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This review summarizes the correlation between diabetes mellitus (DM) and gastric cancer (GC) from the perspectives of
epidemiology, drug use, and potential mechanisms. The association between DM and GC is inconclusive, and the positive
direction of the association reported in most published meta-analyses suggests that DM may be an independent risk factor for
GC. Many clinical investigations have shown that people with DM and GC who undergo gastrectomy may have better
glycemic control. The potential link between DM and GC may involve the interaction of multiple common risk factors, such
as obesity, hyperglycemia and hyperinsulinemia, H. pylori infection, and the use of metformin. Although in vitro and in vivo
data support that H. pylori infection status and metformin can influence GC risk in DM patients, there are conflicting results.
Patient survival outcomes are influenced by multiple factors, so further research is needed to identify the patients who may benefit.

1. Introduction

Diabetes mellitus (DM) is projected to affect 500 million
people worldwide by 2030 [1]. Gastric cancer (GC) is a lethal
tumor that affects the digestive system. It is the fifth most
frequent cancer and the fourth major cause of cancer mor-
tality in the world. There are nearly one million new GC
cases and nearly 700,000 deaths worldwide per year [2].
However, despite a vast literature on the relationship
between DM and cancer, the association with GC varied in
different studies. Therefore, this review summarizes the cor-
relation between DM and GC from the perspectives of epi-
demiology, drug use, and potential mechanisms.

2. Epidemiological Analysis of DM and GC

DM is a metabolic disorder characterized by insulin mal-
function that is often accompanied by severe consequences,
such as hyperglycemia, hypoinsulinemia, and insulin-like
growth factor- (IGF-) related metabolic dysfunction [3].

DM increases the risk of certain cancer types, such as pan-
creatic cancer [4], breast cancer [5], endometrial cancer
[6], and colorectal cancer [7] and increases mortality from
any cancer [8]. DM is present in 8% to 18% of all cancer
patients. Compared with nondiabetic patients, diabetic can-
cer patients have a 42% increased risk of death and a 21%
increased risk of tumor recurrence [9]. Although epidemio-
logical studies have shown that DM has a certain impact on
gastrointestinal tumors [10], the association between DM
and GC is still controversial.

2.1. DM Increases the Risk of GC. An analysis of 80,193 gas-
trointestinal cancers from five European and three Asian
countries revealed that the overall prevalence of DM was
14.8% (11,866/80,193). Among them, the prevalence of
DM was highest in colon and rectal cancer patients (15.5%
vs. 15.3%, respectively) and 14.0% in GC patients, both of
which were significantly correlated with the high incidence
of DM [11]. A meta-analysis also revealed a statistically sig-
nificant relationship between DM and GC incidence
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(RR = 1 11, 95% CI: 1.00-1.24, P = 0 045, I2 = 79 5%) [12].
The results of a large retrospective cohort study conducted
in Korea that included 195,312 patients who had a more
accurate diagnosis by endoscopic examination revealed that
individuals with DM were at an elevated risk of developing
GC (estimated adjusted HR = 1 76, 95% CI: 1.04-2.97) [13].

2.2. DM Does Not Increase the Risk of GC. A meta-analysis of
22 cohort studies and 8,559,861 participants found that DM
had little or no change in the risk of GC [14]. There was no
evidence of a significant difference in the RR for GC between
men and women (RR = 1 10, 95% CI: 0.94-1.29, I2 = 22 9%
in men; RR = 1 00, 95% CI: 0.90-1.11, I2 = 97 2% in women)
[14]. Compared with normal blood glucose participants, the
risk of GC was not increased among participants with predi-
abetes (HR = 1 07, 95% CI: 0.79-1.44), DM (HR = 0 77, 95%
CI: 0.46-1.29), or any of these exposures (HR = 0 96, 95% CI:
0.73-1.27) [15]. The relationship between DM and GC is
unclear based on previous epidemiological studies. A two-
stage individual participant data meta-analysis including
5,592 cases of GC and 12,477 controls from 14 studies from
North America, South America, Europe, and Asia did not
find an association between DM and GC (pooled OR =
1 01, 95% CI: 0.94-1.07). However, the risk of gastric cardia
cancer was significantly higher with T2DM (OR = 1.16, 95%
CI: 1.02-1.33) [16].

2.3. Whether DM Increases the Risk of Death from GC. DM
can disrupt the body’s immune function and metabolic pro-
cesses [17], leading to disturbances in energy balance that
may impact the development and outcomes of cancer [18].
However, it is important to note that specific prognostic out-
comes can vary from individual to individual, depending on
factors such as DM management, treatment modalities (e.g.,
surgery and adjuvant chemotherapy), and antidiabetic med-
ications such as insulin [19].

