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Aim. Analyse the diabetes mellitus (DM) of a person through the facial skin region using vision diabetology. Diabetes mellitus
is caused by persistent high blood glucose levels and related complications, which show variation in facial skin regions due to
reduced blood flow in the facial arteries. Materials and Method. In this study, 200 facial images of diabetes patients with skin
conditions such as Bell’s palsy, rubeosis faciei, scleroderma, and vitiligo were collected from existing face videos. Moreover,
face images are collected from diabetic persons in India. Viola Jones’ face-detecting algorithm extracts face skin regions
from a diabetic person’s face image in video frames. The affected skin area on the diabetic person’s face is detected using
HSV colour model segmentation. The proposed multiwavelet transform convolutional neural network (MWTCNN) extracts
the features for diabetic measurement from up- and downfacial scaled images of diabetic persons. Results. The existing
deep learning models are compared with the proposed MWTCNN model, which provides the highest accuracy of 98.3%.
Conclusion. The facial skin region-based diabetic measurement avoids pricking of the serum and is used for continuous
glucose monitoring.

1. Introduction

Diabetes mellitus (DM) is a group of illnesses characterised
by changes in blood glucose levels. DM affects 382 million
adults worldwide [1]. According to the research, pathologi-
cal lesions in the skin may occur in 30 to 70% of patients
with DM [1]. The number of people with diabetes in India
was estimated to be 77 million in 2019 and 783 million by
2045 [2]. Type 1 DM is about 5% to 10% of the total
diabetic-affected person count and is characterised by the
particular autoimmune destruction of insulin-secreting b-
cells in the pancreas. Dermatological issues occur in 30%
of patients [3]. Infections of the skin are more common in
type 1 and type 2 DM. Skin manifestations occur due to
DM [4]. Patients with diabetes are impacted regardless of
their age or gender, and as the DM progresses, chronic
degenerative consequences and acute metabolic disturbances
impact the skin.

The frequency and key clinical characteristics of skin
problems are high in patients with insulin-dependent
(IDDM) or noninsulin-dependent (NIDDM) diabetes [5].
The most common dermatological issues in IDDM and
NIDDM patients were vitiligo and psoriasis, cutaneous [6]
necrobiosis lipoidica [7], diabetic dermopathy [8], diabetic
bullae [9], yellow skin [10], eruptive xanthomas [11], perfo-
rating disorders [12], acanthosis nigricans [13], and oral leu-
coplakia [14].

According to the American Diabetes Association
(ADA) [20], dermatological issues are the first diabetic
indication in a diabetic person (Figure 1). High glucose
levels harm blood vessels. Circulation and blood flow in
the skin are reduced due to damaged blood vessels. The
skin’s protein structure (collagen) is changed because of
decreased blood flow. The changes in collagen affect the
healing capacity, texture, and look of the skin. It is fre-
quently a marker of poor glycaemic control.
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Hyperglycaemia in diabetes causes inactive microcircula-
tion, clinically visible as face vein deformation. Hence,
due to DM, vitiligo, rubeosis faciei, Bell’s palsy, and sclero-
derma, skin conditions occur in the face. Vitiligo is simply
the loss of skin melanin or skin colour pigment. The inter-
nal immunological process can cause the skin to lose col-
our everywhere, including the face. Vitiligo develops
around the eyes, lips, and chin. Vitiligo is an acquired,
noncontiguous condition characterised by gradual, patchy
skin pigmentation loss, typically covering the hair and
mucous membranes caused by melanocyte loss in the
affected areas [21, 22]. Vitiligo occurs in both type 1 and
type 2 DM patients. Vitiligo occurs around the facial
regions such as the eyes, nose, and mouth. The symptoms
of vitiligo are milky, white skin. Deep learning and
machine learning algorithms are used to detect white skin
patches early, such as the global adaptive thresholding
algorithm [16, 23] and YOLOV3 [24].

