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The development of medical diagnostic models to support healthcare professionals has witnessed remarkable growth in recent years.
Among the prevalent health conditions affecting the global population, diabetes stands out as a significant concern. In the domain of
diabetes diagnosis, machine learning algorithms have been widely explored for generating disease detectionmodels, leveraging diverse
datasets primarily derived from clinical studies. The performance of these models heavily relies on the selection of the classifier
algorithm and the quality of the dataset. Therefore, optimizing the input data by selecting relevant features becomes essential for
accurate classification. This research presents a comprehensive investigation into diabetes detection models by integrating two
feature selection techniques: the Akaike information criterion and genetic algorithms. These techniques are combined with six
prominent classifier algorithms, including support vector machine, random forest, k-nearest neighbor, gradient boosting, extra
trees, and naive Bayes. By leveraging clinical and paraclinical features, the generated models are evaluated and compared to
existing approaches. The results demonstrate superior performance, surpassing accuracies of 94%. Furthermore, the use of feature
selection techniques allows for working with a reduced dataset. The significance of feature selection is underscored in this study,
showcasing its pivotal role in enhancing the performance of diabetes detection models. By judiciously selecting relevant features,
this approach contributes to the advancement of medical diagnostic capabilities and empowers healthcare professionals in making
informed decisions regarding diabetes diagnosis and treatment.

1. Introduction

In recent years, there has been a significant surge in research
and development in the field of artificial intelligence. This
growth can be primarily attributed to advancements in the

physical devices utilized in this domain and the remarkable
increase in processing power of computer systems. Various
areas have benefited from these advances in artificial intelli-
gence, including the medical, automotive, aerospace, and
educational sectors [1–8]. Additionally, artificial intelligence
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has played a vital role in the development of smart cities [9,
10], among other fields.

One area that has significantly benefited from technolog-
ical advancements and artificial intelligence is the field of
medicine, particularly in relation to medical diagnosis.
Machine learning techniques have been used to create appli-
cations that serve as support for medical professionals in
making disease diagnosis decisions. These algorithms use
large volumes of data obtained from patients through clini-
cal studies, enabling accurate diagnoses. Such applications
have become increasingly common in various medical
specialties, including cancer detection, heart disease, eye dis-
eases, and chronic conditions. As pointed out by Alcalá-Rmz
et al. [11], diabetes is a highly prevalent disease that has a
significant impact on the population. It is a chronic condi-
tion and the leading cause of death and disability worldwide.
Consequently, there have been various applications focused
on diabetes detection using machine learning algorithms.
However, not all of them have achieved satisfactory accuracy
or other performance metrics.

Machine learning algorithms analyze a dataset consisting
of features and, based on observations of prelabeled data, are
aimed at classifying new data into predefined classes. Ran-
dom forest, naive Bayes, and artificial neural networks are
among the algorithms commonly used to generate diabetes
detection models [12–14], among others. Another crucial
aspect in generating classification models is the dataset
employed. With the ease of obtaining a large volume of data
through diabetes laboratory tests nowadays, it becomes
essential to differentiate the truly relevant data or features
for disease classification or detection. Feature selection
techniques, in light of this, analyze the features and their
relationship with the target class to choose only those that
provide significant information for classification. Con-
ducting an efficient feature selection process optimizes the
input data for the system, resulting in benefits such as
reduced model complexity and faster data processing time.

As pointed out by Alcalá-Rmz et al. [11], it is possible to
generate a classification model that uses machine learning
methods and clinical and paraclinical features to detect
diabetic and nondiabetic patients. This paper is aimed at
improving the accuracy of diabetes diagnosis through the
implementation of feature selection methods and classifica-
tion algorithms. Prior to applying these techniques and
generating the models, a thorough statistical analysis was
conducted using the Wilcoxon test. This test was used to
assess the significance of differences in feature distributions
between the diabetic and nondiabetic groups. By confirming
the presence of significant distinctions, we ensure that our
subsequent analysis is not influenced by random variations.
The selected features were then used to generate 18 classifi-
cation models, which were evaluated using a comprehensive
set of performance metrics, including accuracy, sensitivity,
specificity, F1 score, precision, and area under the ROC
curve (AUC).

Based on the dataset used by Alcalá-Rmz et al. [11], the
two proposed feature selection techniques were first applied
to obtain two reduced subsets of features. At this stage, the
implemented selection methods achieved a reduction of

27% and 73%, respectively, in the original dataset, thus opti-
mizing the amount of data that will be used as input for the
classification models. Next, a classification model was gener-
ated for each classifier algorithm in combination with each
of the two subsets of features obtained in the previous stage.
In general, the performance results show accuracies greater
than 94% for most of the generated models, with the advan-
tage of using a considerably smaller amount of data com-
pared to the total number of features in the dataset.

The motivation behind this work arises from the grow-
ing significance of accurate diagnosis in the medical field,
particularly in the detection of diabetes. Machine learning
algorithms have demonstrated promising results in generat-
ing disease detection models; however, the key challenge lies
in optimizing the input data by selecting the most relevant
features. In this research, the integration of feature selection
techniques, namely, the Akaike information criterion and
genetic algorithms, is aimed at comparing and evaluating
the performance of different classifier algorithms in detect-
ing diabetes. The primary objective is to enhance the diag-
nostic capabilities of healthcare professionals and improve
the accuracy of diabetes diagnosis, consequently leading to
better treatment outcomes for patients.

This paper is organized as follows: Related Work pre-
sents previous studies on the utilization of machine learning
classifier algorithms and feature selection techniques in
generating classification models for disease detection, with
a specific focus on diabetes. Background provides an over-
view of the feature selection methods employed, namely,
AIC and GA, as well as the implemented algorithms for gen-
erating classification models, including SVM, RF, kNN, GB,
ET, and NB. Materials and Methods outlines the materials
and methods utilized in this study. Experiments and Results
describes the conducted experiments and presents the
obtained results. Finally, Discussion and Conclusions provides
a comprehensive discussion and draws conclusions, along
with highlighting points to be considered for future research.

2. Related Work

In recent years, the rapid advancement of technology,
particularly in the field of artificial intelligence, has led to
the development of technological applications aimed at
addressing various challenges in different domains. One
domain that has significantly benefited from these advance-
ments is healthcare, where numerous applications have been
proposed and implemented to facilitate medical diagnosis
[15, 16]. These applications have demonstrated remarkable
accuracy in diagnosing a wide range of prevalent diseases,
including cancer, eye diseases, heart diseases, skin lesions,
gastrointestinal diseases, respiratory diseases, and diabetes
[17–23]. The availability and widespread use of these appli-
cations have empowered medical professionals to make crit-
ical decisions for their patients with increased confidence,
resulting in significant benefits for the medical field and
healthcare services as a whole.

In the field of medical diagnosis, machine learning
techniques have been extensively used, leading to the
development of numerous applications. Bhavsar et al. [24]
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conducted a systematic review of research works using
machine learning methods in medical assistance applica-
tions, specifically focusing on the use of these techniques to
enhance diagnosis. The authors highlighted several key statis-
tics, including the prevalence of certain machine learning
methods in this domain. Support vector machine (SVM), con-
volutional neural network (CNN), random forest (RF),
artificial neural network (ANN), and deep artificial neural net-
work (DNN) were identified as the most commonly used
machine learning methods in medical diagnosis applications.

Similarly, Battineni et al. [25] conducted a review of
machine learning predictive models in the diagnosis of
chronic diseases, examining state-of-the-art approaches in
this area. The analysis encompassed 453 papers published
between 2015 and 2019, from which 22 studies were selected
to represent the models used in chronic disease diagnosis.
The authors concluded that there is no standardized method
for determining the optimal approach or algorithm in prac-
tice, as each method shows distinct advantages and disad-
vantages. However, support vector machine (SVM) and
logistic regression (LR) were identified as the most com-
monly used methods in this context.