There are some studies that suggest that patients with
DM may face a higher risk and lower survival rate in GC
treatment [11–13]. Studies showed that high fasting blood
glucose (≥126mg/dL; RR = 1 09) increases the risk of GC
[20]. The blood glucose variability in GC patients is signifi-
cantly higher than that in non-GC patients, and higher
blood glucose variability in patients without DM will also
increase the risk of GC [21]. Preoperative metabolic syn-
drome, particularly hyperglycemia, predicted GC mortality
in patients receiving radical gastrectomy, particularly in
patients with early GC, according to a sizable cohort
research by Hu et al. [22]. However, other studies have not
observed this association. According to Miao et al., Zheng
et al., and Dabo et al., there has not been much of a
difference in the death rate or risk of getting GC in DM
individuals [14–16]. In addition, Bae’s meta-analysis of pro-
spective cohort studies found no evidence linking a history
of DM to an increased risk of GC [23].

Differences in study populations, exposure assessments,
lengths of follow-up, and adjustment for confounders might
explain the high degree of heterogeneity in the findings. In
particular, the exposure assessments and duration of
follow-up varied considerably across studies. Furthermore,

confounding variables such as gender, age, BMI, population,
race, culture, lifestyle, environment, and socioeconomic
position will alter the incidence of diabetes or GC and may
even raise the risk of GC among people with diabetes [24].
Significant gender and geographical disparities in the preva-
lence of type 2 diabetes mellitus (T2DM) and GC have
emerged over the last 30 years, suggesting complicated links
with race, immigration, culture, lifestyle, gene-environment
interactions, socioeconomic level, and social role inequalities
[25]. The influence of genetic effects, epigenetic processes,
dietary variables, and lifestyle on the risk and result of
T2DM and GC development differs between men and
women [26]. Sex hormones influence insulin sensitivity
and secretion, stomach emptying and glucose absorption,
vascular function, energy metabolism, and inflammatory
response in women with excess androgen or males with
impaired gonadal activity [27]. GC has a significant male
advantage, and greater levels of circulating dehydroepian-
drosterone may be related to a decreased risk of noncardiac
GC [28]. In addition, there is a link between blood levels of
androgens, estrogen, and sex hormone-binding globulin in
males with the chance of developing primary GC [29].

Furthermore, physiological and psychological variables
contribute to gender variations in T2DM and GC risk and
prognosis [30]. However, there is currently a scarcity of
randomized controlled studies that show gender-specific
benefits using well-designed intervention measures. Gender
differences must be studied using appropriate animal models
and translational research to better understand the patho-
physiology and complicated interplay of hormones, genes,
lifestyle, and environment in T2DM and GC patients. As a
result, the effect of DM on the risk of GC or death must be
explored further. Understanding the possible impact of
DM on GC risk is a critical component of DM treatment.

2.4. Remission of DM after Gastrectomy.Many clinical inves-
tigations have shown that people with DM and GC who
undergo gastrectomy may have better glycemic control [31,
32]. T2DM remission rates vary from 42.5% to 65.4% in
patients with GC following gastrectomy (Table 1). A meta-
analysis of 11 randomized controlled trials provided class
1A evidence demonstrating that patients who undergo
bariatric surgery experience T2DM remission [33]. After
gastrectomy, insulin resistance is shown to decrease, and
fasting glucose returned to normal; however, the cause of
remission is still unknown [34]. According to An et al.’s
study, the length of T2DM remission was substantially asso-
ciated with the degree of remission [35]. Kim et al. con-
cluded that BMI reduction was significantly associated with
remission of T2DM [36]. Total gastrectomy with RY recon-
struction has a greater remission rate than other surgical
procedures; however, it is unclear whether the scope of the
gastrectomy or the manner of reconstruction has a role in
T2DM remission. According to Wang et al., the degree of
gastrectomy, rather than the method of reconstruction, was
the most important factor determining T2DM remission
[37]. On the other hand, Choi et al. found that RY recon-
struction is crucial for T2DM remission [38]. A meta-
analysis by Peng et al. suggested that only the degree of
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gastrectomy can affect T2DM remission [39], which may
also affect overall survival. Wei et al. found that recovery
from preexisting T2DM following radical gastrectomy was
highly related to higher overall survival in a sample of 67
patients [40]. Although the mechanism of T2DM remission
following gastrectomy is unknown, bariatric surgery may
promote T2DM remission by promoting lifestyle modifica-
tions, including reduced food intake, weight loss, and intes-
tinal malabsorption. In addition, there are a few theories that
might explain why hyperglycemia improves following gas-
trectomy. The foregut theory states that resection of the duo-
denum and proximal jejunum may prevent the secretion of
some signals that promote insulin resistance, but this signal
is still unknown and remains less well proven in human sub-
jects [41]. According to the hindgut hypothesis, rapid trans-
port of unabsorbed nutrients to the distal intestine might
boost intestinal hormone release [42]. In addition, ghrelin,
another gut hormone that stimulates appetite and food
intake, is mainly produced by gastric X/A cells, and its level
is reduced after gastrectomy [43]. Changes in gut microbiota
following the Billroth II or Roux-en-Y gastric bypass have
also been linked to DM remission and improved metabolic
control in two recent investigations; the main manifestations
were reduced incidence of metabolic syndrome and T2DM
and increased postoperative intestinal microbial richness
and diversity [44, 45].

