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Nephropathy injury is a prevalent complication observed in individuals with diabetes, serving as a prominent contributor to end-stage
renal disease, and the advanced glycation products (AGEs) are important factors that induce kidney injury in patients with diabetes.
Addressing this condition remains a challenging aspect in clinical practice. The aim of this study was to explore the effects of
Lactiplantibacillus plantarum NKK20 strain (NKK20) which protects against diabetic kidney disease (DKD) based on animal and
cell models. The results showed that the NKK20 can significantly reduce renal inflammatory response, serum oxidative stress
response, and AGE concentration in diabetic mice. After treatment with NKK20, the kidney damage of diabetic mice was
significantly improved, and more importantly, the concentration of butyrate, a specific anti-inflammatory metabolite of intestinal
flora in the stool of diabetic mice, was significantly increased. In addition, nontargeted metabolomics analysis showed a significant
difference between the metabolites in the mouse serum contents of the NKK20 administration group and those in the nephropathy
injury group, in which a total of 24 different metabolites that were significantly affected by NKK20 were observed, and these
metabolites were mainly involved in glycerophospholipid metabolism and arachidonic acid metabolism. Also, the administration of
butyrate to human kidney- (HK-) 2 cells that were stimulated by AGEs resulted in a significant upregulation of ZO-1, Occludin,
and E-cadherin gene expressions and downregulation of α-SMA gene expression. This means that butyrate can maintain the tight
junction structure of HK-2 cells and inhibit fibrosis. Butyrate also significantly inhibited the activation of PI3K/Akt pathway. These
results indicate that NKK20 can treat kidney injury in diabetic mice by reducing blood glucose and AGE concentration and
increasing butyrate production in the intestine. By inhibiting PI3K pathway activation in HK-2 cells, butyrate maintains a tight
junction structure of renal tubule epithelial cells and inhibits renal tissue fibrosis. These results suggest that NKK20 is helpful to
prevent and treat the occurrence and aggravation of diabetic kidney injury.

1. Background

Diabetic kidney disease (DKD) is one of the main causes of
end-stage nephropathy [1]. Diabetes is the most common
metabolic disease in the world, and the incidence is still
increasing year by year, and there is a significant trend of

younger age [2]. DKD represents the primary complication
associated with diabetes. Currently, there exists a substantial
global population of individuals affected by DKD, thereby
rendering the prevention and treatment of this condition a
challenging undertaking. The etiology of DKD is intricate,
and recent research has revealed that the elevated presence
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of advanced glycation end products (AGEs) in the blood-
stream of individuals with diabetes plays a significant role
in the development of this renal complication [3]. AGEs
are irreversible glycosylation end products produced by
enzymolysis-independent reactions between reduced sugars
and a group of different substrates, including arginine and
lysine residues in proteins, amino groups in phospholipids,
and guanylic acid in DNA [4]. In addition, AGEs in vivo
may also come from the autoxidation reaction during the
process of glucose decomposition or gluconeogenesis [5].
Under normal circumstances, AGEs are formed in the body
at a slow rate and can be cleared by the kidney [6]. However,
in the context of hyperglycemia, the body’s synthesis rate of
AGEs is significantly enhanced, surpassing the kidney’s
capacity for clearance, thereby leading to the substantial
accumulation of AGEs [7]. High concentrations of AGEs
in the body can induce inflammation in various organs [8].
When AGEs accumulate in large quantities in the kidney,
it will cause damage to the kidney structure and loss of
function, leading to DKD and even uremia [9]. Therefore,
AGEs are currently recognized as a potential indicator of
kidney injury.

The clinical studies have also shown that the short-chain
fatty acids (SCFAs) are highly correlated with the improve-
ment of symptoms and complications in type 2 diabetes
(T2DM) [10–12]. SCFAs are generated through the process
of fermentation of indigestible dietary fiber by specific
anaerobic bacteria located in the colon. These SCFAs pri-
marily consist of acetic acid, propionic acid, and butyric
acid, along with other organic acids possessing fewer than
six carbon atoms [13]. Butyrate, an SCFA, is primarily pro-
duced in the gastrointestinal tract through the fermentation
of dietary fiber. Although its main origin is in the gut, it can
also enter the bloodstream and contribute to the develop-
ment of diseases associated with inflammation and immu-
nity, including inflammatory bowel disease, asthma, and
arthritis [14–16]. Previous experiments revealed that sodium
butyrate (NaB) could alleviate the oxidative stress and
inflammation caused by AGEs by regulating cellular metab-
olism [17]. Therefore, butyrate may play an important role
in improving DKD.