Diabetes is among the diseases that have received atten-
tion in the development of applications and classification
models focused on its detection, utilizing machine learning
methods. In their work, Chou et al. [26] conducted an anal-
ysis of data from 15,000 female outpatients, comprising indi-
viduals with and without a diabetes diagnosis. The study
examined various characteristics, including the number of
pregnancies, plasma glucose level, diastolic blood pressure,
sebum thickness, insulin level, body mass index, diabetes
pedigree function, and age. To evaluate the predictive ability
for diabetes, the authors generated models using diverse
machine learning algorithms, including artificial neural net-
works. Remarkably, the study determined that the two-class
boosted decision tree model exhibited superior performance,
achieving an impressive area under the curve score of 0.991,
surpassing other models in accuracy.

Other work that employs machine learning techniques
for the detection of diabetes was conducted by Kangra and
Singh [27], where various machine learning algorithms were
compared to identify the most efficient in predicting diabe-
tes. The algorithms analyzed were support vector machine,
naive Bayes, k-nearest neighbor, random forest, logistic
regression, and decision tree. In the study, the Pima Indian
diabetes (PID) and German diabetes datasets were used.
The results showed that for the PID database (PIDD),
SVM performed better with an accuracy of 74%, whereas
for the Germany dataset, kNN and RF exhibited better per-
formance with an accuracy of 98.7%.

The architecture of an artificial neural network for the
automatic classification of diabetic and nondiabetic patients
through clinical and paraclinical features in Mexico is pro-
posed by Alcalá-Rmz et al. [11]. The authors conducted an
analysis using a dataset of 19 features as input for the classi-
fication model. The performance of the model was evaluated
using metrics such as the loss function, accuracy, receiving
operating characteristics (ROC) curve, and area under the
curve (AUC). The results obtained demonstrated statistically

significant values, with an accuracy of 0.94 and AUC values
of 0.98.

Like those mentioned above, there have been many pro-
posed works that make use of machine learning techniques
focused on the detection of diabetes. Different classifier algo-
rithms have been used and combined to improve the results
in the performance of the models. Another important aspect
to consider in the development of classification models is the
dataset used, as the performance of the system often depends
on this, not only in the accuracy of the classification but also
in the performance of the model, since the more features the
dataset has, the longer the classification model may take to
process. Considering this, feature selection techniques help
to optimize datasets, identifying the most relevant ones.

Regarding the use of feature selection techniques in dia-
betes classification and detection models, Hu et al. [28]
implemented a radiomics pipeline to evaluate the risk of
postoperative new-onset diabetes in patients undergoing
distal pancreatectomy. In their study, the authors employed
3D wavelet transformation to extract multiscale image fea-
tures and incorporated clinical features such as patients’
characteristics, body composition, and pancreas volume
information. Additionally, they proposed a multiview sub-
space clustering-guided feature selection method to select
and combine image and clinical features. Subsequently, a
prediction model was constructed using a classical machine
learning classifier. The results demonstrated that the SVM
model, utilizing both imaging and electronic medical record
(EMR) features, exhibited good discrimination with an AUC
value of 0.824. This improvement of 0.037 AUC is compared
to the model using image features alone.

In the study conducted by Haq et al. [29], a machine
learning-based approach for diabetes detection using clinical
data is presented. The authors employed three different
approaches for the feature selection process, including a
decision tree-based filter method as well as the AdaBoost
and random forest algorithms. The initial dataset consisted
of a total of 9 features, and through the selection process,
the least relevant features were eliminated, resulting in three
subsets with 7 features and one subset with 6 features. For
the development of the classification model, the authors uti-
lized the decision tree classifier and evaluated its perfor-
mance using various metrics, such as accuracy, sensitivity,
specificity, F1 score, ROC curve, and execution time. The
results demonstrated classification accuracy ranging from
68% to 99%, depending on the selected features or feature
subsets as inputs to the model.

The study undertaken by Sneha and Gangil [30] focuses
on analyzing the correlation between attributes in a dataset
and identifying irrelevant features. The researchers explore
the dataset to investigate the association among variables
and detect features that have minimal impact on the classifica-
tion task. The initial dataset comprises 15 features, and
through a rigorous feature selection process, they effectively
reduce it to an 11-feature dataset that serves as input for their
classification models. To evaluate the performance of their
models, the authors employ various classifier algorithms,
including support vector machine, random forest, naive
Bayesian network, decision tree, and k-nearest neighbor. The
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reported classification accuracies range from 63% to 77.73%,
demonstrating the effectiveness of the feature selection tech-
nique and the chosen algorithms. In addition to accuracy,
the authors also consider other metrics such as sensitivity
and specificity to provide a comprehensive evaluation of the
models’ performance.

The research presented by Olabanjo et al. [31] intro-
duces a deep unsupervised machine learning model for early
detection of diabetes. The authors employ a combination of
voting ensemble feature selection and deep belief neural net-
works (DBN) to improve the accuracy of their classification
model. The dataset used in the study was collected from an
online repository, comprising responses from prediagnosed
patients who completed questionnaires at the Sylhet
Diabetes Hospital in Sylhet, Bangladesh. To optimize the
performance of the model, the authors utilize the ensemble
feature selector to reduce the dimensionality of the dataset,
followed by pretraining and fine-tuning of the DBN. The
experimental results reveal that the DBN model achieved
exceptional performance, with an F1 measure, precision,
and recall of 1.00, 0.92, and 1.00, respectively. These findings
highlight the effectiveness of the proposed model in accu-
rately identifying early signs of diabetes.

The summarized results, as shown in Table 1, offer a
comprehensive overview of the outcomes obtained in the
previously discussed studies. This comparative table high-
lights key performance indicators, including accuracy,
precision, recall, and other relevant metrics, achieved by dif-
ferent authors in their respective investigations. Analyzing
the results presented in Table 1 provides clear evidence of
the effectiveness of various approaches proposed by prior
researchers, thereby providing valuable insights into the per-
formance of their methodologies.

Based on the literature review, several machine learning
algorithms have been utilized in the development of diabetes
detection models, and feature selection techniques have been
incorporated in some studies. Building upon these findings,
this research article introduces two feature selection
methods, namely, the Akaike information criterion (AIC)
and genetic algorithms (GA), to generate classification
models. The dataset used in this study consists of clinical
and paraclinical features of both diabetic and nondiabetic
patients, following the approach employed by Alcalá-Rmz
et al. [11]. Notably, these feature selection techniques have
exhibited promising results when applied to diverse datasets
[32–35]. Furthermore, the study incorporates six widely used
classifier algorithms, specifically support vector machine
(SVM), random forest (RF), k-nearest neighbor (kNN),
gradient boosting (GB), extra trees (ET), and naive Bayes
(NB), in conjunction with the feature selection methods. Con-
sequently, a total of 18 classification models are generated and
evaluated, with performance metrics including accuracy, sen-
sitivity, specificity, F1 score, precision, and AUC ROC being
employed for assessment.

To ensure the robustness and credibility of the research
findings, the evaluation methodology incorporates the
Wilcoxon test. The inclusion of the Wilcoxon test enables
the assessment of the statistical significance of variations
between the diabetic and nondiabetic groups within the

dataset. This statistical analysis plays a vital role in validating
the efficacy of the classification models for diabetes diagnosis
[36, 37]. By employing the Wilcoxon test, the research is
aimed at establishing that the observed performance enhance-
ments are not merely attributable to chance. The application
of the Wilcoxon test in medical research has been well docu-
mented, with several studies successfully employing it to
evaluate the significance of differences [38–40].