3. Potential Mechanisms between DM and GC

Although the connection between DM and GC is yet
unknown, numerous biological theories have been postulated,
including obesity, hyperglycemia and hyperinsulinemia,
Helicobacter pylori (H. pylori) infection, and the use of certain
medications (e.g., metformin) [16, 46–49] (Figure 1).

3.1. Influence of Obesity on DM and GC. Multiple meta-
analyses suggest that obesity and unhealthy lifestyles may
have deleterious effects on GC risk [50]. The prevalence of
DM significantly increased from 1995 to 2014, and associa-
tions between DM and obesity are well established [51].
Obesity is associated with insulin resistance, compensatory
hyperinsulinemia, metabolic syndrome, and T2DM. Over-
weight or obesity is linked to a higher risk of GC, and the
intensity of this link is stronger as BMI rises, particularly
in Asian populations [52]. Rawla and Barsouk suggested that
DM patients were more likely to suffer from obesity and gas-
troesophageal reflux disease, leading to a significant increase

in the risk of gastric cardiac cancer [53]. On the other hand,
Lin et al. found no change in the incidence of stomach car-
diac carcinoma attributable to DM across BMI strata [54],
suggesting that other factors unrelated to obesity may be
involved in the pathogenesis of gastric cardiac cancer. Fur-
ther studies are needed to prove these hypotheses.

3.2. Effects of Hyperglycemia and Hyperinsulinemia on DM
and GC. At the molecular level, in vitro and in vivo studies
show different mechanisms for hyperglycemia and hyperin-
sulinemia leading to the development of GC, such as
increased cell proliferation, promotion of angiogenesis, oxi-
dative DNA damage and overstimulation of tumorigenic
pathways [55]. Hyperglycemia has been linked to tumor
vascularity, metastasis, and the expression of vascular endo-
thelial growth factor in many investigations [56]. Hypergly-
cemia can lead to DNA damage directly or can damage
through the production of reactive oxygen species (ROS).
Metabolism-induced oxidative stress may promote epithelial
mesenchymal transformation, leading to the accumulation
of tumor genes and tumor suppressor gene mutations, pro-
moting gastric mucosal damage and interfering with repair
[13]. Furthermore, hyperglycemia can generate more energy
through glycolysis and lactic acid pathways, leading to
energy balance imbalance, affecting intracellular metabolism
and damaging immune function, complement activation,
and antioxidant systems [57]. Patients with DM may have
increased susceptibility to H. pylori infection and delayed
wound healing after infection due to immunosuppression
caused by hyperglycemia [58].

Hyperglycemia can also significantly trigger insulin
secretion, and hyperinsulinemia can overactivate insulin sig-
naling. Furthermore, chronic hyperglycemia may also cause
an increase in the formation of ROS and oxidative stress
[59], both of which are thought to promote carcinogenesis
and cancer development [60]. Additionally, insulin resis-
tance in DM promotes inflammation and activates nuclear
factor-κB (NF-κB), which is a light-chain enhancer of acti-
vated B cell signaling that plays a major role in GC develop-
ment and progression [61]. Hyperglycemia can also provide
more glucose to tumor cells, promote tumor proliferation
and migration, and activate GC cells to migrate to lymph
nodes [62]. In addition, abnormal fluctuations in glucose
levels in DM patients also increase oxidative stress, endothe-
lial dysfunction, and subclinical inflammation. NADPH
oxidase activity in mitochondria induces superoxide produc-
tion [63], and the AKT signaling pathway is inhibited by

Table 1: Remission of DM after gastrectomy.

Author Surgery Sample size CR PR Follow-up (mo)

Lee et al. [34] RYTG, BI, BII, RYGJ 229 19.70% 37.10% NA

An et al. [35] RYTG, BI, BII 64 3.10% 54.70% 12

Kim et al. [36] RYTG, BI, BII 385 15.10% 30.40% 33.7

Choi et al. [38] RYTG, BI 40 2.50% 40.00% 12

Wei et al. [40] RYTG, BII 67 26.90% 32.80% 57.4

CR: complete remission; PR: partial remission; RYTG: Roux-en-Y total gastrectomy; BI: Billroth I reconstruction; BII: Billroth II reconstruction; RYGJ:
subtotal gastrectomy with Roux-en-Y gastrojejunostomy reconstruction; NA: not available.
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increased NF-κB and caspase-3 expression [64]. Therefore,
fluctuations in fasting glucose are considered to be linked
to an increased risk of GC [21, 65]. Plasma insulin levels
were also positively associated with GC compared with
hyperglycemia [66].

