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Diabetic kidney disease (DKD) is a prevailing complication arising from diabetes mellitus. Unfortunately, there are no trustworthy
and efficacious treatment modalities currently available. In recent times, compelling evidence has emerged regarding the intricate
correlation between the kidney and the gut microbiota, which is considered the largest immune organ within the human physique.
Various investigations have demonstrated that the perturbation of the gut microbiota and its associated metabolites potentially
underlie the etiology and progression of DKD. This phenomenon may transpire through perturbation of both the innate and
the adaptive immunity, leading to a burdensome allostatic load on the body and ultimately culminating in the development of
DKD. Within this literature review, we aim to delve into the intricate interplay between the gut microbiota, its metabolites,
and the immune system in the context of DKD. Furthermore, we strive to explore and elucidate potential chemical
interventions that could hold promise for the treatment of DKD, thereby offering invaluable insights and directions for future
research endeavors.

1. Introduction

Diabetic kidney disease (DKD) is one of the prevalent
microvascular complications associated with diabetes melli-
tus (DM). A recent investigation of the epidemiology
revealed that DKD is the primary cause of chronic kidney
disease (CKD) in the United States [1]. Effective treatment
methods to delay its progression are still lacking. Specifically,
patients with early DKD exhibit mild clinical symptoms and
only present with microalbuminuria, which often goes
unnoticed by patients [2]. In recent years, there have been
advancements in treatment options for DKD patients, such
as sodium-glucose transporter 2 (SGLT2) inhibitors [3, 4].
Despite these advancements, some studies have shown that
SGLT2 inhibitors are associated with an increased risk of

genital infections [5] and are less effective in patients with
severe renal impairment [6]. Therefore, it remains crucial
to further investigate the pathogenesis and treatment of
DKD. Researchers have discovered that patients with end-
stage DKD often exhibit significant disruptions in their gut
microbiota, immune imbalances, and allostatic loads, with
the severity of gut microbiota imbalance being closely tied
to the degree of renal injury. Consequently, understanding
how to improve DKD by manipulating the gut microbiota
to improve the allostatic load caused by immune imbalances
has become a focal point of research [7]. The gut harbors a
highly intricate microbial ecosystem [8]. Alterations in the
composition of gut microbiota and its metabolites can pro-
foundly impact the human immune and metabolic systems
[9]. Studies have highlighted the strong connection between
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gut-microbial ecology and kidney function, particularly in
terms of substance metabolism, immune inflammation, gut
mucosa, and the composition of gut bacteria [10].

In DKD, the changes in gut microbiota can impact the
immunity, ultimately resulting in the acceleration of toxic
byproducts. It facilitates the transportation of bacteria and
their byproducts into the systemic circulation, causing dam-
age to tissues and organs [11]. The dysbiosis of gut microbi-
ota and gut endotoxins exacerbate kidney injury and
proteinuria in DKD patients [12–15]. Short-chain fatty acids
(SCFAs) are linked to immune, oxidative stress, and inflam-
matory responses in DKD [16]. In DKD, dysregulated glu-
cose and lipid metabolism, heightened immune-
inflammatory response, medication, diet, and other factors
further worsen the dysbiosis of gut microbiota, thereby
impacting renal injury [17–21].

Considering these findings, we aim to present the article
status on the connection with gut microbiota and immune
dysfunction in DKD, elucidating how gut microbiota imbal-
ance contributes to immune dysfunction in DKD mecha-
nism and discussing relevant drug studies.

2. The Relationship between DKD and Gut
Microbiota and the Immune System

2.1. Gut Microbiota and the Immune System. In healthy indi-
viduals, the gut harbors over 1,000 diverse types of microor-
ganisms during the neonatal phase. Primarily consisting of
bacteria [22], these microbial communities undergo substan-
tial transformations in the weeks following birth [23]. Gut
microbiota in infants, thereafter, is influenced by various
factors like feeding habits and medications. It is worth not-
ing that after reaching the age of 12, these microbial popula-
tions tend to stabilize progressively [24, 25].

Bacteroides, SFB (segmented filamentous bacteria), Bifi-
dobacterium, Lactobacillus, and Bacillus proteus [26] con-
tribute significantly to the immune system and
enhancement of the physical barrier in the gut microbiota.
Gut monocyte-macrophages are widespread, as they regulate
immune cells in the gut and initiate nonspecific immune
responses. They not only establish local immunity but also
provide resistance against systemic infections [27]. Certain
bacterial species, such as Clostridium, have the capacity to
stimulate regulatory T cells (Tregs) in the colon and are
good to the maturation of the mucosa, as well as shaping
the natural killer T (NKT) cells and lymphoid structures
[28]. Gut microbiota plays a crucial role in immune
responses. The innate immune system involves dendritic
cells (DCs), macrophages, granulocytes, and NKT cells. Of
these, macrophages and DCs mainly mediate T cell-
induced adaptive immune responses, particularly involving
T and B cells [29–32].

2.2. Relationship between Gut Microbiota and Its Metabolite
Imbalance and DKD Immune Imbalance and Allostatic
Load. In the process of DKD development, the body
undergoes an elevation in its allostatic load, predominantly
characterized by persistent inflammation, oxidative stress,
and disturbances in glucose and lipid metabolism [33]. This

occurrence arises from the unbalance gut microbiota result-
ing in allostatic load and exacerbates the progression of
DKD [34, 35].

In patients with DKD, there is a coexistence of the sys-
temic inflammatory state and impairment of innate immune
function. DKD inflammation is induced by macrophages,
Toll-like receptors, NLRP3, and nuclear factor-kappa B
(NF-κB) [36, 37]. Furthermore, the progression of protein-
uria in DKD is promoted by an increase in T or B cells
[38]. The escalation of proinflammatory factors worsens
the systemic inflammatory state and facilitates the progres-
sion of DKD. Simultaneously, the compromised immune
system diminishes the body’s defense capability and
increases susceptibility to infection [39]. Infection ranks sec-
ond as the leading cause of death in end-stage renal dis-
ease [40].