DM manifests cutaneous as rubeosis faciei diabeti-
corum [17]. It is distinguished by diffuse, persistent facial
erythema in diabetes patients. Histologically, diabetic
individuals’ cheeks have an increase in the number and
width of superficial venules and butterfly-shaped cheek
redness. The cheek’s redness is identified automatically
through temporal facial expression [25], histogram [26],
and geometric transformation [18]. The most frequent
cause of lower motor neuron facial palsy is Bell’s palsy
(BP) [27], an unpredictable, severe central facial nerve
disorder. As a result of cranial nerve VII (the facial
nerve), which stimulates the facial muscles, malfunction-
ing, BP is a sudden weakening or paralysis of the muscles
on one side of the face. As a result of an immunological
condition or a viral infection, the facial nerve swells in
this condition. The nerve becomes compressed, and its
blood supply is decreased due to swelling. BP is detected
automatically through a key point detection algorithm
[28, 29], facial landmark algorithm [30], temperature
and texture features [31], and CNN [32]. Diabetes type
1 causes scleroderma [33]. The symptom of scleroderma

is harder and thicker skin in the facial regions such as
the forehead and neck [19]. Scleroderma can happen to
up to 50% of diabetic patients. MRI and CT scan images
are used for analysing facial morphological changes.
Scleroderma is diagnosed through imaging photoplethys-
mography [34].

The objective of this study is to analyse a person with
DM through the vision diabetology method. The symptoms
of dermatological issues are extracted and classified using
the MWTCNN algorithm. The MWTCNN model is com-
pared with other deep learning models such as VGG19,
Inception V3, and ResNet-50.

2. Methodology

2.1. Material Preparation. Numerous skin conditions on
the face focus on examining diabetes through the face
region. According to the American Diabetes Association,
diabetes destroys small blood vessels, leading to various
skin conditions on the entire body. The face is a notice-
able area, making skin damage simple to spot. The several
skin conditions that affect the face include Bell’s palsy
[29], vitiligo [21], rubeosis faciei [17], and scleroderma
[33]. Patients with a high glycemic index, those who have
had diabetes for more than ten years, and those who are
in the early stages of the disease all experience blood vessel
damage [35].

2.2. Skin-Related Data Collecting on the Face. The patient’s
family history of diabetes, average age of over 54 years, and
presence of diabetes in both sexes were evaluated. Data were
gathered in the winter when sunshine exposure was mini-
mal. The patient’s video has been gathered. Based on the
solar region, the patients were separated into two groups.
Patients with a white complexion and an erratic fasting
hyperglycaemic index can be easily recognized as having
rubeosis faciei. Bell’s palsy happens when facial movement
is lost. Bell’s palsy makes it challenging to frown, smile, or
make other facial movements. Bell’s palsy can develop

(a) Bell palsy (b) Rubeosis faciei

(c) Scleroderma (d) Vitiligo

Figure 1: Facial region affected by small blood vessel damage due to type 1 and type2 diabetes [15–19].
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quickly; symptoms and paralysis can manifest as early as 48
hours after the condition first manifests. The prognosis for
Bell’s palsy patients is generally favourable; about 90% of
them recover fully. In addition, this harms tiny blood vessels.
The patient’s mild and full smiles are used to collect Bell’s
palsy patient videos.

Diabetes patients with types 1 and 2 are likelier to
get vitiligo skin conditions [21]. Vitiligo happens as a

result of the destruction of specific skin-colouring cells
[21]. Vitiligo can happen everywhere on the body, but
the mouth, nose, and eyes are the most common places
to find it [36]. Compared to persons with a white com-
plexion, those with dark skin can be easily identified.
Thus, data from videos of persons with dark complex-
ions is gathered. Face, finger, and hand skin become
thinner due to scleroderma. It is brought on by a type
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Figure 2: (a) Experimental setup. (b) Block diagram of vision diabetology-MWTCNN facial skin disease.
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1 diabetic patient’s long-term diabetes. It results from a
slight nerve injury. The patient’s face’s skin is hardening
because they have had diabetes for over 15 years. The
facial skin region of the patient with type 1 diabetes is
employed in the video collection. It happens to both
those with light and dark skin.

Figure 2(a) shows the experimental setup. We employ an
automated method to detect diabetes in the skin region of
the face. A mobile-based IP web camera is mounted on a tri-
pod at a height of 75 cm. A person was sitting on the chair,
and the distance between the tripod and the person was
3 cm. The camera is angled at 90 degrees, has a resolution
of 1600 × 720 pixels, is front-focused, and shoots at 30
frames per second.

