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Optical coherence tomography angiography (OCTA) is an innovative and reliable technique detecting the early preclinical retinal
vascular change in patients with diabetes. We have designed our study to evaluate whether an independent relationship exists
between continuous glucose monitoring (CGM)-derived glucose metrics and OCTA parameters in young adult patients with
type 1 diabetes without diabetic retinopathy (DR). Inclusion criteria were age ≥ 18 years, diagnosis of type 1 diabetes from ≥ 1
year, stable insulin treatment in the last three months, use of real-time CGM, and CGM wear time ≥ 70%. Each patient
underwent dilated slit lamp fundus biomicroscopy to exclude the presence of DR. A skilled operator performed OCTA scans
in the morning to avoid possible diurnal variation. CGM-derived glucose metrics from the last 2 weeks were collected through
the dedicated software during OCTA. Forty-nine patients with type 1 diabetes (age 29 [18; 39] years, HbA1c 7:7 ± 1:0%) and
34 control subjects participated in the study. Vessel density (VD) of the whole image and parafoveal retina in the superficial
(SCP) and deep capillary plexus (DCP) was significantly lower in patients with type 1 diabetes compared to controls. The
coefficient of variation of average daily glucose, evaluated by CGM, significantly correlated with foveal and parafoveal VD in
SCP and with foveal VD in DCP. High glucose variability might be responsible for the early increase of VD in these areas.
Prospective studies may help understand if this pattern precedes DR. The difference we detected between patients with and
without diabetes confirms that OCTA is a reliable tool for detecting early retinal abnormalities.

1. Introduction

Optical coherence tomography angiography (OCTA) is an
innovative and reliable technique providing rapid and nonin-
vasive images of the retinal and choroidal vasculature and
structure. Specifically, OCTA allows the evaluation of the
superficial capillary plexus (SCP) slab, which is the capillary
network embedded in the ganglion cell layer and/or the nerve

fiber layer; the deep capillary plexus (DCP) slab that consists
of the capillary network in the inner nuclear layer; and the
choriocapillaris slab. The OCTA has recently been introduced
as an additional modality detecting the early preclinical retinal
vascular change in patients with diabetes. This innovative
technique details vascular morphology, such as branching,
tortuosity, and vascular density [1–3]. The OCTA features
are closely consistent with histology and correlate with other
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in vivo imaging [4–6]. Vascular abnormalities detected by
OCTA have been associated with the early treatment diabetic
retinopathy study (ETDRS) severity scale, both in proliferative
and nonproliferative diabetic retinopathy (DR). For example,
patients withmild nonproliferative DR havemild loss of vessel
density (VD).

In contrast, those with moderate and severe nonproli-
ferative DR have a more marked loss of VD, abnormal vessel
caliber, and areas of capillary nonperfusion [7, 8]. Of note,
OCTA abnormalities, including enlargement of the foveal
avascular zone (FAZ), loss of VD, and impairment of the
choriocapillaris flow, may occur even in the absence of the
typical signs of DR [3, 8–10]. The relationship between indi-
ces of glycemic control, such as fasting blood glucose, gly-
cated hemoglobin (HbA1c), and VD, is controversial.
Indeed, some studies found a significant inverse correlation,
and others did not find any association [10–14]. Conversely,
hyperlipidemia, smoking, renal impairment, and systolic
blood pressure are predictors of VD loss [10, 15].

Following the advent of continuous glucose monitoring
(CGM), new indices of glucose control and variability
(GV) have entered the clinical practice, including time spent
in the target range (TIR), time spent below the target range
(TBR), time spent above the target range (TAR), 24-hour
average glucose, glucose management indicator (GMI), coef-
ficient of variation (CV), and standard deviation (SD) of
average glucose. The suggested target glucose range is 70-
180mg/dL, and the optimal percentage of time to spend in
the target range is ≥70%. GV refers to any fluctuation in
blood glucose levels; the preferred metric to assess GV is
the CV, which should not exceed 36% [16]. The interest in
CGM as a possible standard tool to evaluate glycemic con-
trol in clinical research is growing. Indeed, the new indices,
unlike HbA1c, give information on the burden of hypergly-
cemia, hypoglycemia, and GV, which can be considered pos-
sible markers and predictors of diabetes complications.

To our knowledge, only one paper by Pilotto et al. eval-
uated the association between retinal changes detected by
OCTA and CGM-derived glucose metrics. In a cohort of
adolescents with type 1 diabetes, with or without DR, the
authors found that vascular density in the intermediate cap-
illary plexus is inversely related to average glucose and SD
and directly related to TIR [17].