Hyperinsulinemia leads to elevated levels of insulin-like
growth factor 1 (IGF-I), a potent pro-mitogen that can cause
cancer and decrease apoptosis in cancer cells [67]. Hyperin-
sulinemia may also overstimulate tumorigenic pathways,
such as IGF-II/IR-A signaling, which is thought to be a key
promoter of cancer in people with diabetes or prediabetes
[66, 68]. Insulin receptor (IR), IGF-I, and IGF-II are all sig-
nificantly expressed in GC cells, and the IGF-I/IGF-IR path-
way has been considered an important therapeutic target for
GC [69]. The fact that GC cell survival is dependent on IR
but not the IGF-I receptor suggests that IGF-I/IGF-II
increase GC cell survival through IR [70]. Hyperinsulinemia
and overexpression of IGF can activate the mitotic pathway
or stimulate tumor growth by inhibiting the expression of
IGF-binding proteins (IGFBPs), which play a key role in
the carcinogenesis and metastasis of GC [71]. Hyperinsulin-
emia may also downregulate IGFBP levels, indirectly leading
to elevated levels of IGF [72]. In addition, insulin is a mito-
gen and cell survival factor expressed in almost all cell types
that activates signal transduction, stimulates cell growth, and
promotes cell survival and is considered to be a potential
mechanism for the association between DM and cancer
[55]. Saisana et al. confirmed that high expression of the
insulin receptor can be detected in metastatic GC cells and
cell lines, which can stimulate PI3K/Akt signal transduction,
cell proliferation, and the survival of GC cells [73]. Knock-
down of the insulin receptor can inhibit tumor cell prolifer-

ation and induce programmed cell death. These results
suggest that insulin and insulin receptors can synergistically
promote the occurrence and development of GC. Some
studies have also found that H. pylori infection can poten-
tially disrupt the balance of gastrointestinal microbiota, con-
sequently impacting energy metabolism and insulin
sensitivity in the body. This disruption may lead to insulin
resistance, where the cells become less responsive to insulin,
ultimately developing hyperinsulinemia [74]. Previous stud-
ies have also confirmed that insulin use in DM patients is
significantly associated with a high incidence of H. pylori
eradication [75].

3.3. Effects of Biomarker on DM and GC. IGFBP, IGF-I, and
numerous growth factors, including vascular endothelial
growth factor (VEGF), are now known biomarker between
DM and GC. IGFBP family members have been shown to
have a role in tumor formation and progression, and they
may be valuable prognostic indicators in a variety of malig-
nant tumors, including ovarian cancer [76], pancreatic can-
cer [77], and GC [78]. Currently, there is a scarcity of
thorough research on IGFBP as a biomarker for GC.

Bioinformatics investigation reveals that IGFBP expres-
sion differs among GC cell lines and tissues [79]. IGFBP-1
is a blood biomarker with good diagnostic sensitivity for
upper gastrointestinal cancer. Overexpression of IGFBP-1
inhibits MMP-9-induced GC cell migration and protects
against H. pylori-induced GC [80]. Although clinical studies
have shown that IGFBP-3 can be used as a biomarker for the
diagnosis and prognosis of esophageal gastric junction ade-
nocarcinoma [81] and that the simultaneous decrease of
IGFBP-3 and increase of IGF-I may promote tumor growth
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[82], the mechanism underlying the relationship between
these two potential biomarkers and GC has not been estab-
lished. IGFBP-5 overexpression promotes the activity of
the tumor suppressor factor PKNOX2, which can limit the
development of GC [83]. IGFBP-7 mRNA expression is
associated with a poor outcome in GC [84].

GC patients have a systemic biochemical imbalance of
several growth factors, including notably raised levels of
IGF-I and VEGF in advanced GC patients [85]. According
to Saisana et al.’s findings, GC cells’ survival depends on
insulin receptors, insulin, and IGF signaling pathways that
play a prominent role in gastric adenocarcinoma [73].
Higher IGF-IR expression is linked to a shorter overall sur-
vival. Serum IGF-I levels are considerably higher in patients
with H. pylori-induced GC [86]. Upregulation of IGF-IR
may activate the PI3K/AKT/mTOR signaling pathway, pro-
moting GC cell migration and invasion [87].