Existing clinical studies can confirm that a variety of
probiotics can effectively inhibit the inflammatory response
in diabetic patients and can significantly reduce the risk of
kidney damage in elderly diabetic patients [18, 19]. Some
clinical studies have indicated that soy milk containing
Lactiplantibacillus plantarum can improve kidney function
in T2DM patients with nephropathy [20, 21]. In a recent
study, butyrate-producing Lactiplantibacillus plantarum
can ameliorate hyperglycaemia in streptozotocin-induced
diabetic mice [22]. Lactiplantibacillus plantarum NKK20
strain (NKK20) is a newly isolated strain from the intestines
of healthy humans that has been deposited in the China
Typical Culture Preservation Center under the preservation
number CCTCC NO: M2020596. Previous studies have
shown that this NKK20 strain has the ability to promote
the production of SCFAs, including butyrate, in the colon con-
tents, and confers strong hypolipidemic and anti-inflammatory
effects [23]. These results suggest that butyrate-producing

NKK20 may be an effective dietary means to improve DKD.
Nevertheless, the protective effect of NKK20 on the renal injury
in DKD remains unclear. The pathway, which NKK20 amelio-
rates renal injury in DKD, has not been clarified.

We evaluated the effect of NKK20 on improving blood
glucose and AGE levels and kidney injury based on a mouse
model of diabetic kidney injury. Basing on the human
kidney- (HK-) 2-cell model, the treatment mechanism of
AGE-induced kidney injury by butyrate was studied. These
studies can provide theoretical support for probiotic therapy
in patients with DKD.

2. Materials and Methods

2.1. Animal and DKD Model. Thirty 6-week-old male ICR
mice were purchased from Wukong Biological Company
(Nanjing, China) and raised in the Animal Laboratory Cen-
ter of Jiangsu University with barrier system. Conventional
mouse diet and high-fat diet (HFD) were purchased from
Jiangsu Xietong Research and Bio-Engineering Co., Ltd.
(Nanjing, China). ICR mice were randomly divided into 3
groups, including the control group (NC), diabetic kidney
disease model group (DKD), and HFD plus NKK20 group
(NKK20), with 10 mice in each group. The mice in the NC
group were fed with conventional feed until the end of the
experiment. Mice in the DKD group and NKK20 group were
fed HFD, and diabetic nephropathy was induced by intra-
abdominal injection of streptozotocin (50mg/kg) for 5 con-
secutive days starting from week 5. At the beginning of the
experiment, mice in the NKK20 group were given NKK20
by oral administration, and each mouse was given 1 × 107
viable bacteria per day. The blood glucose concentration in
the tail vein in the fasting state of mice was detected for 3
consecutive days, and the diabetic nephropathy model was
considered successful when the fasting blood glucose
(FBG) level was ≥11.1mmol/L. The HFD was continued
for 6 weeks, and body weight and FBG were monitored dur-
ing the experiment. The mice were killed at the end of the
9th week, and serum and kidney cortex were collected for
follow-up study.

2.2. HK-2 Cell Culture and Treatment. HK-2 cells (ATCC®
CRL-2190™, Rockville, MD, USA, a kindly gift from profes-
sor Hui Qian, School of Medicine, Jiangsu University) were
cultured in RPMI 1640 medium containing 10% fetal bovine
serum at 37°C and 5% CO2. HK-2 cells were inoculated in a
6-well cell culture plate with a density of 1 × 106 cells for 24
hours for the experiment. Cell experiments are divided into
five groups: normal control group (NC), AGE stimulation
group (AGEs), AGEs+low dose NaB (100μmol/L) group
(L-NaB), AGEs+medium dose (200μmol/L) group (M-NaB),
and AGEs+high dose NaB (400μmol/L) group (H-NaB). The
cells in the NC group were cultured with conventional cell
culture medium without adding NaB and AGEs. In the NaB
intervention groups, the different concentrations of NaB were
incubated in advance for 24h, and then the cells in the AGEs
group and NaB groups were treated with 400μg/mL of AGEs
to induce inflammatory response for 24h. Cell cultures were
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collected at the end of the experiment for total RNA extraction
and western blotting assays.

2.3. qRT-PCR Assay. Total RNA of mouse kidney tissues and
HK-2 cells were extracted by RNA-easy isolation reagent
(Vazyme Biotech Co., Ltd., Nanjing, China) in qRT-PCR
experiment. By HiScript III 1st strand cDNA synthesis kit
(+gDNA wiper) (Vazyme Biotech Co., Ltd., Nanjing, China),
the expression of related genes in kidneys and HK-2 cells of
mice was detected by AceQ Universal SYBR qPCR Master
Mix (Vazyme Biotech Co., Ltd., Nanjing, China). PCR
primers were synthesized by GENEWIZ (Suzhou, China).
qPCR reaction conditions are as follows: 95°C for 30 s,
95°C for 5 s, and 60°C for 30 s, a total of 40 cycles. The results
of qPCR were expressed by Ct value, the GAPDH gene was
used as the internal reference, and the relative expression of
gene mRNA was calculated by 2−ΔΔCt calculation method.
The primer sequences are shown in Table 1.