Given the ability of OCTA to find early retinal abnor-
malities in subjects with type 1 diabetes, we have designed
our study to evaluate if an independent relationship between
CGM-derived glucose metrics and OCTA parameters exists
in young adult patients with type 1 diabetes without DR.

2. Methods

2.1. Study Design and Patients. The current research is a
cross-sectional study enrolling consecutive patients with
type 1 diabetes, regularly attending the diabetes care center
at the Magna Graecia University teaching hospital, Catan-
zaro. The local ethical committee was informed about the
aim of the research, which was conducted according to the
principles of good clinical practice. Patients who met the
inclusion and exclusion criteria and gave informed consent

were enrolled in the study. Inclusion criteria were age ≥ 18
years, diagnosis of type 1 diabetes for at least one year, stable
insulin treatment, defined as no change > 20% of insulin
total daily dose in the last three months, use of real-time
CGM, and CGM wear time ≥ 70% [18]. Exclusion criteria
were the presence of any retinal abnormality related to dia-
betes, laser photocoagulation, other nondiabetic retinal dis-
eases (including retinal vascular diseases, vitreoretinal
diseases, history of central serous retinopathy, or macular
dystrophies), ocular media opacity, any previous eye surgical
intervention, poor quality of images automatically detected
by the instrument including artifact, inaccurate or incorrect
segmentation at the level of the SCP and DCP, subject’s
inability to abstain from blinking or movement during
image acquisition, overt diabetic complications (nephropa-
thy, neuropathy, cardiovascular diseases), and other severe
comorbidities. A blood sample was taken in all patients with
diabetes to measure HbA1c by high-performance-liquid-
chromatography (HPLC) aligned with the Diabetes Control
and Complications Trial (DCCT) standard. Clinical data
were collected from electronic medical records. The dilated
slit lamp fundus biomicroscopy was performed after eligible
patients gave informed consent to evaluate the exclusion cri-
teria. A control group comparable for sex and age was also
enrolled among medical students and medical staff to assess
if OCTA variables differed between patients with diabetes
and controls without diabetes.

2.2. Fundoscopy and OCTA. Each patient underwent dilated
slit lamp fundus biomicroscopy before OCTA to evaluate the
presence of DR. A skilled operator performed OCTA scans
in the morning to avoid possible diurnal variation. OCTA
was conducted using XR Avanti AngioVue OCTA (Optovue,
Fremont, California, USA). This system uses a split-
spectrum amplitude-decorrelation angiography (SSADA)
algorithm and operates at 70,000 A-scans per second using
a light source of 840nm. SSADA detects variations in
reflected OCT signal amplitudes between two consecutive
scans [19, 20]. Decorrelation is a mathematical function that
quantifies this variation. SSADA splits the OCT signal into
different spectral bands, thus increasing the number of
usable image frames, in which each undergoes a decorrela-
tion analysis [19, 20]. Blood flowing through vessels causes
a change in reflectance over time and results in localized
areas of flow decorrelation between frames. Each scan con-
sisted of 304 × 304 A-scans with two consecutive B-scans
at each fixed position. Each scan consisted of one orthogonal
horizontal and vertical scan to reduce motion artifacts [19,
20].

We performed OCTA 3 × 3mm scanning area focused
on the fovea centralis. The instrument software automati-
cally segmented OCTA scans into four enface slabs: the
SCP, the DCP, the outer retinal plexus, and the choriocapil-
laris plexus. The software detected the perfused vessel struc-
tures within an inner offset at −3 to −15μm from the inner
limiting membrane (ILM) for the evaluation of SCP and
within an inner offset at −15 to −70μm from the ILM for
the DCP. The instrument software automatically analyzes
SCP and DCP VD in the whole image, foveal, and parafoveal
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zone. VD was defined as the percentage of blood flow signal
within a designated area. Foveal zone VD was defined as the
area with a diameter of 1mm; parafoveal zone VD was
defined as the area with a diameter of 3mm. In this study,
we focused on SCP and DCP plexuses and collected for each
patient SCP and DCP VD of the whole image, foveal, and
parafoveal zone expressed in mm2 in the retina plexus.
Structural OCT was performed using RTVue OCT (Optovue
Inc., Fremont, CA, USA), a high-speed and high-resolution
OCT device with a central wavelength of 840nm and a scan
rate of 26,000 A-scans/s and axial resolution of 5μm. We
used the three-dimensional macular scan protocol set to 7
× 7mm containing 101 horizontal line scans, each consist-
ing of 513 A-scans, to automatically calculate central retinal
thickness (CRT) and parafoveal thickness (PFT).