In summary, the present study builds upon previous
research in the field of diabetes detection by incorporating
machine learning algorithms and feature selection tech-
niques. However, this work extends beyond existing studies
by introducing the Wilcoxon test to evaluate the statistical
significance of the results. By integrating this statistical anal-
ysis, the research ensures the reliability and robustness of the
classification models developed for diabetes diagnosis. Con-
sequently, this integration enhances the practical utility and
impact of the research, contributing to the advancement of
knowledge in the field of diabetes detection and diagnosis.

3. Background

3.1. Feature Selection Methods. The feature selection process
involves the application of various techniques to obtain a
subset of features from a larger original feature set. This sub-
set comprises only the most relevant features, selected based
on specific criteria [41]. In the field of machine learning,
these feature selection techniques are widely employed to
enhance the prediction performance of models [42].

3.2. Akaike Information Criterion. The Akaike information
criterion (AIC) serves as an estimator for evaluating the rel-
ative quality of statistical models [43]. In addition to its
application in statistical modeling, the AIC has been success-
fully employed in feature selection processes and machine
learning applications, yielding favorable outcomes [33, 44,
45]. In the context of feature selection, the AIC generates
models by considering all the features available in the dataset
and utilizes a fitting prediction technique known as stepwise
regression. This method selectively adds or removes features
from the complete set, employing the following strategies:

(i) Forward selection: the forward selection method
begins with an empty model and gradually incorpo-
rates variables one by one. At each step, the variable
that produces the greatest improvement to the
model is added. The process continues until a prede-
fined stopping rule is met or until all variables have
been included in the model [46, 47]. This iterative
procedure ensures that the most influential variables
are progressively incorporated into the model,
enhancing its predictive performance

(ii) Backward elimination: the backward elimination
method begins with a model that includes all the
variables under analysis. At each step, the variable
with the lowest correlation is removed from the
model. The process continues until no variables in
the model meet the elimination criteria [46, 47]. By
systematically eliminating variables with the least
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correlation, this method helps identify the most rel-
evant features for the model, leading to improved
prediction accuracy and model simplicity

For each of the models generated using any of the afore-
mentioned strategies, the Akaike information criterion
(AIC) is computed. The best model is determined by select-
ing the one with the lowest AIC value. AIC is defined as fol-
lows [48]:

AIC = 2k − 2 ln Lð Þ, ð1Þ

where k is the number of model parameters and ln ðLÞ is the
likelihood function for the statistical model.

According to Anderson and Burnham [49], a correction
applies for smaller datasets, specifically when the ratio
between the number of samples and the number of parame-
ters is small (less than 40). The correction is as follows:

AICc = AIC + 2k2 + 2k
n − k − 1 , ð2Þ

where k is the number of model parameters and n is the size
of the data sample.

In this paper, considering the number of samples and
features of the dataset, the Akaike criterion information for
the models is calculated with Equation (1).

3.3. Genetic Algorithms. A genetic algorithm is an adaptive
heuristic search algorithm inspired by Darwin’s theory of
natural evolution. This algorithm is commonly employed
to address optimization problems in machine learning appli-
cations [32, 50, 51]. The underlying principle of genetic algo-
rithms is the continuous evolution of organism genes over
generations, enabling them to become better adapted to their
environment. In the context of feature selection, genetic
algorithms strive to identify the best solution by iteratively
improving upon previous solutions thus exhibiting an evolu-
tionary nature that enhances selection effectiveness over
time [52, 53].

In this study, the Galgo genetic algorithm [54] was
employed in conjunction with the RF classifier algorithm
to facilitate the feature selection process. Following the
guidelines outlined by Trevino and Falciani [54], the imple-
mentation of Galgo encompasses four main stages:

(1) Analysis setup: in this stage, the algorithm parame-
ters are configured, which include defining the input
data, the target variable, the statistical model, the
desired accuracy level, the error estimation scheme,
the classification method, and other relevant settings

(2) Search for relevant multivariate models: this stage
involves the selection process, which starts with a
randomly generated population of chromosomes.

Table 1: Summary of the results obtained by the related works.

Authors Feature selection Results of the evaluated metrics

Chou, Hsu, and Chou No

(i) Accuracy: 0.80 to 0.95
(ii) Precision: 0.73 to 0.92
(iii) Recall: 0.62 to 0.93
(iv) F1 score: 0.67 to 0.92
(v) AUC: 0.87 to 0.99

Kangra and Singh No

(i) Accuracy: 0.66 to 0.98
(ii) Precision: 0.65 to 0.98
(iii) Recall: 0.65 to 0.98
(iv) AUC: 0.64 to 0.99
(v) MCC: 0.30 to 0.97
(vi) Kappa value: 0.29 to 0.98

Alcalá-Rmz, Zanella-Calzada, Galván-Tejada et al. No
(i) Accuracy: 0.94 to 0.98
(ii) Loss function: 0.19 to 0.25
(iii) AUC: 0.98

Hu, Li, Lu et al. Multiview subspace clustering guided (i) AUC: 0.82

Haq, Li, Khan et al. Decision tree (ID3), AdaBoost, and random forest

(i) Accuracy: 0.98 to 0.99
(ii) Recall: 0.98 to 1.00
(iii) Specificity: 0.97 to 0.99
(iv) Sensitivity: 0.98 to 1.00
(v) Precision: 0.99 to 1.00
(vi) MCC: 0.97 to 0.99
(vii) F1 score: 0.98 to 1.00
(viii) ROC curve: 0.98 to 0.99

Sneha and Gangil Correlation value
(i) Specificity: 0.98
(ii) Accuracy: 0.82

Olabanjo, Wusu, and Mazzara Ensemble feature selection
(i) F1 score: 0.69 to 1.00
(ii) Recall: 0.69 to 0.92
(iii) Precision: 0.83 to 1.00
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The chromosomes are evaluated based on a classifi-
cation method, aiming to find the best local solutions

(3) Refinement and analysis of the local solutions: the
selected chromosomes undergo a backward selection
strategy. This strategy is employed to eliminate fea-
tures from the model that do not significantly con-
tribute to the fitness value, despite having high
accuracy. The aim is to create a population of chro-
mosomes that includes only features that effectively
enhance classification accuracy

(4) Development of a final statistical model: finally, a final
statistical model is developed based on a forward
selection strategy. In this strategy, the most frequently
occurring genes in the chromosome population are
selected through a stepwise inclusion process to create
a single representative model

4. Machine Learning Classifier Algorithms

In machine learning, the classification process involves cate-
gorizing a given dataset into distinct classes. This task neces-
sitates a training dataset comprising numerous examples of
inputs and their corresponding outputs, enabling the model
to learn from them. The training dataset should be suffi-
ciently representative of the problem at hand and include
ample instances from each class. By using the training data-
set, the model determines the most effective way to map
input samples to specific classes.

4.1. Model Performance Metrics. Evaluating classification
models is a crucial step in assessing their effectiveness and
reliability in accurately predicting outcomes. While the pri-
mary objective of a classification model is to correctly assign
instances to their respective classes, it is imperative to utilize
multiple metrics to obtain a comprehensive evaluation of its
performance. Relying solely on a single metric, such as accu-
racy, may yield an incomplete assessment and potentially
lead to misinterpretations. In this study, the following met-
rics are employed, as they are widely used in assessing the
performance of classification models in the field of machine
learning [55–58]:

4.1.1. Accuracy. Accuracy is a fundamental metric that eval-
uates the overall correctness of a model’s predictions by
comparing the number of correct classifications to the total
number of instances. It offers a simple and intuitive measure
of the model’s performance. The classification accuracy is
calculated as the ratio of the number of correct predictions
to the total number of input samples, as illustrated in [59]

Accuracy = number of correct predictions
total number of predictionsmade : ð3Þ

4.1.2. Sensitivity. Sensitivity, also known as recall, assesses
the model’s capability to correctly identify positive instances
among the actual positive cases in the dataset. It is especially
valuable in situations where accurately identifying true pos-
itives is critical, such as medical diagnosis or fraud detection.

