level of AcylCN in T2D, which
might due to incomplete oxidation of long-chain FA and
altered tricarboxylic acid cycle (TCA) activity in patients
with T2D [31].

Dyslipidemia and lip toxicity (accumulation of lipid
metabolites) are increasingly recognized as important
drivers of insulin resistance states [32]. Therefore, another
focus of AcylCN in T2D is whether AcylCN via the impair-
ments of FA oxidation reflect or inflict insulin resistance
[27]. In the mitochondrial lipid metabolism, AcylCN not
only prevents the accumulation of noxious acyl coenzyme
A (CoA) but also reduces CoA trapping. It means that
AcylCN formation allows continuation of CoA-dependent
metabolic, such as the carnitine shuttle and FAO, processes
[33]. In animal experiments, incomplete muscle FA β-oxida-
tion leads to AcylCN accumulation and associated oxidative
stress, which may be responsible for the development of
muscle insulin resistance [34].

Due to the insufficiency of reports about AcylCN in the
DR, current inferences were mainly based on T2D. For the
unclear pathogenesis of the disease, whether these theories
can be applied in the pathogenesis of DR requires further
study. In addition, the wide variation in study populations
(sex, ethnicity, genetics, and sample size) might have led to
inconsistent results.

4.2. Amino Acid in Type 2 Diabetes and Diabetic Retinopathy.
Low phenylalanine and low tyrosine are important factors in
our model. Tyrosine and phenylalanine as the preferred and
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Figure 6: SHAP dependence plots of important features in XGBoost model. (a) SHAP dependence plots of duration of type 2 diabetes; (b)
SHAP dependence plots of C18 : 1OH; (c) SHAP dependence plots of phenylalanine; (d) SHAP dependence plots of C18 : 1; (e) SHAP
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zero. When the Shapely value corresponding to a characteristic was greater than zero, the risk of developing DR is considered to be
increased under that condition. C18 : 1OH: 3-hydroxy-octadecylcarnitine; C18 : 1; octacarbonylcarnitine; C18 : 2: octadecadienylcarnitine;
SHAP: Shapley Additive exPlanation.
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secondary precursors of dopamine (DA) which rates of
synthesis were influenced by local substrate concentrations
and dysregulation were contributed to retinal neurodegen-
eration [35–37]. In our study, tyrosine lower than
36.0μmol/L and phenylalanine lower than 52.0μmol/L
increased the risk of DR, which might be related to the
mechanism mentioned above. Impaired L-threonine catab-
olism has been shown to promote methylglyoxal (MGO)
accumulation [38]. MGO is a highly reactive aldehyde
which associates to impairment of regulatory mechanisms
of retinal blood flow and hyperpermeability of the blood-
retinal barrier in DR [39]. This was consistent with the
results of our study.

Besides AAs and AcylCNs, four factors—duration of
T2D, TC, SBP and age—were included in the XGBoost
model in this study. Of these, the duration of T2D had the
greatest impact on the model classification and increased
the risk of DR when the T2D lasts more than 10 years. Other
studies and literature reviews also considered the duration of
diabetes as an important risk factor for DR [33].

The inconsistency with some studies was shown in our
model interpretation, and part of the reasons has been stated
earlier. However, what cannot be ignored is that the SHAP
summary plots describe the behavior of the (imperfect) pre-
dictive model and not necessarily the causal relationships
between the variables [40].

4.3. Strengths and Limitations. Because of the late onset of
DR symptoms, the difficulty in detecting them, and the high
demand for physicians and equipment for funduscopic
examinations, diagnostic prescriptions are rarely issued
when patients are asymptomatic. Our prediction model
could remind doctors and patients to pay attention to the
primary and secondary prevention of DR and increase the
fundus screening rate of the high-risk groups. Secondly,
our study again suggested that lipid and AA metabolism
may have an important role in the development of DR.
The combination of AA and AcylCN has the potential to
be a new predictive marker of disease. Finally, with the
SHAP interpretation, the features incorporated in our ML
model are relatively homogenous in origin and easily acces-
sible. This provides the basis for the development of predic-
tive models for clinical application.

Our study also has the following limitations. First, this
study was based on a cross-sectional study of inpatients
and cannot infer the causal relationship between accumu-
lation of AA and AcylCN and DR. Second, HbA1c was
not included in this study due to its excessive deficiency.
Third, this study did not evaluate the effects of specific
drugs, such as metformin and sodium-glucose cotranspor-
ter 2 (SGLT2). But we considered the overall influence of
antidiabetic agents, antihypertensive drugs, and lipid-
lowering drugs. Almost T2D patients have received treat-
ment which might result in these features not being
involved in the model. Moreover, this is a single-center
study without independent external validation. In the
future, we will try to develop models in larger scale data
and explore the associations between metabolites with
DR in prospective study.

5. Conclusions

In conclusion, our study mainly used AAs and AcylCNs
to construct an interpretable XGBoost model to predict
the risk of developing DR in patients with T2D. The
aim is to identify high-risk groups and then to improve
fundus screening rates in high-risk groups and reduce
the burden of disease. In addition, our study proposed
possible risk cut-off values for DR for C18 : 1OH, C18 : 1,
threonine, tyrosine, and phenylalanine. The study is bene-
ficial in preventing or delaying the onset of DR. In the
future, larger prospective studies will be needed to validate
this result.
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