2.3. CGM-Derived Glucose Metrics. Glucometric parameters
(TIR, TBR, TAR, 24-hour average glucose, CV) of the last
2 weeks were collected through the dedicated software at
the time of the OCTA. TIR was defined as the percentage
of the time spent in the 70-180mg/dL glucose range, TBR
< 70mg/dL, and TAR > 180mg/dL. We also collected the
time spent below 54mg/dL [16].

2.4. Statistical Analyses. Normality within glucometric and
retinal parameters was visually assessed by means of a
quantile-quantile plot. Normally distributed data were
described according to mean and SD, while median and
quartiles were addressed in not normally distributed data.
Absolute and relative frequencies were addressed with cate-
gorical variables. Univariate inferential analyses within the
two study groups were performed in normal or not normal
variables by the t-test or the Mann–Whitney U test. Propor-
tion tests were issued to assess differences between frequen-
cies. In all instances, a significance level of alpha 0.05 was
assumed. Descriptive and univariate inferential analyses
have been done using the free software JASP (JASP Team,
2021). Possible relations between glucometric and retinal
parameters were explored by means of linear mixed-effects
models, as implemented in the "lme4" package [21] of the
R [22] software.

3. Results

Forty-nine consecutive patients with type 1 diabetes and 34
healthy control subjects participated in the study. Clinical
characteristics and glucometric parameters of patients with
type 1 diabetes are displayed in Table 1. The sample con-
sisted of young adults with suboptimal glucose control.

Table 2 shows the OCTA measurements in patients with
diabetes and control subjects. As shown, SCP and DCP VD
of the whole image and parafoveal retina were significantly
lower in patients than in controls. The difference persisted
after the exclusion of smokers and subjects with hyperten-
sion and/or hyperlipidemia. At the same time, no differences
were observed for the foveal VD in both plexuses between
the two groups.

Linear mixed-effects multiple regression analysis was
performed between glucometric and retinal parameters of

patients with type 1 diabetes, adjusted for age and disease
duration, modeling the clustered measurements of the two
eyes within each patient as a nested random effect.

None of the OCTA parameters appeared to be signifi-
cantly correlated to the glucometric parameters except CV,
which was directly correlated with foveal VD in SCP
(t = 2:126; p = 0:04) (Table 3).

We performed the linear mixed-effects multiple regres-
sion analysis again after the exclusion of smokers and
patients with hypertension or hyperlipidemia. The results
are illustrated in Table 4. We found a direct and significant
correlation between CV, VD (whole, foveal, and parafoveal)
in SCP, and foveal VD in DCP.

Table 1: Clinical characteristics and CGM-derived glucose metrics
of the enrolled patients.

Variable Type 1 diabetes (N = 49)
Age, years 27 [25; 36]

Male sex, N (%) 23 (47%)

Disease duration, years 13 [9; 40]

HbA1c, % 7:7 ± 1:0
Hypertension, N (%) 5 (10)

Hyperlipidemia, N (%) 2 (4)

Smoke habit, N (%) 2 (4)

TIR, % 61 [21; 74]

TBR, % 2 [6; 33]

TAR, % 37 [26; 77]

Time below 54mg/dL, % 0 [0; 4]

CV, % 40 ± 30

Average glucose, mg/dL 165 ± 29

HbA1c: glycated hemoglobin; TIR: time in range; TBR: time below range;
TAR: time above range. Data are expressed as median (interquartile
range), mean ± standard deviation, and prevalence.

Table 2: OCTA parameters measured in patients with type 1
diabetes and control subjects.

Parameters
Type 1 diabetes

(N = 49)
Control subjects

(N = 34)
P

value

Eyes (N) 98 68 —

SCP VD (mm2)

Whole image 43:8 ± 0:4 47:1 ± 0:7 <0.0001
Foveal 18:6 ± 0:8 18:5 ± 1:0 0.46

Parafoveal 46:1 ± 0:5 50:0 ± 0:7 <0.0001
DCP VD (mm2)

Whole
image

49:2 ± 0:4 51:4 ± 0:7 0.001

Foveal 34:7 ± 0:9 36:1 ± 1:1 0.35

Parafoveal 51:1 ± 0:4 53:2 ± 0:7 0.002

VD: vessel density; SCP: superficial capillary plexus; DCP: deep capillary
plexus. Data are expressed as mean ± standard deviation.
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Table 3: Correlation between OCTA parameters and CGM-derived glucose metrics in type 1 diabetes.