Compared to the Canon 360ES camera, the IP webcam is
portable, free, and produces high-quality video. The videos
are saved immediately to the supplied email addresses on
Google Drive. We can readily access the data whenever we
want, which is more secure. We considered a consistent
background, a stable camera, nonmoving objects with mini-
mal reflections and shadows, a short distance, and the right
angle and viewpoint. Figure 2(b) explains the steps followed
in vision diabetology.

Viola Jones’ face detection method is used to analyse
the video clip [6]. Figure 3 shows the steps to detect the
affected face from the video. Using Haar’s features, the
system recognizes the face automatically. The algorithm
detects eyes, nose, and mouth using Haar features. The

Input: RGB color image 227 × 227 × 3
Output: Skin segmented Image
Read RGB image
Split image into R,G,B values
Row,col, chnnels= size of RGB image
Initialize Hue(H), Saturation(S) and Value(V)=0
// Convert RGB to HSV image
for i =1 to row

for j= 1 to col
V(i,j)=max(R(i,j),G(i,j),B(i,j))
MinRGB=min(R(i,j),G(i,j),B(i,j))
If V(i,j)≠0.0 Then
S(i,j)=((V(i,j)-MinRGB))/V(i,j)

Else
S(i,j)=0

End If
If V(i,j)=R(i,j) Then

H(i,j)=60 ∗ (G(i,j)-B(i,j))/(V(i,j)-MinRGB)
Else if V(i,j)=G(i,j) Then

H(i,j)=120+60 ∗ (B(i,j)-R(i,j)/(V(i,j)-MinRGB)
Else if V(i,j)=B(i,j) Then

H(i,j)=240+60 ∗ (R(i,j)-G(i,j))/(V(i,j)-MinRGB)
End If
If H(i,j)<0 Then

H(i,j)=H(i,j)+360
End If

End For
End For

//Separate Hue, saturation and value
H=H/2
S=255 ∗ S
V=255 ∗ V
HSV=concatenation(H,S,V)
//Apply threshold for saturation value within a range of white light(The amount of white light will vary depends on the skin tone of each
image)
Low_H,Low_S,Low_V=0,0,0
High_H,High_S,High_V=max_H,max_S,max_V
Satthr=cv2.inRange(HSV, (Low_H,Low_S,Low_V),(High_H,High_S,High_V))
//Apply the inverse threshold for hue value within a range of image.
Huethr=cv2.thresh_inv (HSV,(Low_H,Low_S,Low_V),(High_H,High_S,High_V))
//Take bitwise and between image and saturation value.
SegmentedImage=cv2.bitwiseand(image, Satthr)

Algorithm 1: HTHSV.
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Haar features are computed between lighter and darker
pixels around the eyes, mouth, and nose. The HSV colour
segmentation algorithm is used to determine the skin
region of the face. The extracted skin regions are passed
through an MWTCNN network to classify different skin
conditions of the facial region and analyse persons’
diabetes.

2.3. Skin Extraction from Face Region. Skin extraction from
the face region is an important step in diagnosing diabetes
in diabetic patients. The HSV colour model is used to seg-
ment the skin region of a diabetic person. The human skin
tone can vary due to the varying colour spectrum in the
skin as well as lighting, illumination, contrast, brightness,
and saturation. The skin area is separated from the facial
image by considering the pixels in the face area. Hue, sat-
uration, and value are the three components of the HSV
colour model. The major colour viewed by humans is
hue. The saturation represents the amount of white light
with the hue, and the value denotes the pixel’s brightness.
An HSV colour space can be visualized as a geometric cyl-
inder, with the angular dimension representing hue (H),
beginning with primary red at 0°, going to primary green
at 120°, primary blue at 240°, and returning to red at
360°. Saturation corresponds to the distance from the cen-
tre axis of the HSV cylinder (S). A saturation number ris-
ing towards the outer edge indicates that the colourfulness
is increasing. The value (V) axis is the central vertical axis of
HSV colour space, running from black at the bottom with
lightness or value 0 to white at the top with a value of 1.