Scientific research has indicated that there is a significant
reduction in probiotics that can supply energy for intestinal
epithelial cells and secrete SCFAs, thus improving glucose
metabolism [41–43]. Among these probiotics, Bacillus pro-
teus has demonstrated the ability to enhance the host’s
defense mechanisms by inducing the biosynthesis of lipo-
polysaccharide (LPS) and maintaining LPS levels for
immune homeostasis [44, 45]. For example, exposing
germ-free mice to LPS improves abnormalities in the colonic
mucosa [46]. When LPS is recognized, Toll-like receptor 4
(TLR4) activates MyD88, which promotes pathogen clear-
ance and preserves the health of intestinal epithelial cells
[47]. Mice without MyD88 have demonstrated increased
susceptibility to gut damage [48]. In patients with DKD,
there is a positive correlation between Lactobacillus reuteri
and the urinary albumin-to-creatinine ratio [49]. Addition-
ally, the composition of the gut microbiota in DKD patients
exhibits alterations in the proportion of dominant flora and
their metabolites under different conditions [50]. Further-
more, in patients with early-stage DKD, an increase in Pro-
teobacteria has been observed, causing the activation of
macrophages, exacerbating the chronic low-grade inflamma-
tory state [51]. In patients with end-stage DKD, an imbal-
ance in the ratio of Firmicutes and Bacteroides and a low
level in SCFA production have been noted, potentially dis-
rupting glucose metabolism [52, 53].

3. The Role of Gut Microbiota in the
Development of Diabetic Nephropathy by
Affecting the Innate Immune System

3.1. Composition of the Gut Microbiota in the Innate
Immune System. The innate immune system protects the
body, and intestinal epithelial cells play a key part by secret-
ing mucins and antimicrobial proteins (AMPs). These cells
work alongside gut neutrophils to establish a physical bar-
rier, preventing the entry of harmful pathogens [54–57]. In
a healthy colon, most of the resident cells receive supple-
mentation from monocytes through a mechanism depen-
dent on C-C chemokine receptor type 2. This mechanism
is characterized by tolerance and a lack of response to TLR
stimulation. However, when there is an imbalance in gut
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microbiota, the normal process of monocyte-macrophage
maturation is disrupted. As a result, macrophages produce
tumor necrosis factor-alpha (TNF-α) and interleukin-6
(IL-6) when exposed to TLR stimulation, ultimately leading
to kidney inflammation [58]. Peptidoglycan is the compo-
nent of the innate immune system and found in the bacterial
cell walls. Peptidoglycan facilitates Streptococcus pneumo-
niae and Staphylococcus aureus and initiates the immune
response [59]. Additionally, butyrate, a type of SCFAs, has
the chance to decrease NF-κB signal transduction in DCs
and neutrophils. Bile acids (BAs) also contribute to immune
regulation by protecting the physical barriers and reducing
inflammation through their effects on cytokine bioactivity.

3.2. Dysregulation of Gut Microbiota and Its Metabolites
Affects Both Innate Immunity and the Role of Persistent
Inflammation in the Pathogenesis of DKD. DCs and macro-
phages respond to stimulation with TLR ligands [60–63]
and produce interleukin-10 (IL-10) under normal condi-
tions [62, 63]. In the context of DKD, these immune cells
attract and activate humoral immunity through TLR, initiat-
ing a rapid inflammatory response [64] that ultimately leads
to kidney damage. Additionally, the integrity of the gut bar-
rier becomes compromised, leading to the accumulation of
toxins. These toxins activate immune system, which lead to
persistent systemic inflammation. Hence, persistent inflam-
mation caused by intestinal barrier damage can aggravate
DKD.

Research has indicated that DCs and macrophages are
capable of modulating the innate immune system by exert-
ing TLR-mediated control [65]. In a study involving patients
with microalbuminuria, glomerular TLR4 expression was
significantly higher in the glomeruli and tubules [66].
Another study utilizing an animal model demonstrated that
enhanced TLR2 expression in renal tubules and macro-
phages led to a proinflammatory environment and the
occurrence of microalbuminuria [67, 68].

Patients with DKD exhibit changes in the composition
of their gut microbiota, such as an increase in the abun-
dance of Escherichia-Shigella bacteria that can breach the
intestinal barrier [69]. This breach allows the gut microbi-
ota to move into other areas of the body, triggering the
activation of innate immune cells and the upregulation
of TLR2 and TLR4-related pathways in the kidney. These
immune responses result in the production of proinflam-
matory cytokines, leading to immune dysfunction, height-
ened infection susceptibility, and kidney damage
specifically in DKD patients [67, 70–72]. Interestingly,
nonpathogenic Salmonella bacteria have been found to
counteract renal inflammation by inhibiting the NF-κB
signaling pathway [73, 74]. Several studies have demon-
strated that dysregulation of metabolic endotoxin/lipopoly-
saccharide levels in a rat model of DKD leads to activation
of the NF-κB signaling pathway, increased levels of inflam-
matory cytokines in both the bloodstream and kidney, and
activation of the innate immune system [75]. However,
experiments using TLR4 gene deficiencies in vivo have
shown that TLR4 receptors have the ability to detect and
activate harmful and endogenous damage signals, subse-

quently causing kidney injury and fibrosis in DKD
patients [36, 76–78].