OCTA (vascular parameter) Correlation

TIR (%)

SCP VD
Foveal SCP VD
Parafoveal SCP VD
Whole DCP VD
Foveal DCP VD
Parafoveal DCP VD

t = 0:189; p = 0:85
t = −0:754, p = 0:46
t = 0:056, p = 0:96
t = −0:179, p = 0:86
t = −0:614, p = 0:54
t = −0:051, p = 0:96

TBR (%)

SCP VD
Foveal SCP VD
Parafoveal SCP VD
Whole DCP VD
Foveal DCP VD
Parafoveal DCP VD

t = 0:48; p = 0:63
t = 1:46, p = 0:15
t = −0:128, p = 0:90
t = −1:165, p = 0:25
t = −1:667, p = 0:10
t = 1:148, p = 0:26

Average glucose (mg/dL)

SCP VD
Foveal SCP VD
Parafoveal SCP VD
Whole DCP VD
Foveal DCP VD
Parafoveal DCP VD

t = 1:545, p = 0:13
t = −0:137, p = 0:89
t = −0:570, p = 0:57
t = −0:328, p = 0:74
t = 0:095, p = 0:92
t = −0:484, p = 0:63

CV (%)

SCP VD
Foveal SCP VD
Parafoveal SCP VD
Whole DCP VD
Foveal DCP VD
Parafoveal DCP VD

t = 0:874, p = 0:39
t = 2:126, p = 0:04
t = 1:464, p = 0:15
t = 0:431, p = 0:67
t = 1:373, p = 0:18
t = 0:307, p = 0:76

VD: vessel density; SCP: superficial capillary plexus; DCP: deep capillary plexus.

Table 4: Correlation between OCTA parameters and CGM-derived glucose metrics in type 1 diabetes after exclusion of smokers and
patients with hypertension or hyperlipidemia.

OCTA (vascular parameter) Correlation

TIR (%)

Whole SCP VD
Foveal SCP VD
Parafoveal SCP VD
Whole DCP VD
Foveal DCP VD
Parafoveal DCP VD

t = 0:746; p = 0:46
t = −1:158, p = 0:25
t = 0:195, p = 0:85
t = −0:187, p = 0:85
t = −1:513, p = 0:14
t = 0:007, p = 0:99

TBR (%)

Whole SCP VD
Foveal SCP VD
Parafoveal SCP VD
Whole DCP VD
Foveal DCP VD
Parafoveal DCP VD

t = 0:370; p = 0:71
t = 1:438, p = 0:16
t = −0:063, p = 0:95
t = −1:161, p = 0:25
t = −1:600, p = 0:11
t = 1:122, p = 0:27

Average glucose (mg/dL)

Whole SCP VD
Foveal SCP VD
Parafoveal SCP VD
Whole DCP VD
Foveal DCP VD
Parafoveal DCP VD

t = −0:664, p = 0:52
t = −0:468, p = 0:64
t = −0:245, p = 0:81
t = −0:296, p = 0:77
t = −0:611, p = 0:55
t = −0:517, p = 0:61

CV (%)

Whole SCP VD
Foveal SCP VD
Parafoveal SCP VD
Whole DCP VD
Foveal DCP VD
Parafoveal DCP VD

t = 2:104, p = 0:04
t = 3:501, p = 0:001
t = 2:198, p = 0:03
t = 1:413, p = 0:16
t = 2:721, p = 0:009
t = 1:448, p = 0:26

VD: vessel density; SCP: superficial capillary plexus; DCP: deep capillary plexus.
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4. Discussion

In young adults with type 1 diabetes in nonoptimal glucose
control and without overt DR, capillary plexus density eval-
uated by OCTA was significantly lower than in control sub-
jects. The reduction in VD was significant only in the
parafoveal zone, while the foveal zone was spared.