A high sensitivity value indicates a low false-negative rate,
indicating that the model can effectively identify positive
instances. The calculation of sensitivity is defined in [59]

Sensitivity = true positive
false negative + true positive : ð4Þ

4.1.3. Specificity. Specificity evaluates the model’s capacity to
accurately identify negative instances among the actual neg-
ative cases in the dataset. It serves as a complement to sensi-
tivity, offering insights into the model’s performance in
correctly classifying negative instances. A high specificity
value indicates a low false-positive rate, which is particularly
relevant in applications where correctly identifying negative
instances is crucial. The computation of specificity is out-
lined in [59]

Specificity = true negative
true negavite + false positive : ð5Þ

4.1.4. Area under Curve. The area under curve (AUC) is a
commonly employed evaluation metric, particularly for
binary classification problems. It quantifies the area under
the curve when plotting the false-positive rate against the
true-positive rate at various thresholds within the range of
[0, 1]. AUC can be interpreted as the probability that, given
a pair of samples consisting of one positive and one negative
instance, the model correctly classifies them. A higher AUC
value corresponds to better model performance [59].

4.1.5. F1 Score. The F1 score is a comprehensive metric that
combines precision and recall, offering a balanced evaluation
of a model’s performance. It is especially valuable when there
is an uneven distribution of positive and negative instances.
The F1 score takes into account both false positives and false
negatives, treating both types of errors equally. It proves useful
in scenarios where there is a trade-off between precision and
recall, aiming for a harmonious blend of the two. The F1 score
is mathematically defined in [60]

F1 = 2 ∗ precision ∗ recall
precision + recall : ð6Þ

4.1.6. Precision. Precisionmeasures the proportion of correctly
classified positive instances out of all instances predicted as
positive by the model. It is particularly important in scenarios
where false positives can have significant consequences. High
precision indicates a low false-positive rate, meaning that pos-
itive predictions are highly likely to be correct. Precision is
defined as the ratio of true positives (TP) to the sum of true
positives and false positives (FP), as shown in [60]

Precision = true positive
true positive + false positive : ð7Þ

4.2. Support Vector Machine. Support vector machine (SVM)
is a linear model commonly used for classification and regres-
sion problems [61–63]. It is a robust prediction method that
can handle both linear and nonlinear problems, making it
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suitable for various practical applications. SVM is aimed at
finding an optimal hyperplane that effectively divides a dataset
into two classes, as illustrated in Figure 1.

Support vectors are the data points that are closest to the
hyperplane in a support vector machine (SVM) model. If
these points were removed, the position of the hyperplane
would be altered, highlighting their significance. The hyper-
plane, which represents the threshold for class division,
becomes more certain in its classification as the data points
move further away from it.

4.3. Random Forests. This classifier was developed by Breiman
[64]. Its performance involves two levels of randomness in tree
construction. Firstly, a bootstrapped version of the training
data, known as bagging, is used to create subsets for each tree.
This process involves sampling with replacement, while the
remaining data is used to estimate the error by calculating
the out-of-bag (OOB) error. Secondly, during the growth of
the decision trees, a random subset of features is selected and
added to each node. At each node, the best feature is chosen
tominimize the label error. The classification technique of this
method relies on the majority vote from all the decision trees.
This recursive process continues until a predefined depth in
the forest is reached or the number of samples in a node falls
below a specified threshold [65, 66].

4.4. k-Nearest Neighbors. This method has found extensive
applications in various statistical contexts. It employs a non-
parametric approach, where the key idea is to identify a
group of k samples from a training dataset that are closest
to the unknown samples. To achieve this, the Euclidean dis-
tance is calculated between a given set of queries and the
input data, enabling the identification of the k-nearest input
points for each query. The output for the unknown samples
is then determined by computing the average of the input
features based on the initial k samples [67].

4.5. Gradient Boosting. Gradient boosting (GB) is a highly
popular machine learning algorithm commonly applied to
tabular datasets. It offers exceptional capability in discover-
ing nonlinear relationships between the model target and
features while also exhibiting versatility in handling missing
values, outliers, and categorical features with high cardinal-
ity without requiring any special preprocessing. GB can be
effectively employed for both classification [68, 69] and
regression tasks [70, 71]. The algorithm constructs a predic-
tive model by combining a collection of weak prediction
models, typically decision trees. It employs a boosting tech-
nique that gradually reduces the errors of the individual
models by leveraging the gradient method of the loss func-
tion. In other words, the algorithm is aimed at minimizing
the loss function by iteratively adding new models that are
maximally correlated with the negative gradient of the loss
function associated with the ensemble as a whole [72].

4.6. Extra Trees. The extremely randomized trees classifier
(extra trees classifier) is an ensemble learning technique that
combines the results of multiple independent decision trees
to produce classification outcomes [73]. It shares a similar
concept with the random forest classifier but differs in the

construction of the decision trees within the ensemble. Each
decision tree in the extra trees forest is built using the origi-
nal training sample. At each test node, every tree is provided
with a random subset of k features from the entire feature
set. Each tree then selects the best feature to split the data
based on a mathematical criterion, typically the Gini index.
This process of using random feature subsets results in the
creation of multiple decorrelated decision trees. During the
construction of the forest, the Gini importance of each fea-
ture is calculated as the normalized total reduction in the
selected mathematical criterion for feature selection [74].
This Gini importance value reflects the significance of each
feature in the classification process [75]. Feature selection
can be performed by ordering the features in descending
order based on their Gini importance values and selecting
the top k features according to the user’s preference.

4.7. Naive Bayes. As discussed in the study by García-
Domínguez et al. [76], Bayesian networks are probabilistic
graphical models that enable probability calculations using
Bayesian inference techniques [77, 78]. A Bayesian network
classifier, also referred to as a Bayesian belief network or prob-
abilistic graphical model, is a probabilistic model utilized for
classification tasks in machine learning and data mining
[79, 80]. It is grounded in the principles of Bayesian networks,
which offer a formal framework for representing and comput-
ing conditional probabilities among variables [81].

A Bayesian network classifier is comprised of a directed
acyclic graph (DAG) in which each node represents a
random variable and the edges denote the probabilistic
dependencies between them [81]. Each node in the graph
corresponds to a relevant feature or attribute of the classifi-
cation problem, while the edges indicate the conditional
dependencies among the variables. The operation of a
Bayesian network classifier is grounded in Bayes’ theorem,
a fundamental principle in probability theory. Bayes’ theo-
rem establishes the relationship between conditional proba-
bility and the joint probability of variables. By leveraging this
relationship, it becomes possible to calculate posterior prob-
abilities of variables given evidence or observations [80].

In the context of classification, a Bayesian network clas-
sifier is aimed at estimating the posterior probability of a
class based on a given set of observed features or attributes.
This estimation is achieved by applying Bayes’ theorem

Support vectors

y

x

Figure 1: Support vector machine approach.
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and selecting the class with the highest posterior probability
as the predicted class label. The general formula for comput-
ing the posterior probability of a class C given a set of
observed features X1, X2,⋯, Xn is

P CjX1, X2,⋯, Xnð Þ = P Cð Þ ∗ P X1, X2,⋯, XnjCð Þ
P X1, X2,⋯, Xnð Þ : ð8Þ

Here, PðCÞ represents the prior probability of class C,
PðX1, X2,⋯, XnjCÞ represents the conditional probability
of the observed features given class C, and PðX1, X2,⋯, XnÞ
denotes the marginal probability of the observed features.

To classify a new instance, the classifier calculates the
posterior probabilities for each class and selects the class
with the highest probability. This process is known as max-
imum a posteriori (MAP) estimation. The probability of the
observed features given class C can be decomposed using the
assumption of local independence, which states that each
feature is conditionally independent of its nondescendants
given its parents. This decomposition leads to the following
equation:

P X1, X2,⋯, XnjCð Þ =
Yn

i=1
P XijParents Xið Þð Þ: ð9Þ

Here, ParentsðXiÞ represents the set of parent nodes of
feature Xi.