VEGF is a critical proangiogenic factor that has emerged
as the primary target of immunotherapy for GC [88]. Fur-
thermore, animal models have demonstrated that IGFBP-4
can increase VEGF-induced angiogenesis [89] and that the
m6A binding protein METTL3 can target VEGFA via
IGFBP-2, encouraging the creation of colorectal cancer vas-
culogenic mimicry via the PI3K/AKT/mTOR and ERK1/2
signaling pathways [90]. Because IGF-IR regulates the pro-
duction of VEGF ligands in GC cells and contributes to
angiogenesis and lymphangiogenesis, inhibiting the IGF-I
receptor can increase the antitumor impact of bevacizu-
mab [91].

The interaction between numerous extracellular vesicles
and immune-related cytokines released by GC cells [85],
which are thought to be connected with the initiation and
poor prognosis of GC [92], may be related to the imbalance
of these growth factors. However, the peripheral concentra-
tion of growth factors does not have significant diagnostic
potential. It cannot be utilized as an independent biomarker
in patients to differentiate between different forms of GC. As
a result, more experimental and clinical investigations,
including other indicators, are required for validation.

3.4. Effect of Helicobacter Pylori Infection on DM and GC. H.
pylori, a gram-negative, active, microaerobic, and spiral-
shaped bacterium, is a major known risk factor for GC,
and H. pylori infection is closely associated with more than
60% of GC cases [93]. Currently, the only natural host of
H. pylori is the human stomach. The World Health Organi-
zation (WHO) has classified H. pylori as a Class I carcinogen
[94]. H. pylori can cause oxidative stress and DNA damage
through specific toxic cytokines such as cytotoxin-associated
gene A (CagA), vacuolar cytotoxin A (VacA), and outer mem-
brane protein and eventually lead to tumor formation [95].
Mucosal integrity can be compromised by phosphorylated
CagA, which controls cytoskeleton and intercellular connec-
tions and their shape and function [96]. By turning on the
carcinogenic YAP pathway, CagA also promotes GC’s
epithelial-mesenchymal transition [97]. Both CagA and VacA
may induce autophagy [98, 99], and VacA is another virulence
factor that can alter host cell metabolism by inhibiting
mTORC1 [100].

Recent studies have demonstrated that H. pylori infec-
tion is closely related to DM and insulin resistance [101].
The creation of biofilms, decreased bacterial diversity, dras-
tically reduced facultative anaerobic function, and increased
abundance of H. pylori and Haemophilus are only a few of
the important alterations in the stomach microbiota that
can result from H. pylori infection [102]. Additionally, it
was discovered that H. pylori corejected strongly with Fuso-
bacterium, Neisseria, Prevotella, Wechterella, and Roche in
patients with GC [103], and the gastrointestinal microbiota
of these microorganisms would play a role in the pathogen-
esis of DM by controlling fatty acid synthesis and energy
metabolism [104]. C.H. Tseng and F.H. Tseng found that
patients with DM were shown to have a greater infection
rate, a poorer eradication rate, and a higher reinfection rate
[48]. H. pylori infection can lead to DNA damage by increas-
ing the production of reactive oxygen species in epithelial
cells of the gastrointestinal system, resulting in gastric muco-
sal atrophy, intestinal metaplasia, and, ultimately, the devel-
opment of GC [105]. Ikeda et al. reported a significantly
increased risk of GC in DM patients with H. pylori infection
with baseline HBA1c levels higher than 6.0% [106]. Results
of a large cohort study by Youn et al. showed that GC was
associated with first-degree relatives with GC (OR = 3 23)
in the absence of H. pylori and with hyperglycemia
(OR = 1 98) in the presence of H. pylori [107]. However,
according to Jun et al., there is no link between blood glucose
and the risk of GC in either H. pylori-positive or H. pylori-
negative DM patients [108]. In prediabetes patients, no cor-
relation has been found between H. pylori infection and the
risk of GC [109]. Interestingly, GC was shown to reduce the
abundance of Helicobacter [110], H. pylori infection
decreased with the progression of GC, and the diagnostic
effectiveness of H. pylori decreased [111]. These contradictory
findings imply that the impact ofH. pylori infection on the risk
of GC in DM individuals should be investigated further.

3.5. Effects of Gastric Microbiota (Other than H. Pylori) on
DM and GC. Although successful H. pylori eradication does
not completely prevent the development of GC and only
about 1% of infected individuals develop GC [112], H. pylori
infection plays a critical role in the early stages of carcino-
genesis by increasing inflammation and gradually degrading
gastric epithelial structure and function [113]. Additionally,
compared to superficial gastritis, intestinal metaplasia and
GC exhibit much lower levels of microbial diversity, which
is now understood to be a characteristic of inflammatory
illnesses and malignancies [114]. Some Escherichia coli
branched-chain proteins, Bacteroides fragilis, Clostridium
nuclear, and other pathogenic bacteria may contribute to
the development of colorectal cancer [115]. Compared with
the microbiota in chronic gastritis, the microbiota in GC
patients not only increased the function of nitrite reductase,
which promoted the reduction of nitrite to nitric oxide, but
also increased the function of nitrite reductase, which pro-
moted the reduction of nitrite to nitrite [112, 116]. There-
fore, in addition to H. pylori, other gastric microorganisms
may also contribute to the persistent inflammation of gastric
mucosa and the development of GC, including Citrobacter,
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Clostridium, Lactobacillus, Achromobacter, and Rhodococ-
cus, which reside in the intestinal mucosa as commen-
sals [117].