2.4. Western Blotting Assay. At the end of the experiment,
HK-2 cells were collected, the cell culture medium was dis-
carded, and the residual cell culture medium was removed
by washing with phosphate buffer precooled on ice for 3
times. RAPI lysate (Beyotime, Nanjing, China) was added
to the cells and lysed on ice for 30min. The total protein
in the lytic supernatant was collected, and the protein con-
centration was detected by BCA protein quantification kit
(Beyotime, Nanjing, China). All samples were separated by
SDS-PAGE electrophoresis. After electrophoresis, constant
electrophoresis model was transferred to polyvinylidene
fluoride (PVDF). The transferred PVDF membrane was
soaked and sealed in 5% skim milk powder (Boster Biological
Technology Co., Ltd., Wuhan, China) for 2h and then
combined with various moderately diluted antibodies for
overnight incubation (ABclonal Technology Co., Ltd., Wuhan,
China). These include α-SMA (1 : 2000), E-cadherin (1 : 2000),
AkT (1 : 1000), p-AkT (1 : 500), PI3K (1 : 1000), p-PI3K
(1 : 500), and actin (1 : 10000). After incubation, the unbound
antibodies were removed by washing with TBST buffer
(Vazyme Biotech Co., Ltd., Nanjing, China) for 3 times and
then incubated with HRP-labeled goat anti-rabbit IgG (Boster
Biological Technology Co., Ltd., Wuhan, China) at room tem-
perature for 1h. After the incubation of the antibody was com-
pleted, the ECL color-developing solution (Vazyme Biotech
Co., Ltd., Nanjing, China) was added to expose.

2.5. Hematoxylin and Eosin (H&E) and Masson Staining.
Mouse renal parenchymal tissue was immersed in 4% para-
formaldehyde and fixed for 48 hours before staining. Mouse
renal parenchymal tissue was sliced by paraffin embedding,
dewaxed, dehydrated in ethanol with gradient concentra-
tion, and finally used for staining. H&E staining was used
to observe cell morphology in renal parenchyma. The degree
of renal parenchymal fibrosis was observed by Masson stain-
ing. In diabetic nephropathy, fibroblasts in the kidney were
activated and transformed into myofibrocytes, which further
synthesized and secreted a large number of collagen fibers
that were difficult to degrade, and finally caused the accumu-
lation of extracellular matrix resulting in renal interstitial

fibrosis. After Masson staining, the myofibrillar fibers were
red, and the collagen fibers were green. The Image-Pro Plus
6.0 software was used to scan the Masson staining results
and score according to the size of the green area.

2.6. ELISA Assay and Enzyme Activity Detection. AGE con-
centration in the serum of mice was detected by ELISA kit
(ZCI Bio, Shanghai, China). The superoxide dismutase
(SOD) activity assay kit and malondialdehyde (MDA) con-
tent assay kit were purchased from the Jiancheng Institute
of Bioengineering (Nanjing, China). The testing procedure
is carried out according to the kit operating instructions.

2.7. Nontargeted Metabolomics Analysis. The mouse serum
samples were thawed at 4°C, 60μL of serum was obtained,
and acetonitrile was added with the volume ratio of 1 : 4 to
remove protein. Then the mixture was violently shaken for
1min and centrifuge at 4°C at 13500 rpm for 15min. The
supernatant was filtered through a filtration centrifuge tube
with a pore size of 0.22μm to remove particulate matter,
and 200μL of the filtered sample was used for nontargeted
metabolomics analysis by UPLC-Q-TOF-MS in Wekemo
Tech Group Co., Ltd. (Shenzhen, China). The mobile phases
were water containing 0.1% formic acid (phase A) and ace-
tonitrile containing 0.1% formic acid (phase B) at the flow
rate of 0.3mLmin-1. The gradient elution conditions were
0-7min, 55% B; 7-9min, 55%-80% B; and 9-15min, 80%-
100% B. Mass spectrum conditions are as follows: ESI ioni-
zation source was used, the ion source temperature was
120°C, the drying temperature was 225°C, the flow rate was
5 Lmin-1, the atomizer pressure was 20psi, the sheath temper-
ature was 400°C, the sheath gas flow rate was 12Lmin-1, and
the nozzle voltage was 500V. Scanning range was m/z 20-1

700 in positive ion mode with a capillary voltage of 3 500V
and in negative ion mode with a capillary voltage of 4 000V.
The chromatogram of serum samples in each group was per-
formed by Markerview 2.1 (AB SCIEX, Massachusetts, USA)
software. The chromatographic peak was extracted, and the
peak area was normalized. The normalized data were analyzed
by principal component analysis (PCA) to observe the changes
of metabolic profile in each group of mice. SIMCA-P v11.5
(Umetrics, Umea, Sweden) software was used to analyze the
content results of the detected compounds by orthogonal par-
tial least squares discriminative analysis (OPLS-DA), and a
VIP-plot was obtained that could reflect the contribution rate
between groups. Based on OPLS-DAmodel variables, differen-
tial metabolites were screened according to VIP > 1 and
P < 0 05 rule. MetaboAnalyst 3.0 (http://www.metaboanalyst
.ca/) was used for pathway analysis of the obtained differential
metabolites, and the biological significance of the differential
metabolites was further analyzed by combining HDMB and
KEGG databases. Finally, the potential biomarkers and related
metabolic pathways associated with NKK20 in the treatment
of diabetic kidney injury were identified.