Furthermore, the presence of mitochondrial antiviral
signaling protein (MAVS) is crucial for maintaining gut
integrity and innate immunity. In one study, the gut integ-
rity of a DKD mouse model was impaired by MAVS gene
knockout, resulting in the detection of gut-derived Klebsiella
oxytoca, interleukin-17 (IL-17), and kidney injury molecule-
1 (KIM-1) in the circulation and kidney. The inhibition of
MAVS led to gut epithelial cell inflammation and conse-
quent renal injury [79].

3.3. Dysregulation of Gut Microbiota and Its Metabolites
Affects Both Innate Immunity and the Role of Glucose and
Lipid Metabolism in the Pathogenesis of DKD. In DKD, the
gut microbiome is disrupted, and the balance between good
and bad bacteria is altered. This imbalance then results in
the disruption of carbohydrate and lipid metabolism in the
body [12, 17].

The first aspect is primarily composed of the presence of
advanced glycation end products and their stimulation of
the expression of transforming growth factor β. This leads
to increased glycation of proteins, which causes damage to
renal tubular epithelial cells and local kidney damage [10].
On the other hand, the second aspect is mainly seen through
the occurrence of lipid peroxidation, inhibition of extracellu-
lar matrix degradation, infiltration of monocyte-
macrophages in the kidney, and the induction of glomerulo-
sclerosis and tubulointerstitial damage.

Increased carbonylation and glycation of proteins, one of
the main manifestations of allostatic load [80], disrupts the
structure and function of various proteins in DKD, leading
to cell dysfunction and organ damage. Proinflammatory
cytokines are glycosylated proteins with immunomodulatory
functions [36].

Research has shown that TLRs and NLRP3 inflamma-
somes can produce proinflammatory factors to mediate ster-
ile tubulointerstitial inflammatory response. The
bradykinin-releasing enzyme-bradykinin system can activate
bradykinin, and its receptors can lead to renal injury. The
kidneys were protected, and proteinuria was reduced upon
treatment with SCFAs. This effect is related with the ability
of SCFAs to inhibit glycosylated proteins [81]. Furthermore,
the enhanced expression of TLR2 contributes to the upregu-
lation of chemokine MCP1/CCL2 in both glomeruli and
tubular epithelium, potentially leading to impaired renal
function in individuals with diabetes [82].

3.4. Dysregulation of Gut Microbiota and Its Metabolites
Affects Both Innate Immunity and the Role of Oxidative
Stress in the Pathogenesis of DKD. The occurrence of DKD
is related to an asymmetry in the gut microbiota and disrup-
tions in lipid metabolism, resulting in decreased connective
protein expression [83]. Consequently, it causes heightened
gut permeability and translocation, ultimately impacting
DKD oxidative stress pathway via the innate immune sys-
tem, thereby contributing to disease progression.

As proficient stimulators of neutrophils, SCFAs elicit the
proliferation and migratory response of neutrophils,
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generating reactive oxygen species (ROS) to safeguard bene-
ficial bacteria. Concurrently, SCFAs impede NF-κB and fos-
ter the expansion of T cells [84, 85]. Moreover, SCFAs have
the ability to fortify the physical barrier via intestinal epithe-
lial cells, thus thwarting gut microbiota leakage [83].
Absence of GPR43 in colitis mice led to reduced colonic
neutrophil counts, in contrast to the wild-type colitis
mice [86].

Toxic metabolites build up in the systemic circulation
and trigger ROS through the NADPH pathway. This leads
to the activation of the NF-κB and causes inflammation,
resulting in proteinuria and damage to podocytes [87].
One specific factor contributing to oxidative stress is the
NLRP3 inflammasome complex, which is driven by ROS in
mitochondria and mitochondrial dysfunction. The activa-
tion of the NLRP3 inflammasome complex can stimulate
interleukin-18 (IL-18), thereby exacerbating kidney injury
in DKD [88, 89]. Inflammasome activation has been
observed in podocytes and endothelial cells, in the context
of hyperglycemia, obesity, and lipotoxicity [90–92]
(Figure 1).

4. The Role of Gut Microbiota and Its
Metabolites in the Development of Diabetic
Nephropathy by Affecting the Adaptive
Immune System

4.1. Composition of the Gut Microbiota in the Adaptive
Immune System. The arrangement of gut microbiota compo-
nents within the adaptive immune system primarily consists
of B cells, T cells, and a majority of metabolites. The primary
functions attributed to B cells involve their interaction with
gut antigens [93] and the prevention of gut antigens from
entering the bloodstream [94]. The equilibrium of gut
immunity heavily relies on CD4+ T cells that primarily
reside in the gut LP. These T cells can be classified as effector
or helper CD4+ T cells, among which helper T cells can be
further categorized into T-helper 1 (Th1), T-helper 17
(Th17) cells, and so forth [26]. Tregs can produce anti-
inflammatory cytokines like IL-10, which aids in reducing
MHC-II expression in monocyte-macrophages. Addition-
ally, Tregs can directly impede the proliferation of proin-
flammatory factors and suppress the production of
chemokines in DCs in an autocrine manner [95].

SCFAs inhibit inflammation through their interaction
with free fatty acid receptors and GPR complex signal trans-
duction [96–99]. Furthermore, the gut microbiota, including
Lactobacillus, Clostridium, Bifidobacterium, and Enterococ-
cus, plays a role in controlling bile acid synthesis [100] and
regulating adaptive immune suppression and inflammation
[101, 102]. By decomposing into indole and its derivatives,
tryptophan helps maintain gut immune homeostasis by reg-
ulating adaptive immunity. The accumulation of a uremic
toxin, trimethylamine n-oxide (TMAO), in the circulation
is linked to renal injury [103]. Additionally, polyamines are
essential in maintaining the epithelial barrier, promoting
intestinal epithelial cell persistence, and inhibiting inflam-
mation. Interestingly, the levels of phenyl sulfate (PS), a

derivative of L-tyrosine in the gut, linked to the development
of proteinuria in DKD.