All of these findings suggest that the mechanism by
which bacteria promote tumor growth may be connected
to producing an inflammatory response and altering host
immunological function [118]. The immune system is an
essential regulator that promotes or inhibits tumor biologi-
cal function [119], and the intestinal microbiota can drive
immune system development and function [120], as well as
alter intestinal function and immune system [121]. More
and more research suggests that the gastrointestinal symbi-
otic microflora can modulate host immunity and maintain
host immunological homeostasis. For example, in the GC
microenvironment, the amount of BDCA2+ plasmacytoid
dendritic cells is positively connected with the number of
stenotrophomonas, whereas the number of Foxp3+ regula-
tory T cells is strongly correlated with the number of
selenodont [122]. An imbalance in the microorganisms of
the intestine promotes the establishment of an immunosup-
pressive microenvironment [123]. AMP, IgA, ROC, and
phagocytosis are ways the immune system modulates the
microbiota. In turn, the microbiome creates compounds that
control immune system activity [124].

Although the influence of H. pylori infection on the
incidence of GC in DM individuals is still debated, alter-
ations in gastrointestinal microbiota other than H. pylori
have been linked to DM, and these gastrointestinal microbi-
ota are thought to be key players in the interaction between
H. pylori infection and metabolic diseases such as DM [125].
The study discovered abnormalities in the gastrointestinal
microbiota of DM. Among the commonly reported findings,
the genera of A. muciniphila [126, 127], Bifidobacterium
[128], Bacteroides [129], Faecalibacterium [130], F. prausnit-
zii [131], C. leptum [132], Oscillospiraceae [126], and
Akkermansia [133] were negatively associated with T2DM,
while the genera of Ruminococcus [131, 134], Dorea [135],
and Blautia [126] were positively associated with T2DM.
These microbiome alterations influence inflammation, glu-
cose and lipid metabolism, insulin sensitivity, and overall
energy balance [135, 136]. For example, lipopolysaccharides,
as a product of gastrointestinal microbiota, can promote
metabolic endotoxemia and low-grade inflammation [137],
and Roseburia intestinalis, Bacteroides fragilis, Akkermansia
muciniphila, Lactobacillus plantarum, and L. casei can stim-
ulate the production of anti-inflammatory cytokines and
chemokines [138]. R. intestinalis can increase T regulatory
cell development, stimulate TGF-β, and suppress intestinal
inflammation [139]. Bacteroides also increased gene expres-
sion in T regulatory cells [140]. L. plantarum, L. paracasei,
and L. case can decrease IL-1β, monocyte chemoattractant
protein-1, intercellular adhesion molecule-1, IL-8, CD36,
and C-reactive protein [141]. Lactobacillus [142] and Akker-
mansia [143] have been found to suppress TNF-α. L.
paracasei and microbial anti-inflammatory molecule from
F. prausnitzii inhibit the activity of NF-κB [144]. As a meta-
bolic product of gastrointestinal microbiota, short-chain
fatty acids (SCFA) can not only directly prevent low-grade
inflammation and enhance the secretion of glucagon-like

peptide 1 (GLP-1) but also increase insulin sensitivity and
affect cell function and insulin secretion [145].

Changes in the composition, variety, and activity of the
microbiota can cause a disruption in glucose metabolism,
which is a key factor in the development of T2DM [146].
Bifidobacterium lactis can both boost glycogen production
and decrease the expression of gluconeogenesis-related
genes in the liver, such as glucose-6-phosphatase and phos-
phoenolpyruvate carboxykinase [147]. It can also improve
endotoxin-related inflammation and impaired intestinal bar-
rier function, perhaps with antidiabetic benefits [148]. Lactoba-
cillus butyrate reduces insulin resistance in the liver by raising
mRNA levels of PI3K, insulin receptor substrate-2, AMPK,
Akt2, and glycogen production [149]. Lactobacillus tyrosine
also lowers blood sugar levels via the cholic acid-chlorine
exchange pathway [150]. Furthermore, certain gastrointestinal
bacteria can promote fatty acid oxidation and energy expendi-
ture while decreasing fatty acid synthesis, improving T2DM,
such as Akkermansia muciniphila, Bacteroides acidifaciens,
Lactobacillus gasseri, and SCFA [136]. Moreover, the products
of these microorganisms, such as butyrate, can promote fatty
acid oxidation and thermogenesis by inhibiting the histone
deacetylation process in the muscle, thereby increasing energy
expenditure by promoting mitochondrial function in the mus-
cle [151].

