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Background. The mortality rate among older persons with diabetes has been steadily increasing, resulting in significant health and
economic burdens on both society and individuals. The objective of this study is to develop and validate a predictive nomogram
for estimating the 5-year all-cause mortality risk in older persons with T2D (T2D). Methods. We obtained data from the National
Health and Nutrition Survey (NHANES). A random 7 : 3 split was made between the training and validation sets. By linking the
national mortality index up until December 31, 2019, we ensured a minimum of 5 years of follow-up to assess all-cause mortality.
A nomogram was developed in the training cohort using a logistic regression model as well as a least absolute shrinkage and
selection operator (LASSO) regression model for predicting the 5-year risk of all-cause mortality. Finally, the prediction
performance of the nomogram is evaluated using several validation methods. Results. We constructed a comprehensive
prediction model based on the results of multivariate analysis and LASSO binomial regression. These models were then
validated using data from the validation cohort. The final model includes four independent predictors: age, gender, estimated
glomerular filtration rate, and white blood cell count. The C-index values for the training and validation cohorts were 0.748
and 0.762, respectively. The calibration curve demonstrates satisfactory consistency between the two cohorts. Conclusions. The
newly developed nomogram proves to be a valuable tool in accurately predicting the 5-year all-cause mortality risk among
older persons with diabetes, providing crucial information for tailored interventions.

1. Introduction

The aging of the world’s population is rapidly accelerating,
with the number of people over 65 years old increasing from
461 million in 2004 to an estimated 2 billion in 2050. This
demographic shift has a profound impact on the planning
and provision of health and social care [1, 2]. Aging is the
primary risk factor for chronic diseases such as cancer, car-
diovascular diseases, diabetes, and neurodegenerative dis-
eases. These diseases now disproportionately affect the
elderly population and can impair sensory, motor, and cog-
nitive functions, leading to a reduced quality of life [3]. The
biggest medical challenge in treating a growing number of
elderly patients is dealing with multiple diseases [4, 5]. At
least half of elderly individuals over 70 years old suffer from
multiple diseases, leading to the concurrent use of five or

more medications (known as multidrug syndrome). This
phenomenon accounts for over 10% of the general popula-
tion and 30% of the elderly population [6, 7]. Furthermore,
as the incidence rate of chronic diseases continues to rise,
the demand for health and social care services will also
increase, resulting in an impact on health expenditure [8].

Currently, there are approximately 537 million adults
worldwide who suffer from diabetes, with over 90% of them
being T2D (T2D) patients. This has resulted in a high preva-
lence rate of adult diabetes, reaching 10.5% [9]. The mortality
risk for individuals with diabetes is 2-4 times higher compared
to nondiabetic individuals [10, 11]. Epidemiological studies
have shown that diabetes-related mortality is continuing to
rise, particularly among the elderly population. The far-
reaching impact of diabetes on mortality places a heavy bur-
den on families and society [12]. Early identification of high-
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risk groups and implementation of intervention measures can
help reduce the risk of premature death among elderly
patients with diabetes. Therefore, it is crucial to establish a
mortality prediction model specifically for elderly patients with
diabetes. Although a few studies have developed mortality pre-
diction models for the diabetic population [13], these studies
were limited in terms of their research population, follow-up
duration, and models used to calculate mortality risk. Conse-
quently, these models were not applicable to the general elderly
population with diabetes. To date, there have been no
population-based studies aimed at developing a risk prediction
model for mortality in elderly individuals with diabetes.

A nomogram is a visual statistical prognostic tool that is
widely used in the clinical evaluation of prognosis by calcu-
lating scores based on potential predictive factors [14]. It can
provide a quick assessment of clinical risk stratification and
prognosis judgment [15]. The objective of this study is to
establish and validate a 5-year all-cause mortality prediction
nomogram for elderly diabetes patients based on the Amer-
ican population.

2. Methods

2.1. Study Design and Population. The National Health and
Nutrition Examination Survey (NHANES) is an ongoing
research project that provides estimates of the population’s
nutrition and health status in the United States. This survey
uses a stratified, multistage probability design to recruit a
representative sample of the American population. Data is

gathered through structured interviews with individuals at
home, health screenings at mobile health screening centers,
and laboratory sample analysis [16].