Human skin colour is distributed based on the equator
and temperate regions. Human skin tone variation and
solar radiation variation by location are closely connected.
Human skin colour used to have a gradual distribution
until human migration grew considerably during the last
several hundred years. Dark skin was more concentrated
around the equator, where solar radiation was strong,

while lighter skin was found farther north or south of
the equator as solar radiation strength decreased. So we
have proposed a hue-based threshold HSV (HTHSV) col-
our model for the skin region of the human face. The
HTHSV algorithm is provided in Algorithm 1. We set
the saturation value based on skin tone and solar radia-
tion. Saturation is defined as the ratio of white light to
hue. In our experiment, we assigned a value ranging from
60 to 150, depending on the equator and temperate zone.
We assigned a hue value ranging from 120 to 179.
Figure 4 shows the result of the HTHSV model.

2.4. Multiwavelet Transform Convolution Neural Network.
The vision diabetology multiwavelet CNN (VDMWTCNN)
can be seen in Figure 5. The wavelet transform considers both
the time and frequency domains. Wavelet filters produced
good results for low-resolution components compared to
other filters. Here, the skin tone varies from person to person
in various face skin region locations depending on the situa-
tion. Therefore, we must consider frequency domain data to
distinguish between the affected and normal skin, as frequency
domain features are utilised to measure brightness and detect
changes in skin colour. Because a patient’s skin alterations
develop when they have had diabetes for more than ten years,
the temporal domain reflects changes over a specific period.
We have developed the MWTCNN network to address the
issue mentioned above. Figure 6 illustrates how our network
translates the RGB colour image of size 224 × 224 into 4-
level decompositions of images such as 112 × 112, 56 × 56,
28 × 28, and 14 × 14.

The extracted RGB colour image’s skin area is sepa-
rated into 4 distinct subband images. We have indepen-
dently broken down the RGB image into the red, green,
and blue components that are shown in equations (1),
(2), and (3). Next, each component is subjected to a differ-
ent wavelet decomposition process. As a result, we can
obtain four subimages: a low-pass approximation image
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Figure 4: Result obtained from the HTHSV model for Bell’s palsy.
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and three high-pass images, including horizontal, vertical,
and diagonal images. The size of the decomposed image
was decreased to half that of the original image during

decomposition. We applied a second decomposition to
the low-pass approximated image, creating 4 subimages.
The same procedure is repeated up to four sublevels. Each
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RGB colour component of the image is processed sepa-
rately. The components are finally combined. (224 × 224)
is the RGB image’s original size, which is divided into
(112 × 112), (56 × 56), (28 × 28), and (14 × 14).

R = RGB , ,1 , 1

G = RGB , ,2 , 2

B = RGB , ,3 , 3

Ri = conv R, f i 4

Equation (4) Ri is indicated as the feature map of the red
component and is referred to as the convolution of the red
component (R) with the f i Haar filter, “i” gives the details of
feature maps such as approximation, vertical, horizontal, and
diagonal images. Equations (5) and (6) represents the convo-
lution operation of the green and blue component.

Gi = conv G, f i , 5

Bi = conv B, f i 6

The orthogonality of wavelet reveals twin-scale relation,
that is, decomposition and reconstruction due to orthogonal
wavelet relation. Because there is no information loss due to
orthogonality, we can reconstruct the image, and the lossless
information gives the correct identification of DM through
the skin region, so we presented a wavelet-based multiresolu-
tion convolution network for the facial skin region.

2.5. Network Architecture of MWTCNN. Figure 5 depicts a
multiwavelet convolution neural network to classify the various

DM face skin disorders. The proposed MWTCNN model cap-
tures complex features, skips connections to avoid the vanishing
gradient problem, and improves the training process. The
model captures multiscale features compared to CNN models
like VGG 19, ResNet-50, and Inception V3. The proposed
model utilizes both spatial and frequency information and
improves gradient flow. We utilised a convolution neural net-
work with 15 layers without any pooling. Each convolution
layer comprises three blocks: a convolution block, a batch nor-
malizing layer, and a rectified linear unit. Each convolution
layer uses a distinct 3 × 3 kernel filter with 1 × 1 padding to
evaluate both low-pass and high-pass images as input. Skin tone
varies from person to person and from face to face due to tem-
perature, lighting, brightness, and contrast to obtain more pre-
cise information on the feature map. So, a single image is
separated into four subbands, and each subband level is handed
to the convolution layer, which has 64,128,256 filters.