In conclusion, a diverse gastrointestinal microbiota is
critical for general metabolic health. The intestinal microbi-
ota may be a crucial regulator of host glucose metabolism
and immune response. When the microbiota is out of bal-
ance, it can contribute to pathological processes such as
GC and DM. However, the gastrointestinal microbiota is a
complex ecosystem, and further study is needed to deter-
mine which microorganisms are responsible for the patho-
physiology and molecular processes of GC and DM.

3.6. Effect of Metformin on DM and GC. Metformin, used as
a first-line medicine in the treatment of DM, has a direct
anticancer impact on a wide variety of tumor cells, including
tumor stem cells, in both insulin-dependent and insulin-
independent models [152]. It can not only promote the
expression of metabolic checkpoints related to T cells and
immunosuppressive cells in the tumor environment in can-
cer cells [153, 154] but also has systemic impacts on metab-
olism by interfering with gastrointestinal microbiota [155].
In vitro and in vivo model studies have shown that in diges-
tive system cancers, metformin provides chemoprophylactic
effects and direct therapeutic action [156], and it has the
potential to be a chemical and radiosensitizer, increasing
the sensitivity of cancer cell lines to 5-fluorouracil (5-FU)
and paclitaxel [157]. Most clinical studies have demon-
strated that metformin can reduce the risk of gastrointestinal
cancer and improve survival rates [158]. However, there is
no solid evidence showing that metformin usage increases
the risk of GC [159, 160].

Metformin has been proven to protect against GC in
various observational studies in recent years [161, 162]
(Table 2). Cheung et al. showed that metformin can reduce
GC risk (HR = 0 49, 95% CI: 0.24-0.98), which decreases
further with increasing dose and duration [162]. Tseng also
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demonstrated that metformin reduces GC risk, especially
when the cumulative duration exceeds 2 years [163].
Another meta-analysis also showed a 21% reduction in GC
risk with the use of metformin (HR = 0 790; 95% CI:
0.624-1.001), especially in Asian populations [164]. Metfor-
min was shown to minimize GC recurrence in gastrectomy
patients in two retrospective investigations [165, 166].
Despite this, some observational studies in the USA [167],
the Netherlands [168], and Sweden [169] did not show a
lower risk of GC associated with metformin use. Whether
metformin can improve the prognosis of GC in patients with
DM remains controversial. In the study of Dulskas et al.,
although metformin was associated with a reduced risk of
GC, it did not affect the survival rate of patients with DM
and GC [170, 171]. The studies conducted by Baglia et al.
and Chen et al. did not similarly observe the survival benefits
of metformin for GC [172, 173]. In contrast, metformin
improved overall survival but not cancer-specific survival.
Studies conducted by Lacroix et al. [174], Seo et al. [166],
and Chung et al. [175] showed that metformin can improve
the survival rate of patients with T2DM and reduce GC
recurrence.

Most previous clinical studies have been retrospective
and often limited by immortal time bias and selection bias,
and the link between metformin use and GC risk has been
exaggerated [176]. More clinical research is needed to vali-
date the role of metformin in the treatment and chemopro-
phylaxis of GC. In particular, in in vitro and in vivo studies
on metabolism and cell cycle arrest, possible therapeutic tar-
gets for metformin have been identified to enhance the anti-
cancer effects of chemotherapy by regulating inflammation.
In tumor xenograft models, metformin alone decreased
tumor volume, and cisplatin, rapamycin, or both boosted
the impact of each treatment alone and blocked GC cell
peritoneal spread [177]. In vitro studies have shown that
combining metformin with cisplatin, adriamycin, and pacli-
taxel may improve the unique effects of each treatment, and
the combination with the three chemotherapy drugs can
effectively induce the apoptosis of AGS cells [178]. However,
the biological mechanism of this association remains
unclear; several possible mechanisms could explain the
protective effect of metformin. First, metformin directly