2.8. GC-MS Detection of Butyric Acid. The concentration of
butyric acid in mouse feces was determined by Wekemo
Tech Group Co., Ltd. (Shenzhen, China). The concentration
of butyric acid was determined by gas chromatography. The
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specific method is as follows: 0.1 g mouse stool sample was
thoroughly mixed with 1 200μL sterilized distilled water,
and then 50μL (50%) concentrated sulfuric acid was added
to the mixture for acidification. The concentration of butyric
acid was determined by gas chromatograph using diethylbu-
tyric acid as internal standard.

2.9. Statistical Analysis. Statistical software SPSS 20.0 was
used for data analysis. Measurement data are expressed as
mean ± standard deviation. One-way ANOVA was used for
multigroup comparison, and LSD method was used for
pair-to-group comparison. P < 0 05 was considered statisti-
cally significant.

3. Results

3.1. Effects of NKK20 on Body Weight and Blood Glucose in
DKD Mice. As can be seen from Figure 1(a), the body weight
of mice in the DKD group and NKK20 group was signifi-
cantly higher than that in the NC group from week 5
(P < 0 05), while there was no significant difference in body
weight between the DKD group and NKK20 group
(P > 0 05). As shown in Figure 1(b), when the experiment
was discontinued, the fasting blood glucose (FBG) of mice
in the DKD group and NKK20 group was significantly
higher than that in the NC group, and the FBG level in the
DKD group was significantly higher than that in the
NKK20 group (P < 0 05).

3.2. Effects of NKK20 on Inflammatory Responses in Diabetic
Mice. The results of qPCR assay showed that the expressions
of NACHT, LRR, and PYD domain-containing protein 3
(NLRP3), caspase-1, and interleukin-1beta (IL-1β) in the
kidney tissues of DKD model mice were significantly higher
than those of the NC group, while these expressions after
oral administration of NKK20 were significantly decreased

(P < 0 05) (Figures 2(a)–2(c)). Compared with the NC
group, the proinflammatory cytokine tumor necrosis
factor-alpha (TNF-α) in the kidney tissues in the DKD
group was significantly increased (P < 0 05), while the anti-
inflammatory cytokine interleukin-10 (IL-10) was signifi-
cantly decreased (P < 0 05) (Figures 2(d) and 2(e)). Compared
with the DKD group, the TNF-α expression was significantly
decreased (P < 0 05), while the IL-10 expression was signifi-
cantly increased (P < 0 05) in the NKK20 group.

3.3. Effects of NKK20 on SOD, MDA, AGEs, and Butyrate
Levels in Diabetic Mice. The SOD content in serum of
DKD mice was significantly lower than those in the NC
group, and the MDA content in serum of DKD mice was
significantly higher than those in the NC group (P < 0 05).
Compared with the DKD group, SOD content in the NKK20
group was significantly increased, and MDA concentration
was significantly decreased (P < 0 05) (Figures 3(a) and
3(b)). The serum concentration of AGEs in DKD mice was
found to be significantly higher compared to the NC group.
Conversely, the serum concentration of AGEs in mice that
received oral administration of NKK20 exhibited a significant
decrease when compared to the DKD group (Figure 3(c)).
GC-MS assay results showed that the fecal butyrate concentra-
tion of DKD mice was significantly lower than that of the NC
group, while the fecal butyrate concentration of DKD mice
was significantly higher after oral administration of NKK20
(P < 0 05) (Figure 3(d)).

3.4. Effects of NKK20 on Renal Injury in Diabetic Mice.
Hematoxylin and eosin (H&E) staining showed that the glo-
meruli and renal tubules of the NC group mice were regular
in shape; and the epithelial cells of renal tubules were
arranged neatly, with complete morphology and uniform
cytoplasm. In the DKD group, the renal tubules exhibited
focal degeneration and atrophy, accompanied by a slight

Table 1: qRT-PCR primer sequences.

Genes Primer sequences (5’⟶3’)