In this case, we used both upsampled and downsampled
photos to ensure that no information was lost in the given
input image. Because more detailed abstract information is
derived from images, the number of filters should be high.
Initially, the convolution network employs raw pixel infor-
mation in an image. In order to prevent it, we first built up
64 filters with 3 × 3 pixels so that each neuron could think
of its upper, lower, left, and right neighbourhoods as having
a total of eight neighbourhoods. The batch normalization
layer optimizes the input, making training simple and quick.
If given a negative input, the rectified linear unit returns
zero; otherwise, it gives the same value.

As a result, each subband was convolved with two sets of
three 3 × 3 convolution layers. The level 1 decomposed input
of 112 × 112 was then blended with the next three convolution
layers with the level 2 decomposed picture of 56 × 56 inputs

Input image
224 × 224

Level 1 112 × 112

Level 2 56 × 56

Level 3 28 × 28
Level 4 14 × 14

2

2

2

2
2

2 2

2

Figure 6: Convolution of RGB image.

7Journal of Diabetes Research



with filters of 64 and 128. The level 1 and 2 images are blended
with the input image of size 28, 28, and 3 × 3 convolution ker-
nels with 64,128 and 256 filter sizes. The level 1, level 2, and level
3 subimages are then combined using a 3 × 3 convolution neu-
ral network with 64,256 filters. Because conventional CNN’s
pooling layer only examines maximum values, we experience
higher information loss. We removed max pooling by adding
a batch normalization layer to avoid the issue above.

Finally, average pooling with a 7 × 7 kernel and a stride
1 × 1 is introduced. The feature vector of 2046 was then
added to two fully connected layers. Finally, the dropout
layer removes 50% of the feature vectors to speed up training
and classify the output.

2.5.1. Model Details.Wehave created amultiwavelet convolu-
tion neural network based on vision to categorise various skin
conditions and detect diabetes in the face region. The network
is built using the Keras toolkit and TensorFlow. At the net-
work’s finish, a dense classifier for the facial skin region is
added. The model information is displayed in Table 1. The
optimizer is Adam optimizer, and the environment is Google
Colab. The loss is sparse categorical loss, the learning rate is
0.001, and there are 10 epochs. The batch size for training
was 8, and the dropout rate was 0.5%. The model was trained
in the Google Colab TPU environment.

3. Results

Table 2 displays each model’s classification accuracy and
running time in various face skin regions. The findings show
that the four models categorise facial skin dermatological
issues. The VGG 19 model, ResNet-50 model, Inception
V3 model, and our model all produce high classification
accuracy ratings of 88.3%, 86.6%, 88.3%, and 98.3%, respec-

tively. The rationale for our suggested model’s maximum
classification accuracy is that we used up and downsampled
images. Therefore, no information is lost. The training time
of the models is short due to the small dataset. The training
time for the models is 32 s, 35 s, 40 s, and 30 s. Our dataset
contains 200 images. The entire dataset is divided into 70
and 30% of data. The evaluation metrics are shown in the
following equations:

Figure 7 shows the precision, recall, F1-score, and
accuracy results from our suggested model and VGG19,
ResNet-50, and Inception V3. Our suggested model pro-

duces high precision, recall, F1-score, and accuracy in
DM dermatological issues compared to previous CNN
models. The wavelet analyzer works like a microscope,

Table 2: Overall classification accuracy of VGG19, ResNet-50, and
Inception V3.

Model Classification accuracy Running time

VGG 19 [29] 88.3% 32 s

ResNet-50 [30] 86.6% 35 s

InceptionV3 [31] 88.3% 40 s

WTCNN (proposed) 98.3% 30 s

Table 1: Model implementation.

Input 224 × 224 × 3
Number of layers 59

Classes 4

Total parameters 21,494,340

Optimizer Adam

Learning rate 0.001

Batch size 8

Number of epochs 10

Dropout 0.5

Environment TPU/Google Colab

Platform Python 3.6

True positive TP = Themodel correctly identifies skin disease,

True negative TN = Themodel correctly identifies patients skin as healthy,

False positive FP = Themodel incorrectly identifies patients healthy skin affected with disease,

False negative FN = Themodel fails to detect the skin disease,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 − score =
2 × precision × recall

precision + recall
,

Accuracy =
TN + TP

TN + TP + FN + FP

7
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focusing on the smallest aspects of blood vessel damage.
Therefore, the accuracy of diseases is automatically
increased by our suggested model.