4.2. Gut Microbiota and Its Metabolites Affect Both Adaptive
Immunity and the Role of Persistent Inflammatory Response
in Diabetic Nephropathy. Persistent inflammation in DKD
is closely related to an imbalance in Th/Treg cells. Research
indicates that the inflow rate of Tregs is associated with pro-
teinuria, as well as glomerular and tubular damage, ulti-
mately leading to fibrosis [104]. The gut microbiota, along
with its metabolites, can directly impact adaptive immunity’s
T and B cells while indirectly influencing other immune
cells, thereby contributing to the generation of persistent
inflammatory responses [104].

The gut’s Bacteroides fragilis plays a role in protecting
the kidneys through its systemic induction of Th1 responses
[105, 106]. DKD patients show increased concentration of
interferon-g (IFN-g), which is linked to the production of
interferon-γ (IFN-γ) and Th2, ultimately leading to the
development of DKD [107–109]. Additionally, Bacteroides
fragilis can enhance its colonization ability and increase IL-
10 secretion by increasing the induction of FOXP3+ Tregs
through octa capsular polysaccharide (PSA) [110–112]. This
process helps regulate the biased Th/Treg levels.

Polysaccharide A of Bacteroides, which is known for its
T cell-dependent properties and maintaining the gut barrier,
was reduced in the population with CKD [113]. PSA restores
the balance of Th1 and Th2 and inhibits renal inflammation
by stimulating regulatory T cells to secrete IL-10. Addition-
ally, Bacteroides play a role in the BAs and SCFAs, which
have been shown to slow the advancement of DKD
[114–116]. BAs, such as tauroursodeoxycholic acid
(TUDCA), exert their effects on the immunity by increasing
the bile acid receptor Gpbar1 (TGR5) and farnesoid X recep-
tor (FXR), thereby delaying the progression of DKD [117].

Promoting Th17 cells and enhancing the defense ability
of the intestinal mucosal surface, SFB has the potential to
reduce infection risk and safeguard kidney health [118].
The gut serves as the entry point for Tregs, which activate
to maintain a balance in effector cell activity by suppressing
inflammation and promoting immune tolerance [119, 120].
Research suggests that DKD patients exhibit decreased pro-
portions of Tregs in their peripheral blood. Furthermore, the
transfer of Tregs in diabetic mice has been found to effec-
tively ameliorate DKD [121]. Moreover, evidence indicates
that the colonization of mice by SFB triggers Th cell [122].
Specifically, T cells equipped with SFB-specific antigen
receptors differentiate into Th17 cells, which are responsible
for the production of cytokines [123, 124].

In the gut lumen, B cells have the capability to secrete
IgA (sIgA) [82, 125]. Alongside, the secretion of IgA is also
facilitated by TGF-β and IL-10 [93]. The primary function
of sIgA is to create a protective barrier for epithelial cells
against pathogens and aid in maintaining gut immune
homeostasis [94]. sIgA can control systemic adaptive T cell
responses through immune rejection and maintain gut
immune homeostasis against commensal bacteria [126, 127].

Gut immune responses are facilitated by gut macro-
phages [64, 127]. Recent research has demonstrated that
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mice with F4/80 gene knockout exhibit an inability to
develop tolerance or reduce antigen-specific CD8+ Tregs
and gut macrophages upon ingestion of soluble antigens
[128]. Neutrophils play a role in decomposing bacteria and
cellular fragments in the gut [129]. Gut DCs transport anti-
gens from gut bacteria to the mesenteric lymph nodes
(MLN) [130–132]. These DCs are generally less responsive
under normal conditions, which helps maintain gut immune
tolerance and diminish inflammation. They accomplish this
by promoting the development of T cell that tolerate com-
mensal bacteria and food antigens [60, 133]. Similarly, gut
macrophages, like DCs, express low CD86, CD80, and
CD40 levels [61, 134, 135]. Additionally, they increase IL-
10, thereby reducing inflammation [62, 63].

Uremic toxins have a significant role in the progression
of CKD [136]. The inhibition of HDAC activity by SCFAs
has implications for different immune system cells [96]. Spe-
cifically, it can promote the differentiation of T cells into
effector and contribute to the inflammatory response of
DKD while also providing protection to the kidneys [137].
Tryptophan, another metabolite produced by gut microbi-
ota, has various effects on gut immune cells and epithelial
cells [138, 139]. It can produce inflammatory factors and
hinder the development of Th17 cells [140]. The conversion
of tryptophan precursors into ligands for the aryl hydrocar-
bon receptor (AHR) [141, 142] is facilitated by lactic acid
bacteria and bifidobacteria [142]. These ligands then bind
to the AHR, leading to the translocation of the receptor into
the nucleus. Through this mechanism, the AHR regulates
IL-22 and IL-17, resulting in functional changes and patho-
logical alterations in diabetic mice [143–145]. Moreover, the
activation of innate lymphoid cells (ILCs) and T cells, along
with the production of IL-17 and IL-22, has been observed
[138]. Of note is IL-22 against the colonization of pathogenic

microbiota [146]. Research has shown that mice deficient in
AHR or AHR ligands exhibit alterations in the composition
of gut microbiota. AHR-deficient mice have lower levels of
ILCs and IL-22 [147, 148]. These research indicate a rela-
tionship between AHR activity and gut microbiota metabo-
lism in DKD [146, 149, 150]. Another investigation
discovered that the production of compounds derived from
indole by Lactobacillus reuteri might stimulate the conver-
sion of CD4+ T cells within the gut epithelium into CD4+
CD8+ double-positive intraepithelial lymphocytes. This
transformation is beneficial for maintaining the immune
balance within the intestines [151]. The presence of poly-
amines can modify T cells by rising the expression of con-
nexin and promoting the secretion of mucus, thus
regulating the levels of inflammatory substances. Following
the administration of PS, the foot processes vanished, podo-
cytes suffered damage, the glomerular basement membrane
thickened, and there was a rise in the mRNA levels of mono-
cyte chemoattractant protein-1 (MCP-1) and fibronectin 1
(Fn1) in kidney tissue. In diabetic patients, the levels of
inflammation and renal fibrosis were exacerbated [152].