Participants were diabetes patients aged 65 years and
above. T2D was defined as a diagnosed case of diabetes mel-
litus with insulin or oral hypoglycemic agents and fasting
glucose levels above 7.0mmol/L (126mg/dL) or glycated
hemoglobin A1c (HbA1c) levels above 6.5% [17]. Partici-
pants without follow-up results and information on key
candidate variables were excluded. The detailed selection
process is shown in Figure 1. The follow-up all-cause mor-
tality was determined using the national death index up until
December 31, 2019. The training and validation cohorts
were selected to provide at least 5 years of follow-up for
assessing all-cause mortality.

2.2. Potential Predictors. Information on participants’ socio-
demographic characteristics, smoking status, alcohol con-
sumption, use of diabetes medication, and hypertension
was collected using a standardized questionnaire. Partici-
pants who had smoked fewer than 100 cigarettes during
their lifetime were classified as nonsmokers, while those
who had smoked more than 100 cigarettes in the past but
had not quit were defined as current smokers. Former
smokers were those who had smoked more than 100 ciga-
rettes in the past but had quit. Drinking status was catego-
rized into three levels: nondrinker, low to moderate
drinker (less than 2 drinks per day for men and less than 1
drink per day for women), and heavy drinker (2 or more

Participants from NHANES
1999–2014
n = 5955

≥65 years old
(n = 4189)

Individuals age<65
(n = 1766)

Missing PIR (n = 389)
Missing biomarkers (n = 502)

Missing smoke and alcohol data (n = 1279)
Missing BMI, CVD and hypertension (n = 304)

Final participants
n = 1715

Validation cohort
n = 343

Training group
n = 1372

Survival
n = 1135 (82.8%)

Death
n = 237 (17.2%)

Survival
n = 285 (83.4%)

Death
n = 57 (16.6%)

Figure 1: Flow chart of the training and validation cohorts. PIR: poverty-to-income ratio; BMI: body mass index; CVD: cardiovascular disease.
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drinks per day for men and 1 or more drink per day for
women). Race/ethnicity was classified as non-Hispanic white
or other. Educational attainment was categorized as less than
high school, high school or equivalent, or college or higher.
Poverty income ratio (PIR) scores were defined as 0-1.0,
1.0-3.0, and greater than or equal to 3.01. BMI was calcu-
lated as weight divided by height squared (kg/m2) and is
classified as <25.00, 25.0-29.99, and greater than or equal
to 30.00. We also included a number of laboratory markers
including lymphocytes, total cholesterol, triglycerides, uric
acid, estimated glomerular filtration rate measured by creat-
inine, albumin, alanine aminotransferase, and aspartate ami-
notransferase. All of the above indicators were obtained
from the NHANES database and measured as previously
described in the literature [15, 18]. To avoid possible bias,
variables were excluded if they had more than 20% missing
values. Variables with less than 20% missing data were proc-
essed for multiple imputations using the random forest algo-
rithm (trained by other nonmissing variables) through the
“mice” package of RStudio software [19, 20].

2.3. Statistical Analyses. Statistical analyses were performed
using SPSS (Version 26; IBM Corp, Armonk, NY) and RStu-
dio software. P value < 0.05 (two-sided) were considered sig-
nificant. Patients were randomly divided at a ratio of 4 : 1
into the training and validation cohort. Differences between
them were analyzed. Categorical variables were presented as
numbers and percentages, and continuous variables were
presented as mean ± standard deviation (SD). Differences
between the two cohorts were explored using the chi-
squared test for categorical variables and the independent t
-test for continuous variables.

To construct nomograms, we compared differences
between whether patients with T2D died at 5 years in the
training cohort and then used multivariate logistic regres-
sion analyses to identify independent factors for T2D,
including variables with a P value of < 0.05 in univariate
analyses; the odds ratio (OR) and 95% confidence interval
(CI) of each risk factor in the logistic regression model were
calculated. Finally, in a linear regression model, the least
absolute shrinkage and selection operator (LASSO) regres-
sion analysis method is utilized for shrinkage and variable
selection. Firstly, the data is analyzed using the training set
and the LASSO regression method. The LASSO regression
analysis is then applied to select four independent variables
based on lambda.min, which determines effective risk pre-
dictors suitable for predicting 5-year all-cause mortality in
individuals with T2D.