HK-2_GAPDH
F: CATCACTGCCACCCAGAAGACTG
R: ATGCCAGTGAGCTTCCCGTTCAG

HK-2_ZO-1
F: GAGCCTAATCTGACCTATGAACC
R: TGAGGACTCGTATCTGTATGTGG

HK-2_Occludin
F: CTTCCAATGGCAAAGTGAATGAATGAC

R: TACCACCGCTGCTGTAACGAG

Mouse_GAPDH
F: CATCACTGCCACCCAGAAGACTG
R: ATGCCAGTGAGCTTCCCGTTCAG

Mouse_IL-1β
F: CCTGTCCTGCGTGTTGAAAGA
R: GGGAACTGGGCAGACTCAAA

Mouse_TNF-α
F: AATGGCGTGGAGCTGAGA
R: TGGCAGAGAGGAGGTTGAC

Mouse_NLRP3
F: AACAGCCACCTCACTTCCAG
R: CCAACCACAATCTCCGAATG

Mouse_Caspase-1
F: GCACAAGACCTCTGACAGCA
R: TTGGGCAGTTCTTGGTATTC

Mouse_IL-10
F: TCTCCGAGATGCCTTCAGCAGA
R: TCAGACAAGGCTTGGCAACCCA
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Figure 1: Body weight and blood glucose level in mice. (a) Body weight change. (b) Fasting blood glucose levels. (A) Compared with the NC
group, P > 0 05. (B) Compared with the DKD group, P > 0 05.
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Figure 2: The expression of inflammatory factors in the spleen of mice detected by qPCR assay. (a) NLRP3, (b) caspase-1, (c) IL-1β, (d)
TNF-α, and (e) IL-10. (A) Compared with the NC group, P < 0 05. (B) Compared with the DKD group, P < 0 05.
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thickening of the glomerular basement membrane and
mesangial hyperplasia (Figures 4(a)–4(c)). Importantly, the
above pathological conditions were significantly improved
in the NKK20 intervention group. The collagen fibers within
the kidney tissue exhibited a blue hue following Masson
staining. Notably, the DKD group displayed a substantial
increase in the blue area within the mesangial region and
basement membrane, when compared to the NC group.
Conversely, the NKK20 group demonstrated a reduction in
the area of blue collagen within the glomerulus and renal
tubule interstitium, in comparison to the DKD group
(P < 0 05) (Figures 4(d)–4(f)).

3.5. Effects of NKK20 on Serum Endogenous Metabolites in
Diabetic Mice. The serum metabolites of each group were
analyzed by UPLC-Q-TOF-MS, and the serum samples were
scanned in negative mode (ESI-), which showed some differ-
ences in the metabolite content of each group. To obtain
metabolic differences between each group, multivariate sta-
tistical analysis was performed. The unsupervised PCA score
map showed that the NC and DKD groups significantly clus-
tered into two categories (Figure 5(a)), indicating significant
differences in serum endogenous metabolites between the
two groups. In order to further evaluate the effectiveness of
NKK20 in the treatment of DKD, supervised OPLS-DA
analysis was performed in each group, and it was found that
the serum metabolic profile of mice was significantly sepa-
rated between the NC and DKD groups and between the
DKD and NKK20 groups. Moreover, the sample points of
the serum of mice in the NC and NKK20 groups were closer
to each other, indicating that NKK20 affected the serum
metabolic profile of DKD mice, making it tend to normal
mice (Figures 5(b)–5(d)). OPLS-DA is a supervised forecast-

ing model. In ESI- mode, R2X = 0 444, R2Y = 0 915, and
Q2 = 0 817, indicating that the model has good forecasting
ability.

Potential differential metabolites were screened using
rules with VIP > 1 and P < 0 05, accurate m/z by first-order
mass spectrometry, matching using the Mass Profiler Profes-
sional software ID Browser Identification function and
METLIN metabolite database, looking for the possible struc-
tural formulas, and molecular formula matching with online
databases such as Human Metabolome Database (http://
www.hmdb.ca/) and KEGG (https://www.kegg.jp/kegg/).
Then, comparing the secondary fragmentation information
with the fragmentation information and literature in Mass-
Bank (http://www.massbank.jp/) and ChemSpider (https://
www.chemspider.com/) databases, the metabolites were then
identified. Finally, 16 serum potential biomarkers were
selected between NC and DKD groups (Table 2), and 24
serum potential biomarkers were selected between the
DKD and NKK 20 groups (Table 3 and Figure 6). Analysis
of metabolic pathways using MetPA (https://www
.metaboanalyst.ca/) MetPA is mainly based on KEGG meta-
bolic pathway and HMDB database, combined with the
results of pathway enrichment analysis and topology analy-
sis, to select the metabolic pathways most relevant to the
experiment. A total of three related metabolic pathways were
selected using MetPA, including glycerophospholipid
metabolism pathway, arachidonic acid metabolism pathway,
and linoleic acid metabolism pathway (Figure 7).

3.6. NaB Upregulates Tight Junction Protein Expression and
Suppresses Fibrosis in HK-2 Cells. The mRNA expressions
of the tight junction proteins ZO-1 and Occludin in HK-2
cells were determined by qPCR. Compared with the NC
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group, the mRNA expressions of ZO-1 and Occludin were
significantly decreased in the AGEs group (P < 0 05); and
after the treatment with the three concentrations of NaB,

the mRNA expressions of ZO-1 and Occludin were signifi-
cantly higher compared with the AGEs group (P < 0 05)
(Figure 8). The expressions of α-SMA and E-cadherin were
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Figure 4: H&E staining (a–c) and Masson staining (d–f) in mouse kidney tissues. (a) NC group, (b) DN group, (c) NKK20 group, (d) NC
group, (e) DKD group, and (f) NKK20 group. (g) Compared with the NC group, P < 0 05 (A); compared with the DKD group, P < 0 05 (B).
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determined by western blotting in HK-2 cells. Compared
with the NC group, the AGE stimulation had significantly
more α-SMA expression and lower E-cadherin expression
(P < 0 05). Compared with the AGE group, all three concen-
trations of NaB treatment significantly inhibited α-SMA
expression (P all < 0.05), and only the cells in the H-NaB

group significantly increased E-cadherin expression (P < 0 05)
(Figure 9).