4.3. Gut Microbiota and Its Metabolites Affect Both Adaptive
Immunity and the Role of Glucose and Lipid Metabolism in
the Pathogenesis of Diabetic Nephropathy. In hyperglycemia
and hypercholesterolemia, DKD leads to an imbalance of
gut microbiota, and it will further activate the adaptive
immune system, resulting in renal inflammation [18].
Simultaneously, excessive lipid accumulation reduces
SCFAs, inhibiting insulin sensitivity and causing renal
injury [19].

Increased carbonylation and glycation of proteins, such
as thrombin in the body, can activate receptors by activating
proteases in kidney cells and recognize glycated proteins
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and/or glycated complement regulatory protein dysfunction
through mannan-binding lectins, lead to activation of com-
plement cascade [36], and promote renal inflammation
and renal fibrosis in DKD. Meanwhile, the dysfunction of
glycated albumin can cause renal injury and fibrosis by
upregulating TGF-β [153].

4.4. Gut Microbiota and Its Metabolites Affect Both Adaptive
Immunity and the Role of Oxidative Stress in the
Pathogenesis of Diabetic Nephropathy. When renal function
declines, toxic levels of TMAO [154–156] accumulate in
the circulation due to the stimulation of glomerular and
tubular damage by uremic toxins, promoting oxidative stress
[103]. Mice were fed with TMAO or its precursor choline,
resulting in renal tubular damage and renal fibrosis induc-
tion [157]. Additionally, TMAO has been shown to aggra-
vate renal fibrosis by impacting the secretion of IL-1β and
IL-18 through the inflammasome channel NLRP3 [15].
Sun et al. also discovered that 3,3-dimethyl-1-butanol pre-
vented high-fat diet-induced renal fibrosis [158] (Figure 2).

5. The Role of Gut Microecological
Interventions in Retarding the
Progression of DKD

DKD is impacted by disturbances in gut microbiota, which
result in elevated levels of metabolites linked to gut micro-
bial activity and compromised integrity of the gut barrier.
Consequently, a sustained state of systemic inflammation
arises, accompanied by weakened immune function. Hence,
potential treatments for DKD are modulation of gut micro-
biota as well as improvement of the immune system
(Figure 3).

5.1. Dietary Interventions. Dietary interventions are the most
effective influences among the exogenous factors affecting
gut microbiota [159, 160]. According to existing studies, it
is evident that the progress and onset of DKD can be altered
through sensible dietary interventions due to the strong cor-
relation between diabetes development and nutritional
habits [161].

5.1.1. Dietary Fiber (DF). DF primarily consists of nonstarch
polysaccharides [162]. The inclusion of dietary fiber deceler-
ates the renal dysfunctions through the release of SCFAs and
the reduction of inflammation in DKD. Previous research
[12] demonstrated that when resistant starch and high fiber
diets supplemented with guar gum and cellulose were
administered to diabetic mice, there was an expansion
observed in SCFA-producing Prevotella and Bifidobacter-
ium genera, resulting in elevated SCFA levels and a decrease
in pathological Bifidobacterium and CD68+ cells. Moreover,
mice in the RS group exhibited a decrease in urinary albu-
min/creatinine, albuminuria, and mRNA expression of
inflammatory cytokines and fibrosis-related genes. Dietary
fiber has a protective and ameliorative role in DKD by mod-
ulating gut microbiota’s production of SCFAs and regulating
crucial pathways associated with innate immunity, inflam-
mation, and macrophage recruitment.

5.1.2. High Linoleic Acid (LA) Diet. LA is a typical polyunsat-
urated fatty acid (PUFA) in plant-derived oils, mainly
derived from vegetable oils and nuts in the diet [163]. A diet
high in linoleic acid is typical of the Mediterranean diet, and
previous studies have suggested that in patients with DKD,
adopting the Mediterranean diet could potentially present
a lifestyle approach that effectively postpones kidney deteri-
oration [164, 165]. A study conducted on 366 patients as
part of a clinical trial revealed that an enhanced intake of
polyunsaturated fatty acids had a notable association with
a decreased preponderance of DKD [166]. Animal experi-
ments also supported these findings, wherein rats induced
with T2DM through STZ and NA were administered a poly-
unsaturated fatty acid-rich diet. The diet effectively reversed
the rise in the ratio of Bacteroides to Firmicutes within gut
tract and also decreased IL-6, IL-1β, TNF-α, and IL-17A
[167]. This suggests that a diet rich in linoleic acid can
potentially regulate intestinal flora, leading to a delay in
the progression of DKD and proposing it as a significant die-
tary intervention for DKD patients.

5.1.3. Cereals. Cereals, which are extensively cultivated food
crops across various regions globally, have demonstrated to
alleviate inflammatory components [168]. It has been high-
lighted in a research investigation that cereals could poten-
tially safeguard against high-intensity inflammation and
morphological deviations in DKD [169]. This protection
mechanism is achieved through the facilitation of SCFA
release and the restoration of gut microbiota, consequently
restraining the excessive expression of MCP-1 and TNF-α.