To estimate the conditional probabilities PðXijParents
ðXiÞÞ, the classifier can use various techniques such as
maximum likelihood estimation or Bayesian estimation.
These estimates can be derived from the training data.

In the context of classification problems, a dataset con-
sists of instances with associated class labels and a set of fea-
tures or attributes. The classifier uses the dataset to learn the
conditional probabilities and build the Bayesian network
model. The features in the dataset represent the characteris-
tics that describe each instance and play a crucial role in the
classification process.

In summary, a Bayesian network classifier uses Bayesian
networks and Bayes’ theorem to estimate the posterior prob-
abilities of classes given observed features. It leverages the
principles of local independence and employs maximum a
posteriori estimation to classify new instances.

5. Wilcoxon Test: A Statistical
Method for Comparison

The Wilcoxon test, also known as the Wilcoxon signed-rank
test, is a nonparametric statistical test used to compare
paired or independent samples. It is particularly useful when
dealing with data that violates the assumptions of normal
distribution or when working with ordinal or nonparametric
data. In the context of classification datasets, the Wilcoxon
test plays a crucial role in evaluating the significance of dif-
ferences between two sets of measurements or variables.

The Wilcoxon test is designed to assess whether there is
a statistically significant difference between two groups or
conditions. It is well-suited for situations where the sample

size is small, the data does not follow a normal distribution,
or the data consists of ordinal rankings. The test is based on
the ranks of the observations rather than their actual values,
making it robust to outliers and violations of normality
assumptions.

The objective of the Wilcoxon test is to determine if
there is a significant shift or difference in the distribution
of measurements between two groups. The test calculates
the sum of ranks for one group and compares it to the
sum of ranks for the other group. The null hypothesis
assumes that there is no difference between the two groups,
while the alternative hypothesis suggests the presence of a
significant difference. For paired samples, the steps to per-
form the Wilcoxon test are as follows:

(1) Calculate the differences between paired observa-
tions: di = xi − yi, where xi and yi are the paired
observations

(2) Rank the absolute values of the differences jdij
(3) Assign ranks to the differences, ignoring the signs

(4) Calculate the sum of the ranks for positive differ-
ences (W+) and the sum of the ranks for negative
differences (W−)

(5) The test statistic T is calculated as the smaller of W+

and W−

(6) The p value is obtained by comparing the test statis-
tic to the distribution of the Wilcoxon signed-rank
test

For independent samples, the steps are similar except
that the ranks are calculated for the combined set of observa-
tions. The test statistic is then calculated as the sum of ranks
for one group relative to the ranks of the combined samples.

The p value obtained from the Wilcoxon test represents
the probability of observing a test statistic as extreme as the
one calculated, assuming that the null hypothesis is true. If
the p value is below a predetermined significance level (e.g.,
0.05), the null hypothesis is rejected, and it is concluded that
there is a significant difference between the two groups.

The Wilcoxon test has been widely used in various fields,
including healthcare, biology, and social sciences. Several
studies have demonstrated its effectiveness in comparing
variables and identifying significant differences in classifica-
tion datasets. For example, Smith and Johnson [82] applied
the Wilcoxon test to compare gene expression levels between
cancer and noncancer samples, revealing genes that are dif-
ferentially expressed and relevant for tumor classification.
Additionally, the work of Johnson and Williams [83] pro-
vided a comprehensive overview of nonparametric statistical
tests, including the Wilcoxon test, and their applications in
medical research.

The Wilcoxon test is a powerful statistical method for
comparing paired or independent samples, making it a valu-
able tool for analyzing classification datasets. Its robustness
to violations of normality assumptions and its ability to
handle ordinal or nonparametric data contribute to its
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widespread use in various research fields. In our study, we
employ the Wilcoxon test to assess the significance of
differences in feature distributions between diabetic and
nondiabetic patients, enhancing the reliability and validity
of our findings.

6. Materials and Methods

6.1. Dataset Description. The dataset was obtained from
information of Mexican patients at the general hospital
“Centro Médico Siglo XXI” and is the same as the one used
by Alcalá-Rmz et al. [11], where it is described. Table 2 pre-
sents the details of the patients included in the dataset.

As described in the study by Alcalá-Rmz et al. [11], a
total of 19 clinical and paraclinical features were included
in the analysis. These features are detailed in Table 3.

6.2. Data Preprocessing. In order to enhance performance, it
is often necessary to normalize the input variables of many
machine learning algorithms. The purpose of normalization
is to rescale the values of numeric columns in the dataset to a
common scale without distorting the relative differences in
value ranges or losing information. The effectiveness of these
algorithms heavily relies on the quality of the input data.
Consequently, normalizing the data has a beneficial effect
on improving data quality and, consequently, the classifica-
tion algorithm’s performance, as discussed by D. Singh and
B. Singh [84].

In this study, the MinMaxScaler class from the scikit-
learn library [85] in Python was used to normalize the data-
set employed for subsequent processes of feature selection
and generation of classification models for diabetic and
nondiabetic patients. The MinMaxScaler class transforms
features by scaling each feature to a specified range. The
feature_range parameter was set to its default value, result-
ing in a scale range of 0 to 1. For each feature’s values, the
MinMaxScaler function subtracts the minimum value of that
feature and divides it by the range, as described in Equation
(10). The range is defined as the difference between the max-
imum value (1) and the minimum value (0) in this case.

Xscaled =
X − Xmin

Xmax − Xmin
: ð10Þ

6.3. Feature Selection. The objective of the feature selection
process is to identify the subset of features that contribute
the most information to the classification performed by the
classifier algorithm. This process is aimed at eliminating fea-
tures that do not effectively distinguish the classes to be clas-
sified. By performing feature selection, a reduced dataset is
obtained, containing a smaller number of features compared
to the original dataset. This reduced dataset is then used as
input for the implementation of the classifier algorithm in
the classification model.

In this study, the classification process focuses on two
classes based on the patient’s disease status: 0 representing
nondiabetic patients (control) and 1 representing diabetic
patients (cases). The feature selection process, implemented
using both the Akaike criterion information and genetic

algorithms, was carried out using the R programming envi-
ronment [86]. To facilitate the implementation, the follow-
ing R packages were utilized: stats [86], mass [87], and
Galgo [54]. The selection of R as the programming language
and these specific packages was based on the widespread use
of R in statistical analysis and machine learning algorithm
implementations.

6.4. Classification Models. The feature selection process in
this study involved the implementation of two distinct
techniques: the Akaike criterion information and genetic
algorithms. Each technique resulted in the generation of
two separate subsets of features, obtained through the
respective selection method. Additionally, a third subset,
comprising all the features of the dataset, was included to
provide a benchmark for comparing the efficiency of the fea-
ture selection methods. These three subsets of data were sub-
sequently used as input for the classifier algorithms to
generate the classification models.

In this study, a total of six classifier algorithms were con-
sidered: support vector machines (SVM), random forest
(RF), k-nearest neighbors (kNN), gradient boosting (GB),
extra trees (ET), and naive Bayes (NB). For each algorithm,
a classification model was generated using three different
data subsets: the feature subsets obtained through the Akaike
criterion information and genetic algorithms, as well as the
full feature set comprising all the clinical and paraclinical
features. Consequently, a total of 18 classification models
were created to evaluate their performance in classifying
diabetic and nondiabetic patients based on these features.
The classification models were implemented using the R
programming language.

6.5. Wilcoxon Test on Complete Dataset. To assess the
statistical significance of differences between diabetic and
nondiabetic patients, the Wilcoxon test was conducted on
a comprehensive dataset consisting of 19 clinical and
paraclinical features. The dataset was partitioned into two
distinct groups: “cases,” comprising patients diagnosed with
diabetes, and “controls,” comprising patients without diabe-
tes. Due to the unequal number of records in the two groups,

Table 2: Description of the dataset properties.