3.7. NaB Inhibits the Activation of PI3K-Akt Signaling
Pathway in HK-2 Cells. Phosphorylation of the phosphoino-
sitide 3-kinase- (PI3K-) Akt signaling pathway was detected
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Figure 5: Serum nontargeted metabolomics was analyzed by PCA and OPLS-DA. (a) PCA and (b–d) OPLS-DA.
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by the western blotting assay. Compared with the NC group,
the protein expressions of p-Akt were significantly increased
in the AGE group (P < 0 05); and after the treatment with
the H-NaB, the protein expressions of p-Akt were signifi-
cantly lower compared with the AGE group (P < 0 05)
(Figures 10(a) and 10(b)). Compared with the NC group,
the protein expressions of p-PI3K were significantly
increased in the AGE group (P < 0 05); and after the treat-
ment with the H-NaB, the protein expressions of p-PI3K
were significantly lower compared with the AGE group
(P < 0 05) (Figures 10(a) and 10(c)).

4. Discussion

DKD is one of the diabetic microvascular complications.
The persistent hyperglycemia in the body of diabetic patients
can lead to the metabolic abnormalities of some tissues and
organs and then produce dysfunction and morphological
changes, causing chronic complications of diabetes, which
is one of the most common complications of diabetes [24,
25]. At present, the relatively accepted pathogenesis hypoth-
esis of diabetic nephropathy is nonenzymatic glycochemis-
try, that is, under long-term hyperglycemia, glucose

Table 2: Potential differential metabolites between the NC group and DKD group.

No Compounds Formula Library ID m/z R/T VIP P Change

1 15(S)-HETE C20H32O3 HMDB03876 319.23 10.06 1.10 0.001 ↓

2 PE(18 : 1(9Z)/22 : 6(4Z,7Z,10Z,13Z,16Z,19Z)) C45H76NO8P LMGP01011315 770.52 10.72 1.16 0.001 ↑

3 10,11-Dihydro-20-trihydroxy-leukotriene B4 C20H34O7 HMDB12503 385.22 8.43 1.28 0.001 ↓

4 Taurochenodesoxycholic acid C26H45NO6S HMDB00951 498.29 6.98 1.08 0.001 ↑

5 Stearic acid C18H36O2 HMDB00827 283.26 13.07 1.21 0.001 ↑

6 9,10-Epoxyoctadecenoic acid C18H32O3 HMDB04701 591.46 12.58 1.21 0.001 ↑

7 11-Eicosenoic acid C20H38O2 HMDB34296 331.26 11.92 1.29 0.001 ↓

8 PC(18 : 0/0 : 0) C26H54NO7P LMGP01050026 522.36 11.49 1.28 0.001 ↓

9
3-beta-Hydroxy-4-beta-methyl-5-alpha-cholest-7-ene-4-

alpha-carboxylate
C29H48O3 HMDB11662 489.36 11.73 1.33 0.001 ↑

10 Prostaglandin F1a C20H36O5 HMDB02685 337.24 11.56 1.29 0.001 ↑

11 Beta-citraurin C30H40O2 HMDB35091 477.30 13.92 1.37 0.001 ↑

12 Nervonic acid C24H46O2 HMDB02368 411.35 12.39 1.44 0.001 ↑

13 8-Keto palmitic acid C16H30O3 LMFA01060055 539.43 12.59 1.48 0.001 ↑

Table 3: Potential differential metabolites between the DKD group and NKK20 group.