5.1.4. Astaxanthin (AST). AST is a naturally occurring keto-
carotenoid present in many microalgae. It exhibited numer-
ous activities both in laboratory settings and in living
organisms [170]. Studies have indicated that when mice with
diabetes were exposed to a high-fat diet, either with 01.0%
(AST) or 02.12% (AST) for a period of one week, the addi-
tion of AST effectively delayed the progression of kidney
damage by inhibiting LPS, TMAO, and IL-1 and by modu-
lating the NF-κB signaling pathway, in comparison to the
DKD group. Furthermore, including AST as part of the diet
leads to gut microbiota composition changes. This is sup-
ported by the decrease in bacteria like Coriobacteriaceae
UCG-002 and the increase in probiotics Ruminococcaceae
[171]. AST supplements might lead to ameliorate kidney
injury associated with DKD by promoting a healthier intes-
tinal flora and subsequently influencing immune factors.

5.2. Probiotics, Prebiotics, and Synbiotics (PPS). Synbiotics
include probiotics, live microorganisms beneficial to the host
in specific quantities, including Lactobacillus and Bifidobac-
terium, and prebiotics, substrates selectively used by host
microorganisms [172, 173].

Studies have shown that synbiotics slow the progression
of kidney damage in DKD patients by correcting gut micro-
biota balance, modulating the host immune response, reduc-
ing proinflammatory factors, and improving inflammation
[10, 174]. Dai et al. [175] showed that moutan cortex poly-
saccharide ameliorates (MC-Pa) increased Lactobacillus,
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increasing SCFAs and improving serum IL-6. It alleviated
the structural abnormalities of tubules in DKD rats.

5.3. Metabolic Regulation

5.3.1. SCFAs. The effect of SCFAs on DKD has been studied,
and it has been found that SCFAs can help regulate inflam-
mation in DKD [176]. Researchers have shown that SCFA
supplementation can alleviate renal inflammation in DKD
by acting on the immune response process [177]. In partic-
ular, butyrate, a type of SCFA, has been found to have
immunomodulatory effects [37]. It can also modulate the
intestinal barrier and regulate insulin sensitivity. In a study,
exogenous butyrate was found to significantly reduce NF-κB
and MCP-1 and IL-1β, which are markers of inflammation,
through a GPR43-β-arrestin-2 mechanism. This study also
showed that butyrate restored inflammatory injury in the
kidneys [178–180]. Another study applied sodium-butyrate

to DKD mice and indicated that it reduced TGF-β, Fn, IL-
6, and MCP-1, thus improving DKD by inhibiting renal
inflammation [181, 182]. Furthermore, research has shown
that butyrate supplementation can decrease kidney fibrosis
by mediating the TGF-β1 pathway [183]. Overall, these find-
ings suggest that exogenous SCFAs, particularly butyrate,
have the potential to prevent and treat DKD by inhibiting
renal inflammation and fibrosis gene expression.

5.3.2. BAs. Gut microbiota in the gut convert primary BAs
into secondary BAs [184, 185]. This conversion process
was demonstrated in a study, where tauroursodeoxycholic
acid (TUDCA) had a beneficial effect on db/db and STZ-
induced DKD mice. Specifically, TUDCA attenuated the
expression of IL-6, TNF-α, and collagen 1 α 2. The mecha-
nism of action involved targeting FXR or TGR5 pathways,
leading to the improvement of glomerular and tubular injury
[13]. Importantly, TGR5 has been found to decrease renal
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inflammation by inhibiting the NF-κB signaling [117]. This
suggests that exogenous BAs could be therapeutic agents in
DKD.

5.3.3. Branched-Chain Amino Acids (BCAAs). BCAAs are
composed of leucine, valine, and isoleucine [186]. It has
been demonstrated that BCAAs possess the ability to hinder
the expression of TGF-β in order to mitigate the damage
caused by diabetic kidney injury [14]. A study recently found
that administering high quantities of BCAAs prevented kid-
ney weight in mice with DKD, additionally, moderate
amounts of BCAAs led to a reduction in TGF-β mRNA
and mitigated oxidative stress by activating the TGF-β path-
way, thereby lessening the severity of DKD kidney injury.
Furthermore, providing oral supplementation of BCAAs to
individuals may also enhance their appetite and overall
nutritional status [187].

5.3.4. TMAO. TMAO is a group of metabolites that form
when trimethylamine (TMA) is oxidized through the metab-
olism of gut microbiota [188]. According to research,
TMAO promotes inflammation in the kidneys, ultimately
leading to interstitial dysfunction [189]. A study found that
the intake of TMAO at 0.2% (w/v) resulted in higher kidney
index and urinary protein in DKD rats induced by 35mg/kg
STZ compared to the DKD group without TMAO intake.
Furthermore, the TMAO group also exhibited a significant
increment IL-18 and IL-1β, which further intensified kidney
inflammation [15]. Therefore, it can be inferred that elevated
levels of TMAO may exacerbate DKD.

5.4. Fecal Microbial Transplantation (FMT). FMT alters the
gut microbial composition of patients with DKD by applying
fecal solutions from healthy donors [190]. It has been shown
[191] that FMT can slow down the process of kidney injury
in DKD by rebuilding abnormal gut microbial ecology. It
was shown that FMT leads to increase in Odoribacter spp.
In the black and tan brachyury ob/ob mouse model of
DKD, there is a decrease in urine albumin-creatinine ratio
(UACR) and TNF-α and an improvement in the tendency
of insulin resistance [192]. Cai et al. used resveratrol-
treated db/db mice as FMT donors. They showed a reduc-
tion in the proportion of thick-walled Enterobacteria and
Ferribacterium as well as an increase Proteobacteria and
abundance of Odoribacter spp. and Bacteroides, as well as
urinary albumin excretion rates (UAER), serum creatinine,
and kidney inflammatory factor level reduction, suggesting
that the reduction of inflammation is a key mechanism by
which FMT protects renal function in DKD [193].

5.5. Natural Drugs. Extensive research findings indicate that
the utilization of natural medications exhibits a positive
impact on the management of DKD by restraining inflam-
mation and oxidative stress. In addition, these drugs help
modulate the gut microbiota and related metabolic processes
[194, 195].