Figure 8 shows that the validation accuracy of the
MWTCNN model is greater than the training accuracy. As
a result, our model fits the data perfectly. However, the val-
idation accuracy of other models, like VGG 19, ResNet-50,
and Inception V3, could be higher than the training accu-
racy, indicating that all models overfit the data. Therefore,
we must increase the sample size and train the model over
more epochs. Our data was divided into two sets, with 30%
of the data utilised for the test set and 70% of the data used
for training. The performance of our network has been

enhanced by adding two dropout layers, and the model
now trains more quickly with 10 epochs.

The validation loss is used to fit new data into the model,
and the training loss illustrates how well the model fits the data.
The model is said to be underfitted to the data when the loss
function is large and the loss value does not decrease over time.
However, Figure 9 demonstrates that the training and valida-
tion losses are consistently decreasing, indicating that the
models are effectively fitted to categorise the facial region of skin
disorders and identify the patient’s diabetes with ease.

The overall accuracy of our suggested model is shown in
Figure 10. In comparison to [18, 25, 30, 31] and [29], our
model produces the highest accuracy. In Bell’s palsy, the
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Figure 7: Precision, recall, F1-score, and accuracy of (a) VGG 19, (b) ResNet-50, (c) Inception V3, and (d) VDMWTCNN.
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facial nerve passes through a narrow bone corridor that
paralyzes the facial region. In rubeosis faciei, the superfi-
cial venous plexus, such as a network of nerves located
in the face, is dilated due to increased blood flow, which
leads to redness in the face. Scleroderma damages the tiny
blood vessels near the skin’s surface, reduces facial move-
ment, and decreases mouth opening. Vitiligo occurs as
depigmentation of the skin due to increasing blood flow.
Random matrix theory (RM) [25] does not apply to all
skin pattern changes, such as a network of nerves, the
nerves in the corridor of bone and increasing blood flow
in a particular area of nerve because of its complex analy-
sis, such as eigenvalues, eigenvectors, and spectral analysis.

The assumptions of statistical properties for analyzing ran-
dom matrices are independent of matrix elements. Hence,
analyzing skin patterns using a random matrix may vary
depending on the nature of skin dryness and colour vari-
ations. RM led to inaccurate results for facial dermatolog-
ical issues. Temporal facial colour (TFC) [18] variation
videos are captured under noncontrollable lighting condi-
tions. Lighting conditions affect the appearance of rubeosis
faciei due to the vascular dilation of the superficial venous
plexus, and lighting conditions affect the blood flow
changes in the affected area. TFC causes inaccurate facial
colour changes and issues in showing accurate small blood
vessel damage.
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Hence, the above method produces less accuracy for all
facial dermatological issues. The laser speckle contrast imaging
(LSCI) [30] technique is used to visualize the blood flow in facial
nerves. However, LSCI leads to errors in detecting dermatolog-
ical changes in facial skin because of speckle size, speed of
motion, and slow blood flow movement. LSCI can monitor
blood flow changes in vitiligo, microvascular function in sclero-

derma, and blood flow changes in the superficial nerve of the
venous plexus. However, Bell’s palsy occurs due to swelling of
the facial nerve. Hence, LSCI is not applicable to Bell’s palsy.
The drawbacks mentioned above are avoided using the deep
learning model because MWTCNN directly works on pixels,
utilizes both upscaled and downscaled information in images,
and captures local and global features of skin lesions. Hence,

Table 3: Comparison with other models.

S. no Model Face region Accuracy (%)

1 [18] Temporal facial region

Bell palsy—78%

Rubeosis faciei—75%

Scleroderma—80%

Vitiligo—79%

2 [25] Random matrix theory

Bell palsy—79%

Rubeosis faciei—83%

Scleroderma—78%

Vitiligo—85%

3 [30] Laser speckle contrast imaging

Bell palsy—76%

Rubeosis faciei—82%

Scleroderma—84%

Vitiligo—86%

4 [31] Temperature and texture features

Bell palsy—78%

Rubeosis faciei—84%

Scleroderma—80%

Vitiligo—84%

5 Proposed MWTCNN

Bell palsy—99%

Rubeosis faciei—99%

Scleroderma—98%

Vitiligo—98%
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our proposed model produces a high accuracy of 98.3% com-
pared to other models. Table 3 shows the accuracy of facial der-
matological issues in different models.