activates AMPK and inhibits cell proliferation by inhibiting
cancer-related central signaling pathways, such as the
PI3K/Akt/mTOR pathway [179]. Second, metformin-induced
decreases in IGF concentrations in circulating insulin may
lower activation of IGF/IGF1-R signaling, resulting in reduced
growth promotion andmitogenesis [180]. As a result, the anti-
cancer effects of metforminmay be attributed to its capacity to
modify the metabolic milieu or to directly act on tumor cells.
Third, the significant intracellular metabolic changes induced
by metformin are the reduced accumulation of glycolytic
intermediates and the synergistic reduction in tricarboxylic
acid cycle intermediates, contributing to a reduction in gluco-
neogenesis [181]. The activation of AMPK promotes glucose
uptake in fat and muscle, inhibiting tumor cell proliferation
and migration [182]. Fourth, the protective effect of metfor-
min may be related to the inhibition of HIF1α/PKM2 signal
transduction [183]. Metformin induces the downregulation
of hypoxia-inducible factor 1α and TNF-α, which can inhibit
angiogenesis and improve immune surveillance by reducing
tumor hypoxia [184]. Finally, studies in recent years have sug-
gested that metformin may have a potential protective effect
against H. pylori infection. After eradication of H. pylori, met-
formin reduced the risk of GC by 51% in DM patients [138].
On the one hand, the persistent inflammatory response
brought on byH. pylori colonization is the strongest single risk
factor for GC [185]. Metformin plays an anti-inflammatory
role by inhibiting cell signaling pathways and reducing the
production of proinflammatory factors [186], which can
reduce the inflammatory response brought on by H. pylori.
On the other hand, metformin can regulate the function of
the immune system, including enhancing the activity of natu-
ral immune cells and regulating the immune response [187].
In addition to improving the body’s resistance to H. pylori
infection,metformin can also enhance the effectiveness of can-
cer treatments, though the molecular mechanisms underlying
these effects are not fully understood [188]. Recent research
has also demonstrated that metformin can not only regulate
gastrointestinal microbiota in composition and function to
enhance its glucose-regulating effect [189] but also promote
gastric acid secretion by activating AMPK to differentiate
gastric epithelial progenitor cells into acid-secreting parietal
cells [190], thereby alleviating the reduction in gastric acid

Table 2: Clinical studies of metformin for the treatment of GC.

Author Study design Inclusion criteria HR

Tseng [163] Retrospective cohort study DM2+ antidiabetic drugs HR: 0.45 (0.36-0.56)

Lee et al. [165] Retrospective cohort study GC+ gastrectomy HR: 0.58 (0.37-0.93)

de Jong et al. [168] Retrospective cohort study DM2+ oral antidiabetic drugs HR: 0.97 (0.82-1.15)

Zhou et al. [183] Meta-analysis, 7 cohort studies GC+metformin HR: 0.76 (0.64-0.91)

Lacroix et al. [174] Retrospective cohort study GC HR: 0.86 (0.56-1.33)

Zheng et al. [169] Prospective cohort study DM2+ antidiabetic drugs
Noncardia: HR: 0.93 (0.78-1.12).
Cardia: HR: 1.49 (1.09-2.02)

Baglia et al. [172] Prospective cohort study Breast, CRC, lung, and GC patients OS-HR: 1.11 (0.81-1.53)

Seo et al. [166] Retrospective cohort study GC+ curative gastrectomy HR: 0.45 (0.30-0.66)

Dulskas et al. [170] Retrospective cohort study DM2+GC SIR: 0.75 (0.66-0.86)

Shuai et al. [164] Meta-analysis, 11 cohort studies GC+metformin HR: 0.79 (0.62-1.00)
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secretion brought on by H. pylori infection [116]. This
enhances metformin’s glucose-regulating effect. Metformin
may have the potential to be an anti-GC medication by
encouraging the differentiation of gastric epithelial progenitor
cells into acid-secreting parietal cells [191], which is thought to
be important in H. pylori infection and the occurrence and
development of GC [192].

The changes in intracellular pathways caused by tumor-
igenesis and the underlying mechanism of the antitumor
activities of metformin have been confirmed, revealing new
therapeutic targets. However, these are not the only treat-
ments available to reduce cancer risk. Insulin resistance,
DM, the chronic diseases associated with inflammation in
the microenvironment, and specific tumor-driven oncogenic
pathways may interfere with the direct and indirect antitu-
mor effects of metformin. Although epidemiological in
nature, in vivo and vitro studies and clinical data support
the benefit of metformin in some patients with digestive
tumors, but survival outcomes are influenced by a variety
of factors, such as cancer type, differentiation, staging, and
treatment. Therefore, to fully understand metformin use in
gastrointestinal tumors, rigorous clinical trials are needed
to identify patients who may benefit from metformin.

4. Conclusions

DM is linked to an increased risk of cancer and cancer-related
mortality, and the association between DM and GC is incon-
clusive. The positive association reported in most published
meta-analyses suggests that DM may be an independent risk
factor for GC, regardless of statistical significance. Potential
mechanismsmay include hyperinsulinemia, insulin resistance,
elevated IGF-I levels, oxidative stress, chronic inflammation,
and anti-insulin medication use. Activation of these signaling
pathways is responsible for the development of GC in DM
patients. Understanding the relationship between DM and
GC may provide novel therapeutic strategies to counter the
poor prognosis caused by this correlation.
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