5.5.1. Chinese Herbal Monomers and Their Extracts

(1) Bupleurum Polysaccharides (BP). Bupleurum, a perennial
herb from Umbelliferae, yields a polysaccharide known as
BP. According to studies, BPs may act by interrupting high
mobility group box-1 protein-TLR4 [196]. This disease

Table 1: Experimental study of natural drugs on gut microbiota in DKD.

Ingredient Source
Moulding
method

Effect on gut microbiota Action mechanism
Related
literature

Bupleurum
polysaccharides
(BP)

Bupleurum
STZ

(1mg/kg)

Reverse the decrease of Bacteroides
abundance and the increase of

Proteobacteria and Ferribacterium
abundance.

Inhibit TLR1 levels, reduce TNF-α and IL-6
levels in the kidney, and improve intestinal

barrier.
[189]

Cordyceps
cicadae
polysaccharides
(CCP)

Cordyceps
sinensis

STZ
(0.1mg/
kg)

Increase the abundance of
Lactobacillus and Bacteroidetes,
decrease Proteobacteria and

Deferribacteres.

Block TLR4/NF-κB and TGF-β1 signaling
pathways, decrease the concentrations of

serum TNF-α, IL-1β, and IL-6.
[35]

Cornus Cornus
STZ

(35mg/
kg)

Increase the abundance of gut
lactobacilli and increase SCFA

content.
Reduce inflammatory infiltration. [190]

Ginsenoside
compound K

Ginseng
db/db
mice

Decrease the level of Bacteroides
and increase the level of

Lactobacillus.

Reverse the upregulation of TGF-β1
expression, inhibit NF-κB, decrease the

expression of IL-6 and IL-1β, and
downregulate the expression of the IMP-

induced TLR4 signaling pathway.

[191]

Magnesium
lithospermate B
(MLB)

Salvia
miltiorrhiza

STZ
(40mg/
kg)

Reduce the abundance of Shigella
and Aspergillus species.

Regulate BA metabolism, restore intestinal
barrier integrity, and inhibit inflammatory

cell release.
[192]

Resveratrol
Polygonum
cuspidatum,
mulberry

db/db
mice

Restore the proportion of
Firmicutes/Bacteroides.

Reduce the kidney mRNA levels of TNF-α,
IFN-γ, IL-6, and IL-1β.

[217]
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suppresses renal inflammation and fibrosis processes [197].
In STZ-induced DKD mice, BP has the potential to reverse
the reduction in Bacteroidetes abundance and the increase
in Proteobacteria and Ferribacterium abundance. In addi-
tion, studies indicate that BP can lower TLR1 levels. In doing
so, it reduces the inflammatory response, repairs the intesti-
nal barrier to reduce LPS content, and ultimately addresses
glomerular hypertrophy and glomerular hyperplasia. More-
over, BP also shows promise in reducing urinary albumin
in diabetic mice [198]. Given these findings, BP holds the
potential to enhance DKD by modulating the gut microbiota
in the kidney.

(2) Cordyceps cicadae Polysaccharides (CCP). CCP, the pri-
mary active compound found in the parasitic medicinal fun-
gus Cordyceps sinensis, has garnered attention for its
therapeutic potential in the treatment of diabetes [199].
Multiple studies have underscored CCP treatment’s ability
to demonstrate hypoglycemic properties, thereby reducing
tissue damage typically associated with diabetes. Further-
more, CCP administration has exhibited notable changes
in the ratio of Firmicutes/Bacteroidetes, including increased
copiousness of Odoribacter, Bacteroides, Alloprevotella,
Mucispirillum, and Parabacteroides while the populations
of Lactobacillus and Helicobacter have shown significant
decrease [200]. In rats with streptozotocin-induced DKD,
CCP supplementation has proven effective in mitigating
renal fibrosis by upgrading the maturation of Bacteroidetes
and Lactobacillus communities while reducing the presence
of LPS-producing bacteria. These effects are attributed to
CCP’s regulatory impact on gut microbiota dysbiosis by
inhibiting TLR4. In turn, this regulation leads to lowered
serum engrossment of TNF-α, resulting in significant
improvements in 24-hour urine volume and Scr levels. The
positive impact of CCP on renal inflammation in DKD rats
is further evidenced by the amelioration of collagen fiber
accumulation in the glomerular mesangial area, lipid accu-
mulation in kidney tissue samples, and the thickening and
widening of the kidney tubular basement membrane [35].

(3) Cornus. Cornus, a deciduous perennial tree or shrub,
exhibits antifibrotic effects in DKD by inhibiting TGF-β
and hypoxia-inducible factor-1 (HIF-1) signaling pathways,
as determined through network pharmacological analysis
[201, 202]. The efficacy of Cornus in reducing glomeruli
nodular sclerosis and kidney interstitial edema in STZ-
induced DKD rats, along with its ability to decrease TGF-β
and enhance abundance of gut lactobacilli to elevate SCFA
content, suggests that it can be used to treat DKD by restor-
ing gut microbiota’s abundance, increasing SCFA levels, and
diminishing inflammatory infiltration [203].

(4) Ginsenoside Compound K (CK). Ginsenoside, the pri-
mary extract derived from ginseng, which is a perennial
plant belonging to the Wujia family, is a steroidal compound
[204]. One of the major metabolites of ginseng is known as
ginsenoside compound K. Research conducted in the past
has illustrated the favorable impacts of CK on DKD, effec-
tively alleviating glomerular injuries [205]. Moreover, it has

been found that CK supplementation of a diet containing
0.03% dosage significantly reduces proteinuria, glomerular
dilatation, glomerulosclerosis, and inflammatory infiltration.
This reduction is achieved by diminishing the level of Bac-
teroides and increasing Lactobacillus levels. Furthermore,
TGF-β1 expression in the kidney is reversed, effectively inhi-
biting NF-κB and subsequently decreasing IL-6 and IL-1β
levels. Lastly, decreased serum imidazole propionate (IMP)
will guide the downregulation of protein expression induced
by IMP [206].