Figure 11 shows the precision, recall, F1-score, and accu-
racy of the proposed and other CNN models. The convolu-
tional neural network model [37] needs a large amount of
data to classify facial skin dermatological issues. The CNN
model overfits the data because we used only a small number
of samples. The CNNmodel extracts features only from high-
quality images. The model is applied to facial dermatological
issues; it does not read the blood flow rate accurately. The
blood flow changes the facial features sometimes; the facial
skin may be dry, bright, and shiny. The CNN model cannot
extract features with dryness, brightness, and shining images.
The deep CNN with transformer model [38] uses all parts of
the input image by dividing the input image into tokens and
applying the transformers directly to the sequence of input
images. The deep CNN with transformer model does not
highlight the localized information, is unable to capture the
contextual information, and is applicable for large datasets.
In our dataset, we focused on small blood vessel damage,
and it was not captured accurately by the deep CNN trans-
former model. Hence, the model produces low accuracy, pre-
cision, recall, and F1-score values. The DermoExpert [39]
model contains preprocessing, segmentation, and classifica-
tion. The DermoExpert model uses sequences of input images
with three-level feature maps. The feature maps downsample
the input image and decrease the vanishing gradient problem.

The model used only downsampled images. Hence, the model
needs to produce more accuracy. The proposed MWTCNN
model uses spatial and spectral features and multiscale fea-
tures, and the model utilizes both upscaled and downscaled
information. Hence, there is no information loss. So, our
model produces 98.3% classification accuracy.

4. Discussions

The MWTCNN model was developed to assess DM severity
via the skin of the face. Skin lesions on the face are linked to
DM in this model. Damage to these capillaries in the face
due to DM leads to dermatological issues. It has been found
through a review of the relevant literature that many deep
learning models have been developed to analyse the skin
lesions associated with DM based on facial skin conditions
such as Bell’s palsy, rubeosis faciei, scleroderma, and vitiligo.
However, they do not have a causal relationship with
patients’ glucose levels. Fasting blood glucose, random blood
glucose, oral glucose tolerance test, and haemoglobin A1c
test are some examples of blood glucose measurements.
There are drawbacks to diabetic measures, such as higher
costs, less precise measurements, and a lack of standardisa-
tion of blood glucose levels. As a result, our proposed
deep-learning model examines a specific area of the patient’s
face and calculates the prevalence of diabetes in record time
for continuous glucose monitoring. Using both upscaled and
downscaled images, with the network preserving
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information and expanding the receptive field, is just one of
the many benefits of the proposed MWTCNN model. Com-
pared to other networks, such as VGG19, Inception V3, and
the ResNet-50 model, the proposed model achieves superior
accuracy, precision, and recall. The VGG19 needs more time
to train the images because of the greater number of param-
eters. The Inception V3 model employs a maximum pooling
operation, which increases the model’s computational com-
plexity and lengthens the time required for training to deter-
mine the optimal weight. As a result, knowledge about skin
lesions on the face has yet to be considered. More memory
is required for the ResNet-50 model. As a result, the pro-
posed model outperforms in terms of accuracy, sensitivity,
precision, and recall.

4.1. Limitations. Even though the proposed MWTCNN
model is trained using a small number of images, it uses
the spectral and spatial information of facial skin lesions.
In addition, the model is enhanced using regularisation tech-
niques to prevent overfitting and enhance precision and
training speed.

5. Conclusion

Many people, young and elderly, are affected by DM. DM
affects tiny blood arteries. The facial skin arteries are visible.
The skin area of the human face allows us to identify diabetic
patients quickly. We used a video-based vision diabetology
MWTCNN model to detect and categorise facial skin der-
matological issues, and we got the maximum recognition
accuracy of 98.3%. Deep learning algorithms are used in
the proposed vision diabetology method to analyse the early
signs of diabetes in the area of the facial skin. The suggested
methodology makes use of low-risk, economical techniques.
A small number of diabetic persons are involved in the pre-
liminary study. Future studies will include the amount of
infection and retinopathy, prediabetic, family history of dia-
betes, and diabetic levels.
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