Performances of the nomogram model were assessed in
the training and validation cohorts, respectively. Firstly, the
performance of the nomogram model was evaluated in the
training and validation cohorts, respectively. First, the dis-
criminative power of the nomogram was evaluated using
the area under the curve (AUC) of the receiver operating
characteristic curve (ROC). An AUC of 1.0 was considered
to indicate that the nomogram had perfect discrimination
ability. Secondly, the calibration of the nomogram was eval-
uated by the Hosmer-Lemeshow goodness-of-fit test
(P > 0 05 indicates good calibration) [21]. Thirdly, by plot-

ting the calibration curve, we analyzed the relationship
between observed and predicted probability in the training
and validation cohort. Moreover, a model for predicting
the maximum net benefit [22] was developed using the deci-
sion curve analysis (DCA) method.

3. Results

3.1. Baseline Characteristics and Predictors of Mortality. The
final study included 1372 participants in the training cohort
and 343 participants in the validation cohort. Over a 5-year
follow-up period, 237 cases (17.3%) in the training cohort
and 57 cases (16.6%) in the validation cohort resulted in
death. The descriptive statistics for both groups are pre-
sented in Table 1.

In the univariate logistic regression model, all potential
predictors, except for race, education level, smoking status,
alcohol consumption status, PIR, hypertension, CVD, lym-
phocytes, total cholesterol, uric acid, total cholesterol, ALT,
and HDL, showed an association with mortality (Table 2).
Table 2 displays the models constructed using univariate
and multivariate logistic regression for all candidate predic-
tive factors. Additionally, the relevant characteristic vari-
ables mentioned above were included in the LASSO
regression analysis (Figures 2(a) and 2(b)). Based on the data
from the development group, four nonzero potential predic-
tive factors were selected from the results of the LASSO
regression analysis. These factors were age, gender, albumin,
and EGFR. Ultimately, the predictive model was constructed
using the combined results of multivariate logistic regression
and LASSO regression.

3.2. Development of Nomogram. According to the results of
the final model, we have constructed a nomogram for pre-
dicting the probability of all-cause mortality in elderly indi-
viduals with diabetes over a 5-year period (Figure 3). The
column chart consists of seven axes, where axes 2-5 repre-
sent each prognostic factor included in the final model. Each
predictor is allocated a different weighted score in the nomo-
gram. Axes 6-7 demonstrate that a higher total score is
indicative of an increased risk of all-cause mortality over
the course of five years.

3.3. Internal and External Validation. We used the receiver
operating characteristic (ROC) curve to assess the discrimi-
nability of the model. In the training cohort, the AUC of
the model was 0.748 (95% CI: 0.705-0.791) (Figure 4(a)).
The calibration curve, which closely follows the diagonal,
indicates good consistency between the predicted results of
the model and the actual results (Figure 5(a)). In the valida-
tion cohort, the AUC of the model was 0.762 (95% CI:
0.694-0.831) (Figure 4(b)). Additionally, the calibration
chart demonstrates that the model fits well with the 5-year
all-cause mortality rate (Figure 5(b)).

Figure 6 presents the results of the decision curve analy-
sis (DCA) curve for both the development and validation
groups. The dashed line represents the model, the gray line
represents the net benefit for all patients with DR, and the
black line represents the net benefit for patients without
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Table 1: Baseline characteristics in training and validation cohorts.

Variables
Total Training cohort Validation cohort P

N = 1715 N = 1372 N = 343
Age (years) 73 11 ± 5 56 73 16 ± 5 62 72 93 ± 5 30 0.649

Sex, n (%) 0.405

Male 857 (49.97) 693 (50.51) 164 (47.81)

Female 858 (50.03) 679 (49.49) 179 (52.19)

Race, n (%) 0.810

Non-Hispanic White 710 (41.4) 573 (41.76) 137 (39.94)

Non-Hispanic Black 368 (21.46) 296 (21.57) 72 (20.99)

Other Hispanic 440 (25.66) 345 (25.15) 95 (27.70)

Other races 197 (11.49) 158 (11.52) 39 (11.37)

Education level, n (%) 0.633

Less than high school 700 (40.82) 567 (41.33) 133 (38.78)