No Compounds Formula Library ID m/z R/T(min) VIP P Change

1 Palmityl palmitate C32H64O2 LMFA07010001 479.48 11.69 1.46 0.001 ↓

2 Nonadecanoic acid C19H38O2 HMDB00772 343.28 12.22 1.42 0.001 ↓

3 DG(O-16 : 0/18 : 1(9Z)) C37H72O4 LMGL02020001 625.54 12.17 1.37 0.001 ↓

4 15(S)-HETE C20H32O3 HMDB03876 319.23 10.06 1.35 0.001 ↑

5 N-docosahexaenoyl glutamic acid C27H39NO5 LMFA08020089 502.28 9.53 1.31 0.001 ↑

6 SM(d18 : 1/16 : 0) C39H79N2O6P LMSP03010003 747.56 9.68 1.30 0.001 ↑

7 16-a-Hydroxypregnenolone C21H32O3 HMDB00315 313.22 9.11 1.29 0.001 ↓

8 PC(17 : 2(9Z,12Z)/0 : 0) C25H48NO7P LMGP01050127 504.31 9.57 1.29 0.001 ↑

9 PC(18 : 1(9E)/0 : 0) C26H52NO7P LMGP01050030 566.34 10.21 1.28 0.001 ↑

10 20-Oxo-leukotriene E4 C23H35NO6S HMDB12642 452.21 9.97 1.27 0.001 ↓

11 PC(16 : 0/0 : 0) C24H50NO7P LMGP01050018 494.32 10.50 1.24 0.001 ↑

12 PC(O-18 : 1(1E)/0 : 0) C26H54NO6P LMGP01070008 552.37 10.42 1.24 0.001 ↑

13 PC(O-16 : 0/0 : 0) C24H52NO6P LMGP01060010 526.35 10.25 1.21 0.001 ↑

14 PC(19 : 3(10Z,13Z,16Z)/0 : 0) C27H50NO7P LMGP01050003 552.31 9.38 1.21 0.001 ↑

15 PC(O-15 : 0/0 : 0) C23H50NO6P LMGP01060009 466.33 10.25 1.18 0.001 ↑

16 SM(d16 : 1/17 : 0) C38H77N2O6P LMSP03010037 687.54 5.63 1.16 0.01 ↑

17 13S-Hydroxyoctadecadienoic acid C18H32O3 HMDB04667 295.23 9.75 1.13 0.01 ↑

18 PC(18 : 2(9Z,12Z)/15 : 0) C41H78NO8P HMDB08132 742.54 11.66 1.12 0.01 ↑

19 SM(d18:1/16 : 1) C39H77N2O6P LMSP03010041 745.55 10.74 1.12 0.01 ↑

20 8-Keto palmitic acid C16H30O3 LMFA01060055 539.43 12.59 1.10 0.01 ↓

21 PC(20 : 4(5Z,8Z,11Z,14Z)/0 : 0) C28H50NO7P HMDB10395 588.33 9.42 1.08 0.01 ↑
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molecules undergo nonenzymatic glycosylation reactions
with proteins in vivo to form irreversible AGEs, which
then leads to the occurrence of kidney injury [26–28]. At
the same time, studies have also confirmed that the pro-
gression of complications such as diabetic nephropathy
can be significantly inhibited by inhibiting the glycosyla-
tion process [29–31].

The imbalance of intestinal flora is the direct cause of
obesity, insulin resistance, diabetes, intestinal diseases, and
cardiovascular metabolic diseases [32–34]. Recently, it has
been recognized that changes in gut microbiota may also
play an important role in the development of DKD, but
the specific mechanism has not been defined, and therapies
targeting intestinal microbiota are considered as a new
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approach for strategies against DKD [35]. The clinical stud-
ies have shown that insufficient dietary fiber intake and high
intake of processed carbohydrates are major risk factors for
diabetes, and dietary fiber intake is negatively correlated
with the risk of diabetes [36, 37]. Intervention studies in
humans have shown that increasing dietary fiber and whole
grain intake can enhance gut microbial diversity, which not
only helps the host regulate immune response and homeo-
stasis but also participates in energy metabolism [38]. Die-
tary fiber that cannot be digested by the human body can
be fermented by certain anaerobic microorganisms in the
colon, and SCFAs are the main fermentation products
[39]. SCFAs are a class of fatty acids with fewer than 6 car-
bon atoms, including formic acid (C1), acetic acid (C2), pro-

pionic acid (C3), butyric acid (C4), and valeric acid (C5), but
the total amount of acetic acid, propionic acid, and butyric
acid in the intestine accounts for more than 95% of all
SCFAs, among which butyric acid has the strongest anti-
inflammatory effect. Acetic acid can be formed from pyru-
vate via the acetyl-CoA pathway, propionic acid is mainly
formed from succinic acid via the succinic acid pathway or
from lactic acid via the acrylate pathway, and butyric acid
is mainly formed from acetyl-CoA and butyryl-CoA as well
as acetate and lactate [40, 41].

Butyrate can activate the genes that regulate the early
development of the pancreas in embryonic stem cells to
increase the differentiation of islet β cells and the expression
of insulin coding genes, inhibit the apoptosis of islet β cells,

2.0

1.8

–L
og

10
 (p

)

1.6

1.4

1.2

1.0

0.8

0.00 0.02 0.04 0.06

d

c

b

a

Pathway impact

0.08 0.10 0.12

(a)

2.0

1.0

1.5

–L
og

10
 (p

)

c

b

0.00 0.02 0.04 0.06

Pathway impact

0.08 0.10

a

(b)

Figure 7: Enrichment map of metabolic pathways. (a) NC group vs. DKD group; (b) DKD group vs. NKK20 group. (a) Glycerol
phospholipid metabolic pathway (A); linoleic acid metabolic pathway (B); glycosylphosphatidylinositol- (GPI-) anchored biosynthetic
pathway (C); arachidonic acid metabolic pathway (D). (b) Glycerol phospholipid metabolic pathway (A); arachidonic acid metabolic
pathway (B); linoleic acid metabolic pathway (C).

ZO
-1

/G
A

PD
H

NC AGEs L-NaB M-NaB H-NaB

A

1.5

1.0

0.5

0.0

B

B
B

+AGEs

(a)

O
cc

lu
di

n/
G

A
PD

H

NC AGEs L-NaB M-NaB H-NaB

A

2.0

1.0

0.5

0.0

A, B
A, B

A, B

+AGEs

1.5

(b)

Figure 8: The expressions of ZO-1 and Occludin in HK-2 cells were determined by qPCR. (a) ZO1 mRNA level. (b) Occludin mRNA level.
(A) Compared to the NC group, P < 0 05; (B) compared to the AGE group, P < 0 05.