(5) Magnesium Lithospermate B (MLB). MLB is a constitu-
ent found in water extracts of Salvia miltiorrhiza, a perennial
herb belonging to the Sage genus in the Labiatae family
[207]. Experimental investigations indicate that MLB can
mitigate kidney injury caused by STZ-induced DKD in mice
by inflecting the composition of gut microbiota derived from
it [208]. The oral administration of MLB effectively sup-
pressed the unfreezed of inflammatory cells caused by BA
and resulted in a decrease in urinary albumin levels over a
24-hour period in rats with STZ-induced DKD, thus slowing
down the progression of kidney injury. Moreover, MLB
intervention significantly reduced the abundance of Shigella
and Aspergillus species, as well as the level of BAs in the
feces of the rats [209].

(6) Resveratrol. Resveratrol is a class of polyphenolic com-
pounds of distyrene, which are widely found in various Chi-
nese herbs, such as Polygonum cuspidatum and mulberry,
and is a natural therapeutic products for the treatment of
T2DM [210]. Previous network pharmacological studies
have depicted that resveratrol is an efficacious drug in
DKD [211]. Research has demonstrated that administering
resveratrol orally in mice can rectify the Firmicutes/Bacter-
oides ratio and diminish levels of inflammatory factors,
serum creatinine, blood urea nitrogen, and urinary 24-hour
microalbuminuria in db/db mice. [193]

5.5.2. Chinese Herbal Compound

(1) Qing-Re-Xiao-Zheng Formula (QRXZF). QRXZF is a tra-
ditional Chinese medicine (TCM) prescription. Gao et al.
showed that QRXZF (2 g/ml) reversed the increases in
UACR and improved thylakoid matrix expansion and tubu-
lointerstitial injury in STZ-induced DKD mice, which may
be related to the fact that QRXZF reversed the increase in
Desulfovibrionaceae and Desulfovibrio in DKD mice,
reduced gut-derived LPS in the blood, and inhibited inflam-
matory signaling pathway [212]. In their study, Shen et al.
demonstrated the potential of Salvia miltiorrhiza and
Astragalus membranaceus in enhancing DKD. The predom-
inant bacteria involved in glycolipid metabolism were iden-
tified as Lactobacillus murinus and Akkermansia
muciniphila [213].

(2) Shenyan Kangfu Tablet (SYKFT). SYKFT comprises a
combination of thirteen Chinese herbal medicines, namely,
Panax quinquefolius, Panax ginseng, Rehmannia glutinosa,
Eucommia ulmoides, Dioscorea oppositifolia, Salvia
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miltiorrhiza, Leonurus artemisia, Smilax glabra, Oldenlandia
diffusa, Glycine max, Imperata cylindrica, Alisma plantago-
aquatica, and Platycodon grandiflorus. Chen et al.’s research
indicates that SYKFT led to a reduction in TNF-α levels in
the kidneys, along with an improvement in gut microbiota.
Specifically, SYKFT increased the presence of Firmicutes
while decreasing Bacteroidetes, resulting in the alleviation
of kidney insufficiency and kidney inflammation in db/db
model DKD mice [214]. CK, a component of Panax ginseng,
reshaped the microbiota exhibiting potential in combating
inflammation associated with DKD [206].

(3) Tangshen Formula (TSF). The TSF was obtained from a
combination of 7 different herbs. The ratio of these herbs
used in the extraction was 10 : 5 : 4 : 3.4 : 3 : 2 : 1 (W/W). Pre-
vious studies by Zhao et al. have designated that TSF can
increase the presence of bifidobacteria, while also stamping
the release of intestinal-derived inflammatory substances
(IS) and LPS. In addition, TSF was found to suppress the
TLR4/c-Jun N-terminal kinase (JNK) and NF-κB signaling
pathways in the kidneys. This suppression resulted in a
decrease in microalbuminuria and serum creatinine levels,
as well as the inhibition of moderate expansion of the kidney
thylakoid matrix, luminal dilatation, and tubular intersti-
tium of rats with DKD induced by STZ and uninephrectomy
[215]. Furthermore, a purified preparation of
anthraquinone-glycosides derived from rhubarb, which are
monomeric compounds found in rhubarb, has been shown
to reduce inflammation in individuals with DM [216]
(Table 1).

6. Summary and Prospects

The correlation between DKD and the microbiota residing
in the gastrointestinal tract, along with its metabolic bypro-
ducts and their interaction with the innate and adaptive
immune systems, has progressively been elucidated. This is
closely related to the allostatic load and immune imbalance
caused by gut microbiota translocation and dysregulation
between gut microbiota and DKD. However, current
research still needs to clarify the role of certain bacterial
strains such as Bacteroidetes, Firmicutes, Fusobacteriota,
and Actinobacteriota, especially the role of the abundance
of Bacteroides and Firmicutes in DKD inflammation and
intestinal barrier permeability. In addition, natural drugs
have significant advantages in treating DKD, and existing
studies lack the immune mechanism between herbal com-
pounds and gut microbiota, which will become a future
research direction for DKD prevention and treatment.

Additional Points

Highlight. The connection between the allostatic load of
DKD and gut microecology is robust, involving immunity.
By influencing the immune system, the regulation of gut
microbiota has the potential to enhance DKD renal inflam-
mation, fibrotic damage, and proteinuria levels. In the treat-
ment of DKD, targeted interventions utilizing herbal
monomers and combinations, alongside interactions involv-

ing the host immune system and gut microbiota, play a cru-
cial role.
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