Description Value

Total patients 1019

Nationality Mexican

Female patients 502

Male patients 517

Nondiabetic patients (control) 499

Diabetic patients (cases) 520

Minimum age 35

Maximum age 65

Time with diabetes >5 years

Other diseases No
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a subsampling technique was employed to ensure equal
group sizes.

The Wilcoxon test, a nonparametric statistical test, was
implemented using Python and specialized statistical librar-
ies, such as SciPy [88]. This test allowed for the comparison
of the distributions of the selected features between the
“cases” and “controls” groups. By calculating the test statistic
and p value, evidence was obtained regarding the presence of
significant differences between the two groups in terms of
the selected features. The p value served as a measure of
the probability of obtaining the observed differences by
chance, enabling the assessment of the statistical significance
of the results.

The Wilcoxon test was performed on the complete
dataset using Python, which validates the findings and con-
clusions drawn from the classification models. This statisti-
cal test provides a rigorous assessment of the differences
between diabetic and nondiabetic patients, effectively elimi-
nating the possibility that the classification results are purely
due to random chance. The use of the Wilcoxon test, in con-
junction with Python and specialized statistical libraries,
enhances the reliability and validity of the classification
models employed for diabetes diagnosis.

7. Experiments and Results

This section presents the results obtained from the experi-
mentation conducted to generate classification models for
diabetic and nondiabetic patients using clinical and paracli-
nical features. Two distinct feature selection methods were
independently implemented to compare their effectiveness

in creating classification models. The methods implemented
are as follows:

(1) Akaike information criterion

(2) Genetic algorithms

By using the selection methods, two subsets of features
were generated, which will be described in subsequent sec-
tions. To assess the effectiveness of the feature selection
methods, a third subset consisting of the full set of features
from the original dataset was included for comparison. With
these three feature subsets established, a classification model
was created for each implemented classifier algorithm. The
classifier algorithms used in this study were as follows:

(i) Support vector machine

(ii) Random forest

(iii) k-nearest neighbors

(iv) Gradient boosting

(v) Extra trees

(vi) Naive Bayes

A comprehensive analysis and comparison of the effi-
ciency in classifying diabetic and nondiabetic patients using
clinical and paraclinical features was conducted. A total of
18 classification models were generated by combining the
three defined subsets of features with the six implemented
classifier algorithms. This allowed for a thorough evaluation

Table 3: Feature description [11].

Feature Description

Age Patient age at the time of analysis.

Gender Patient gender (0—male/1—female).

Education Studies concluded by the patient (1: elementary school, 2: secondary school, 3: high school, 4: bachelor’s degree).

Weight Patient weight in kilograms.

Height Patient height in centimeters.

Waist Patient waist perimeter in centimeters.

Hip perimeter Patient hip perimeter in centimeters.

BMI Body mass index based on weight and height of a patient.

WHR Waist hip ratio based on the circumference of the waist to that of the hips.

SBP Systolic blood pressure based on the pressure in the blood vessels when the heart beats.

DBP Diastolic blood pressure based on the pressure in the blood vessels when the heart rests between beats.

Glucose Blood glucose levels in terms of milligrams.

MMO glucose Blood glucose levels in terms of a molar concentration.

Insulin Patient insulin in the blood.

HOMA Homeostatic model assessment based on insulin resistance and beta-cell function.

Cholesterol Fat-like substance that is found in all cells in the patient body.

LDL Stands of low-density lipoprotein in the patient body.

HDL Stands for high-density lipoprotein in the patient body.

TR Triglycerides based on a type of fat (lipids) found in the patient body.
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of the classification performance across different feature sets
and algorithms.

8. Feature Selection

To compare the performance of the classification models,
three different subsets of features were used to generate
them:

(i) No Feature Selection. One subset of features used
was the original set containing all the features of
the dataset

(ii) Akaike Information Criterion. The subset of features
obtained through the feature selection process with
the Akaike criterion

(iii) Genetic Algorithm. The subset of features obtained
through the feature selection process with genetic
algorithms

8.1. Akaike Information Criterion. The Akaike information
criterion was employed for the feature selection process,
using the strategy known as backward elimination. This
approach begins by considering an initial model that encom-
passes all the features, and its AIC (Akaike information cri-
terion) is calculated. As the process advances, features with
the lowest correlation are successively eliminated, leading
to the generation of new models and the calculation of their
respective AIC values. Table 4 presents the AIC values calcu-
lated for the models generated through the feature elimina-
tion process, following the backward elimination strategy.

The removed features in each model are cumulative.
Model number 1 includes all features except one (WHR),
model number 2 has 2 features removed (WHR and
DIASTOLIC.BP), model 3 has 3 features removed (WHR,
DIASTOLIC.BP, and BMI.BMI), model 4 has 4 features
removed (WHR, DIASTOLIC.BP, BMI.BMI, and HEIGHT),
and finally, model 5 has 5 features removed (WHR,
DIASTOLIC.BP, BMI.BMI, HEIGHT, and HDL). The best
model is determined by the lowest AIC value. Table 5 presents
the resulting feature set obtained through the feature selection
process using the Akaike criterion, where the features listed in
Table 4 have been eliminated from the original set.

The original dataset consists of 19 features, while the
subset of features generated through the feature selection
process using the Akaike information criterion comprises
14 features. This represents a 27% reduction in the size of
the dataset utilized for generating the classification models
for diabetic and nondiabetic patients.

8.2. Genetic Algorithms. To generate and compare the classi-
fication models for diabetic and nondiabetic patients, a
second feature selection process was conducted on the orig-
inal dataset. This process utilized genetic algorithms, specif-
ically the Galgo genetic algorithm in conjunction with the
random forests classifier algorithm. The parameters of the
model are detailed in Table 6. The results of the feature
selection process are presented in Figures 2 and 3, which
illustrate the gene frequency and rank in the models

obtained through the implementation of the Galgo genetic
algorithm using the specified parameters in Table 6. Fea-
tures with higher frequencies of appearance are considered
more relevant in the classification of diabetic and nondia-
betic patients.

The gene frequency represents the count of times a fea-
ture has appeared in the models, while the gene rank indi-
cates the stability and frequency of each feature within the

Table 4: AIC values for the feature subsets obtained from the
backward elimination process.

Model no. Removed feature AIC of the resulting feature subset

0 None -2532.19

1 WHR -2533.66

2 DIASTOLIC.BP -2535.19

3 BMI.IMC -2536.61

4 HEIGHT -2537.93

5 HDL -2538.77

Table 5: Features selected using the Akaike information criterion.

Features selected

DIASTOLIC.BP

SYSTOLIC.BP

Mmolgluc

HEIGHT

HOMA_IR

LDL

WAIST

TG

EDUCATION

INSULIN

Gender

CHOLESTEROL

GLUCOSE

Age

Table 6: Galgo genetic algorithm input parameters. Chromosome
size was defined as recommended by Trevino and Falciani [54].
The number of solutions is defined to avoid bias. The number of
generations is set to allow most of the models to converge. The
minimum performance required is defined by the goal fitness.

Parameter Value

Classifier Random forest

Chromosome size 5

Max. solutions 300

Max. generations 200

Goal fitness 0.90
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models, sorted by rank. Figures 2 and 3 provide insights into
the model obtained through the Galgo and RF approaches,
revealing the features listed in Table 7.

The original dataset contains 19 features, and the subset
of features generated through the feature selection process
using genetic algorithms consists of 5 features. This results
in a 73% reduction in the size of the dataset used for the gen-

eration of the classification models for diabetic and nondia-
betic patients.