Other studies have evaluated changes in retinal VD in
patients with diabetes. However, differences exist in the
cohorts of examined patients. For instance, Pilotto et al.
recruited adolescents with and without DR and found a
reduced VD only in patients with clinical signs of DR [17].
In line with Pilotto, Golebiewska et al. found no difference
in VD between patients with type 1 diabetes without DR
and healthy controls [23]. Notably, also in this study, the
participants’ mean age was lower than ours. Some methodo-
logical differences also emerge by comparing the studies.
Indeed, Pilotto et al. considered parafoveal and foveal areas
when evaluating VD, and Golebiewska et al. divided the ret-
inal plexus into three layers [17, 23].

Conversely, our results are comparable with the research
by Simonett et al. and Sousa et al., who described a signifi-
cant reduction of the parafoveal VD in the DCP and SCP
in young adults with type 1 diabetes [24, 25]. The authors
suggested that the highly energy-demanding tissue and the
complex vascular architecture make the retina susceptible
to hyperglycemia-induced damage.

We did not measure the foveal avascular zone (FAZ),
which seems to be enlarged only in patients with DR and
longer disease duration [26]. Indeed, Scarinci et al. found
that the perimeter and the acircularity index of the FAZ were
comparable between patients without DR and controls. The
author interestingly commented that the decrease in VD
represents a diffuse dropout of parafoveal capillaries rather
than an enlargement of the FAZ [27].

According to the study’s primary outcome, we found a
significant and independent correlation between the extent
of the foveal SCP VD and GV expressed as the CV of 24-
hour average glucose. The higher the CV, the greater the
VD. After the exclusion of smokers and patients with hyper-
tension or hyperlipidemia, we further found a correlation
between foveal and parafoveal VD in SCP, foveal VD in
DCP, and GV. The observational nature of the study does
not allow us to make definitive assumptions about the devel-
opment of retinal damage. However, we hypothesize that
increased VD may precede capillary rarefaction in patients
with diabetes, while early rarefaction is mostly correlated
to hypertension [28]. The increased VD in diabetes has also
been reported by Rosen et al. The authors found that
patients without DR had an increased VD compared to con-
trol subjects, while patients with nonproliferative and prolif-
erative DR had a reduced VD compared to controls.
Accordingly, Rosen et al. defined the increased VD as the
“tipping point” of DR [29].

In our study, the mean CV was higher than the target
value (40% vs. 36%) in the participants with type 1 diabetes.
Since mean TIR was close to 70% and mean TBR was within
the recommended threshold of 4%, we hypothesize the high
CV to be associated with postprandial hyperglycemia.

Indeed, postprandial hyperglycemia is the primary abnor-
mality in case of mild alteration of glucose control, e.g.,
when the HbA1c is between 7 and 7.5% [30].

Glycemic fluctuations and postprandial hyperglycemic
peaks may trigger the increase of local blood flow, at least
in the foveal SCP, in analogy to what was reported in other
tissues, such as the kidney, muscle, and skin. Hemodynamic
changes seem to be mediated by the increased nitric oxide
activity and vasodilatory prostaglandins due to local retinal
acidosis, which is prominent in the early stages of DR
[31–34].

We did not find any other significant correlation
between OCTA capillary density and CGM-derived glucose
metrics, but conflicting results emerge from the literature
about glycemic control and OCTA abnormalities. While
poor glycemic control, defined as a high HbA1c value or
low TIR, predicts the development of DR [35, 36], evidence
concerning glycemic control and retinal vascular density
detected by OCTA in subjects with diabetes is still inconclu-
sive. Indeed, some authors found an inverse association
between high HbA1c value and capillary plexus, while others
did not [10–14]. To our knowledge, the paper by Pilotto
et al. is the only one designed to explore the association
between the new glycemic indices and OCTA changes in
diabetes. Pilotto et al. found a direct relation between TIR
and the thickness of the intermediate capillary plexus [17].
However, the authors measured the CGM-derived metrics
in a three-month interval, while we used the 2-week one as
suggested by the international consensus of experts [16].

5. Conclusion

The results of the present study show that, in young adults
with type 1 diabetes and without DR, high GV, which can
be assessed very accurately by CGM, is associated with
increased foveal and parafoveal VD in SCP and with foveal
VD in DCP, and that VD in the parafoveal area is reduced
in comparison with nondiabetic control subjects. These find-
ings suggest the need for longitudinal studies to clarify the
role of these differences in the possible development of DR.

The progressive and indeed rapid refinement of tech-
niques for assessing the retinal vasculature, coupled with
the increasingly accurate continuous assessment of blood
glucose, give hope that in the near future, we will have reli-
able markers to follow for the prevention of the development
of diabetic retinopathy.
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