11Journal of Diabetes Research



and improve glucose homeostasis in diabetic rats through
p38/ERK MAPK signaling pathway [42, 43]. Some scholars
believe that butyrate may be the most promising chemical
for the treatment of T2DM [44]. Our study showed that
NKK20 could significantly increase the concentration of
butyric acid in the stool of mice, significantly inhibit the acti-
vation of NLRP3 inflammasome and the secretion of TNF-α
and other proinflammatory cytokines in the spleen of mice,
and inhibit the oxidative stress response in diabetic mice and
the inflammatory damage and fibrosis of kidney tissue.
Because of its unpleasant odor, butyrate cannot be added
to the human diet, and it is completely feasible to increase
the production of butyrate in the gut by oral administration
of Lactiplantibacillus plantarum.

Further metabolomic studies showed that NKK20 can
inhibit diabetic kidney injury by regulating glycerin phos-
pholipid metabolism and arachidonic acid metabolism.
The essence of diabetic nephropathy is chronic inflamma-
tion [45, 46]. Glycerophospholipid metabolism and arachi-
donic acid metabolism are closely related to inflammation
[47–50]. Inflammation is one of the most common patho-
logical processes in all kinds of human diseases, and inflam-
mation can lead to the disorder of lipid metabolism [51, 52].
Lipids are energy providers of organisms, participate in a
large number of life activities, and have very important
physiological functions, including maintaining cell mem-

brane structure, energy storage, signal transduction, and car-
rier [53, 54]. Glycerin phospholipids are the main substances
in cell membrane phospholipids, accounting for about 60%
of lipid molecules. They have a variety of biological func-
tions, and the disorder of their metabolic network can cause
a variety of diseases, such as coronary heart disease, athero-
sclerosis, diabetes, obesity, cancer, brain injury, pain and
inflammation, and Alzheimer’s disease [55]. A systematic
study of the dynamic changes in the molecular composition
of glycerophospholipids is helpful to explain the molecular
mechanism of disease pathogenesis [56, 57]. Arachidonic
acid is a fatty acid lipid component, derived from the metab-
olism of glycerol phospholipids in lipid substances. Under
pathological conditions such as inflammation and tumor,
membrane phospholipids accelerate the release of arachi-
donic acid under the action of phospholipase A2 [58]. An
excess of glycerophospholipids in the body can induce ER
stress, which is associated with insulin resistance and
T2DM [59]. When excessive glycerophospholipids are gly-
cosylated in the body, oxidation sensitivity under hypergly-
cemia conditions will be increased, reactive oxygen species
production will be increased, and inflammation and diabetic
nephropathy will be further induced in the body [58]. In this
study, we found that NKK20 can significantly reduce the
contents of various glycerolipids in serum, which may be
related to the improvement of diabetic kidney injury.
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Based on the fact that oral administration of NKK20
strain significantly increased the production of butyrate in
the colon of mice with diabetic nephropathy, we further cul-
tured HK-2 cells in vitro to investigate the mechanism of
butyrate inhibiting renal injury and fibrosis. Our results
show that butyrate can increase the expression of the tight
junction proteins ZO-1 and Occludin, improve the fibrosis
level of HK-2 cells, and inhibit the phosphorylation of the
PI3K/Akt signaling pathway. PI3K, also known as a lipid
kinase, produces PIP3 to regulate the translocation of Akt
as a second messenger to the plasma membrane [60]. The
PI3K/Akt signaling pathway plays a key regulatory role in
the occurrence and development of diabetic nephropathy,
and the PI3K/Akt pathway is activated in renal tubular cells
under diabetic conditions [61]. We speculate that inhibiting
the activation of PI3K/Akt signaling pathway may be one of
the mechanisms by which butyrate improves diabetic kidney
injury, which needs further investigation.

A limitation of the present study is that the butyric acid
responsible for the improvement on DN of NKK20 in mouse
model was not identified. Therefore, the decisive role of
butyric acid on DN warrants further research. Toll-like
receptors (TLRs) as pattern recognition receptors play a
key role in the proinflammatory process, and IL-1β and
TNF-α are the primary downstream targets of TLR signaling

[62, 63]. TLR inactivation by butyric acid-producing NKK20
may be attributed to the improvement on DN; however, this
hypothesis requires further investigation.

5. Conclusion

In summary, NKK20 reduced kidney injury and fibrosis,
oxidative stress, and inflammatory reactions in a diabetic
kidney disease murine model. Moreover, glycerophospho-
lipid metabolism and arachidonic acid metabolism were
altered, and the concentrations of butyrate were increased.
Furthermore, in an AGE-stimulated HK-2 cell model, buty-
rate can maintain tight junction and inhibit renal cell fibrosis
and PI3K-Akt activation induced by AGEs. Our study shows
that the increase of butyrate caused by NKK20 may be a key
mechanism for reducing the development of diabetic kidney
disease, and NKK20 may be used as a potential probiotic for
the treatment and prevention of diabetic kidney disease.

Data Availability

The raw data supporting the conclusions of this article will
be made available by the authors.
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