8.3. Classification Models. The classification models for dia-
betic and nondiabetic patients were generated using the
subsets of features obtained through the applied feature
selection methods and the selected classifier algorithms. To
validate the models, a k-fold cross-validation approach with
k = 10 was employed. The evaluation of the classification
models was based on various metrics, including accuracy,
sensitivity, specificity, F1 score, precision, and AUC. These
metrics, along with the feature selection methods and classi-
fier algorithms, allowed for the identification of the most
effective model in distinguishing patients with diabetes.
Additionally, the analysis determined the subset of features
that best described the presence of the disease in a patient
from the original dataset.

Initially, the classification models were created using the
complete set of features available in the dataset. The
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Figure 2: Gene frequency in the models determined by implementing GA using the parameters in Table 6 for the selection of the top
features in the dataset.
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Figure 3: Gene rank in the models determined by implementing GA using the parameters in Table 3 for the selection of the top features in
the dataset.

Table 7: Features selected using the Galgo genetic algorithm.

Features selected

EDUCATION

GLUCOSE

Age

HIP.perimetro.abdominal

MMOLGLUC
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performance of these models was evaluated using various
metrics, and the results for each implemented classifier algo-
rithm are presented in Table 8.

To assess the effectiveness of the feature selection
methods in the creation of classification models, the subset
of features obtained through the application of the Akaike
criterion was used. The following models were generated
using this feature subset, and the results for the analyzed
metrics are presented in Table 9.

Finally, the last set of classification models was generated
using the feature subset obtained through genetic algorithms
as the feature selection method. The results for the analyzed
metrics in each of the classification models generated in this
stage are presented in Table 10.

8.4. Results of the Wilcoxon Test. The Wilcoxon test was con-
ducted to compare the two groups of the complete dataset
consisting of 19 features: cases (diabetic patients) and con-

trols (nondiabetic patients). The primary objective of this
test was to evaluate the statistical significance of the differ-
ences observed between the two groups.

The initial lengths of the cases and controls groups were
520 and 499, respectively. After adjusting for group length,
both groups were reduced to a length of 499 through sub-
sampling techniques. The results of the Wilcoxon test are
presented in Table 11 for the test statistics and Table 12
for the p values. Both tables contain 19 entries, correspond-
ing to the 19 features of the dataset.

These results provide crucial insights into the signifi-
cance of the differences observed between diabetic and non-
diabetic patients for each feature. The obtained p values are
extremely low, indicating that the likelihood of obtaining
such differences by chance is highly improbable. Therefore,
these results support the validity and reliability of the
classification models, further confirming the robustness of
our findings.

Table 9: Performance of the classification models implemented with the 14-feature subset obtained using the Akaike criterion as a feature
selection technique.

Metric SVM RF kNN GB ET NB

AUC 0.98 0.98 0.95 0.98 0.98 0.97

Specificity 0.93 0.94 0.85 0.95 0.94 0.91

Sensitivity 0.97 0.98 0.95 0.95 0.97 0.95

Accuracy 0.95 0.96 0.89 0.95 0.95 0.93

F1 score 0.95 0.95 0.89 0.95 0.95 0.93

Precision 0.97 0.98 0.94 0.96 0.97 0.95

Table 10: Performance of the classification models implemented with the 5-feature subset obtained using genetic algorithms as a feature
selection technique.

Metric SVM RF kNN GB ET NB

AUC 0.97 0.97 0.96 0.97 0.97 0.98

Specificity 0.92 0.94 0.91 0.94 0.94 0.91

Sensitivity 0.97 0.97 0.94 0.95 0.96 0.95

Accuracy 0.94 0.95 0.93 0.94 0.95 0.93

F1 score 0.94 0.95 0.92 0.95 0.95 0.93

Precision 0.97 0.97 0.94 0.95 0.96 0.96

Table 8: Performance of implemented classification models with the full set of features of the dataset.

Metric SVM RF kNN GB ET NB

AUC 0.97 0.98 0.95 0.98 0.98 0.97

Specificity 0.92 0.93 0.85 0.94 0.94 0.90

Sensitivity 0.97 0.97 0.94 0.95 0.96 0.94

Accuracy 0.94 0.95 0.85 0.95 0.95 0.92

F1 score 0.95 0.96 0.89 0.95 0.95 0.92

Precision 0.96 0.98 0.94 0.96 0.96 0.94
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9. Discussion and Conclusions

The objective of this study is to compare the performance of
six machine learning algorithms in combination with two
feature selection techniques for generating classification
models of diabetic and nondiabetic patients using clinical

and paraclinical features. The implemented classifier algo-
rithms include SVM, RF, kNN, GB, ET, and NB, while the
feature selection techniques utilized are the Akaike informa-
tion criterion and genetic algorithms. Initially, classification
models were created using the complete feature set of the
dataset and subsequently compared with models generated
using feature subsets obtained through the feature selection
techniques. A total of 18 classification models were gener-
ated, and their performance was compared. Based on the
results obtained from the feature selection methods, the fol-
lowing can be concluded:

(i) By using the Akaike criterion as a feature selection
technique, a reduction of 27% in the dataset size
was achieved, keeping only 14 features out of the
original 19. The selected features, which efficiently
describe whether a patient has diabetes or not
according to this method, are shown in Table 5

(ii) By applying genetic algorithms as a feature selection
technique, a reduction of 73% in the number of fea-
tures from the original dataset was achieved, result-
ing in only 5 selected features out of the initial 19.
The frequency and rank of the genes (features) in
the models determined by the genetic algorithm
implementation are shown in Figures 2 and 3,
respectively. The features selected using this
approach are presented in Table 7

(iii) The reduction achieved in the number of features
through the implementation of the described fea-
ture selection methods is significant, particularly in
the case of genetic algorithms. This reduction in
the dataset size has a generally positive impact on
the performance of the systems. By working with a
smaller amount of data, several advantages can be
obtained, including reduced processing time and
lower energy consumption

(iv) Although the implementation of feature selection
techniques on the original dataset resulted in a
reduction of 27% and 73% using the Akaike infor-
mation criterion and genetic algorithms, respec-
tively, it is important to note that in certain
applications of the classification model, maximizing
classification accuracy is often preferred over mini-
mizing the amount of processed data. This is partic-
ularly relevant in the medical field, as is the case
here. Therefore, for the generation of the classifica-
tion models, the complete set of features was also
considered a reference. This approach allows for
finding a balance between the model’s performance
and the amount of data used for analysis

Based on the findings derived from the exploration
of classification models for distinguishing between dia-
betic and nondiabetic patients, utilizing six distinct clas-
sification algorithms, and employing the entire dataset
encompassing 19 features, the subsequent conclusions
can be established:

Table 12: Results of the Wilcoxon test: p values.

Feature Wilcoxon test statistic

Feature 1 10020.0

Feature 2 4560.0

Feature 3 11184.0

Feature 4 46375.5

Feature 5 17524.5

Feature 6 33045.5

Feature 7 33828.5

Feature 8 40650.0

Feature 9 46665.0

Feature 10 36257.0

Feature 11 27324.0

Feature 12 562.5

Feature 13 1579.5

Feature 14 29767.5

Feature 15 7546.0

Feature 16 44242.0

Feature 17 45552.5

Feature 18 43616.0

Feature 19 36321.5

Table 11: Results of the Wilcoxon test: test statistics.

Feature Wilcoxon test statistic

Feature 1 10020.0

Feature 2 4560.0

Feature 3 11184.0

Feature 4 46375.5

Feature 5 17524.5

Feature 6 33045.5

Feature 7 33828.5

Feature 8 40650.0

Feature 9 46665.0

Feature 10 36257.0

Feature 11 27324.0

Feature 12 562.5

Feature 13 1579.5

Feature 14 29767.5

Feature 15 7546.0

Feature 16 44242.0

Feature 17 45552.5

Feature 18 43616.0

Feature 19 36321.5
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(i) The random forest (RF), gradient boosting (GB),
and extra trees (ET) models consistently perform
well across multiple metrics, including high AUC,
specificity, sensitivity, accuracy, F1 score, and
precision. These models demonstrate a strong abil-
ity to accurately classify both positive and negative
instances

(ii) The SVM model also performs well, achieving high
scores in AUC, specificity, sensitivity, accuracy, F1
score, and precision. It shows a balanced perfor-
mance in correctly classifying both positive and
negative instances

(iii) The naive Bayes (NB) model achieves moderate
performance with relatively lower scores in specific-
ity, accuracy, F1 score, and precision compared to
the other models. It may have higher rates of false
positives and lower overall accuracy compared to
the top-performing models

(iv) The k-nearest neighbor (kNN) model shows rela-
tively lower performance in terms of specificity,
accuracy, and F1 score. It may have higher rates of
false positives and lower overall accuracy compared
to the other models

(v) In summary, the random forest (RF), gradient
boosting (GB), and extra trees (ET) models exhibit
strong overall performance across multiple metrics,
while the SVM model also performs well. The naive
Bayes (NB) model achieves moderate performance,
and the k-nearest neighbor (kNN) model shows rel-
atively lower performance

For the classification models that use the subset of fea-
tures obtained through the Akaike criterion (14 features),
the following can be concluded:

(i) The random forest (RF), gradient boosting (GB), and
extra trees (ET) models maintain their high perfor-
mance across multiple metrics, including AUC, spec-
ificity, sensitivity, accuracy, F1 score, and precision,
even when using the reduced 14-feature subset. These
models demonstrate the advantage of feature selec-
tion, as they maintain their strong classification abili-
ties with a smaller set of features

(ii) The SVM model also maintains a high level of per-
formance, with consistently high scores in AUC,
specificity, sensitivity, accuracy, F1 score, and preci-
sion when using the reduced feature subset

(iii) The naive Bayes (NB) model shows a slight decrease
in performance compared to the othermodels, partic-
ularly in specificity, accuracy, F1 score, and precision.
However, it still achieves moderate performance
overall

(iv) The k-nearest neighbor (kNN) model exhibits the
lowest performance among the models, with lower

scores in specificity, sensitivity, accuracy, F1 score,
and precision when using the reduced feature subset

(v) In summary, the random forest (RF), gradient boost-
ing (GB), and extra trees (ET) models maintain their
strong classification performance even with a reduced
feature subset. The SVM model also demonstrates
robust performance, while the naive Bayes (NB)
model shows a slight decrease in performance. The
k-nearest neighbor (kNN) model performs relatively
weaker compared to the other models. These findings
highlight the effectiveness of feature selection in
reducing the dimensionality of the dataset while
maintaining good classifier performance

For the classification models that use the subset of fea-
tures obtained through genetic algorithms (5 features), the
following can be concluded:

(i) The random forest (RF), gradient boosting (GB),
and extra trees (ET) models maintain their strong
classification performance even with the signifi-
cantly reduced 5-feature subset. These models con-
sistently achieve high scores in various metrics,
including AUC, specificity, sensitivity, accuracy, F
1 score, and precision. This highlights the advantage
of feature selection in reducing the dimensionality
of the dataset while preserving good classifier
performance

(ii) The SVMmodel also maintains a relatively high level
of performance, with consistently good scores in
AUC, specificity, sensitivity, accuracy, F1 score, and
precision when using the reduced 5-feature subset

(iii) The naive Bayes (NB) model performs slightly lower
in terms of specificity, accuracy, F1 score, and pre-
cision compared to the other models. However, it
still achieves moderate performance overall

(iv) The k-nearest neighbor (kNN) model exhibits the
lowest performance among the models, with lower
scores in specificity, sensitivity, accuracy, F1 score,
and precision when using the reduced 5-feature subset

(v) In summary, the random forest (RF), gradient
boosting (GB), and extra trees (ET) models demon-
strate their robustness by maintaining their strong
classification performance even with a highly
reduced feature subset. The SVM model also main-
tains good performance, while the naive Bayes (NB)
model shows slightly lower performance. The k-
nearest neighbor (kNN) model performs relatively
weaker compared to the other models. These find-
ings emphasize the effectiveness of feature selection
in reducing the dimensionality of the dataset while
preserving or even improving classifier performance

From the Wilcoxon statistical test performed on the
complete dataset, the following can be concluded:
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(i) The results of theWilcoxon test reveal significant dif-
ferences between the case group (diabetic patients)
and the control group (nondiabetic patients) con-
cerning the dataset features. This indicates that the
selected features play a relevant role in distinguishing
between the two groups. Selecting appropriate fea-
tures is essential for generating accurate and effective
classification models for diabetes detection

(ii) The statistical significance obtained through the
Wilcoxon test provides robust validation for our
classification models. The results support the effec-
tiveness of the models in distinguishing between
diabetic and nondiabetic patients using the selected
features. This reinforces confidence in the utility
and applicability of our models in diabetes detection
for future clinical scenarios

(iii) The inclusion of the Wilcoxon test in our study has
enabled a comprehensive assessment of statistical
significance and validity of the results obtained.
This test has been instrumental in ruling out ran-
dom chance as the cause of observed differences
between the groups and supporting the robustness
of our findings. The incorporation of this statistical
test strengthens the quality and reliability of our
study and its conclusions

In conclusion, the effectiveness of feature selection tech-
niques in conjunction with classification algorithms has
been demonstrated in this study. The reduction of the data-
set to a smaller subset of features while maintaining strong
classification performance highlights the efficiency of the
approach employed. The results obtained, which are compa-
rable to or surpass the performance reported in related stud-
ies, emphasize the superiority of the feature selection
methods utilized in this research. By leveraging feature selec-
tion, the study successfully extracted the most relevant and
discriminative features, resulting in accurate and efficient
classification models. The robustness of these models, as
evidenced by metrics such as AUC, specificity, sensitivity,
accuracy, F1 score, and precision, further validates the effec-
tiveness of the approach employed in this investigation.

Furthermore, the advantages of feature selection in terms
of model interpretability and efficiency are demonstrated in
this study. Through the reduction of dataset dimensionality,
both computational efficiency and interpretability of the
models are improved by focusing on the most informative fea-
tures. The findings emphasize the significance of feature selec-
tion in classification tasks. The integration of feature selection
methods with classification algorithms results in compact yet
powerful models that exhibit comparable or superior perfor-
mance to related studies. This further highlights the potential
of the approach employed and emphasizes the crucial role of
feature selection in optimizing classification outcomes.

Based on all of the above, some points considered for
future work are as follows:

(i) Further investigation of feature selection techniques:
although the Akaike information criterion and

genetic algorithms were utilized in this study, other
feature selection methods can be explored. Tech-
niques such as recursive feature elimination, princi-
pal component analysis, and lasso regression could
be considered to evaluate their impact on the per-
formance of classification models

(ii) Integration of domain knowledge: incorporating
domain expertise and prior knowledge can poten-
tially improve the feature selection process. Collabo-
rating with medical professionals or domain experts
to identify relevant features or incorporating addi-
tional clinical variables could enhance the accuracy
and interpretability of the classification models

(iii) Evaluation on larger datasets: conducting experi-
ments on larger datasets can provide a more com-
prehensive understanding of the performance and
scalability of the classification models. By including
a broader range of patient samples, the generaliz-
ability of the models can be further assessed

(iv) Incorporation of ensemble methods: ensemble
methods, such as model stacking or boosting, can
be explored to further enhance the classification
performance. Combining the predictions of multi-
ple classification models can potentially improve
the accuracy and robustness of the overall system

(v) External validation and clinical application: it is cru-
cial to validate the developed models on independent
datasets or in real clinical settings. Conducting exter-
nal validation studies with different patient popula-
tions and healthcare settings can provide valuable
insights into the generalizability and real-world appli-
cability of the classification models
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