High school diploma or GED 409 (23.85) 327 (23.83) 82 (23.91)

More than high school 606 (35.34) 478 (34.84) 128 (37.32)

Smoking status, n (%) 0.694

Never smoker 849 (49.5) 677 (49.34) 172 (50.15)

Ever smoker 545 (31.78) 442 (32.22) 103 (30.03)

Current smoker 321 (18.72) 253 (18.44) 68 (19.83)

Drinking status, n (%) 0.298

Nondrinker 886 (51.66) 699 (50.95) 187 (54.52)

Low-to-moderate drinker 174 (10.15) 146 (10.64) 28 (8.16)

Heavy drinker 655 (38.19) 527 (38.41) 128 (37.32)

BMI (kg/m2), n (%) 0.965

<25.00 343 (20) 276 (20.12) 67 (19.53)

25.00–29.99 637 (37.14) 508 (37.03) 129 (37.61)

≥30.0 735 (42.86) 588 (42.86) 147 (42.86)

PIR, n (%) 0.470

<1.0 314 (18.31) 250 (18.22) 64 (18.66)

1.0-3.0 927 (54.05) 751 (54.74) 176 (51.31)

>3.0 474 (27.64) 371 (27.04) 103 (30.03)

Medication use 0.629

No 586 (34.17) 465 (33.89) 121 (35.28)

Yes 1129 (65.83) 907 (66.11) 222 (64.72)

Hypertension 1190 (69.39) 935 (68.15) 255 (74.34) 0.062

CVD 187 (10.9) 143 (10.4) 44 (12.8) 0.469

Antihyperlipidemic drug 730 (42.57) 572 (41.69) 158 (46.06) 0.076

Lymphocyte 2 03 ± 0 84 2 07 ± 0 85 1 97 ± 0 75 0.363

AST 24 97 ± 11 08 25 05 ± 10 77 24 66 ± 12 24
Total cholesterol 187 89 ± 42 24 174 13 ± 40 83 191 33 ± 41 9 0.630

Uric acid 5 82 ± 1 53 5 82 ± 1 54 5 80 ± 1 49
Triglyceride 173 45 ± 103 29 173 38 ± 101 65 173 71 ± 109 75
ALT 22 23 ± 11 77 22 74 ± 11 59 22 22 ± 11 80
EGFR 73 19 ± 47 95 73 51 ± 48 13 71 95 ± 48 92 0.711

Albumin 41 42 ± 3 25 41 46 ± 3 23 41 23 ± 3 29
High-density lipoprotein 50 58 ± 14 34 50 47 ± 14 21 51 02 ± 14 87 0.538

Abbreviations: PIR: poverty-to-income ratio; BMI: body mass index; CVD: cardiovascular disease; EGFR: estimated glomerular filtration rate; ALT: alanine
aminotransferase; AST: aspartate aminotransferase.
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Table 2: Univariate and multivariate logistic regression analyses of the training set.

Univariate logistic regression Multivariate logistic regression
Characteristic OR (95% CI) P value OR (95% CI) P value

Age (years) 1.16 (1.13-1.20) <0.001 1.16 (1.12-1.19) <0.001
Sex, n (%)

Male Ref. Ref.

Female 0.60 (0.45-0.80) <0.001 0.58 (0.41-0.80) 0.001

EGFR 1.00 (1.00-1.01) 0.031 1.00 (1.00-1.01) 0.014

Albumin 0.87 (0.84-0.91) <0.001 0.88 (0.84-0.92) <0.001
Race, n (%)

Non-Hispanic White Ref. Ref.

Non-Hispanic Black 1.00 (0.65, 1.55) 0.999 NA NA

Other Hispanic 1.05 (0.63, 1.74) 0.851 NA NA

Other races 1.13 (0.78, 1.63) 0.515 NA NA

Education level, n (%)

Less than high school Ref. Ref.

High school diploma or GED 0.87 (0.60, 1.24) 0.865 NA NA

More than high school 0.79 (0.54, 1.17) 0.792 NA NA

Smoking status, n (%)

Never smoker Ref. Ref.

Ever smoker 1.13 (0.77, 1.66) 0.528 NA NA

Current smoker 0.99 (0.65, 1.49) 0.952 NA NA

Drinking status, n (%)

Nondrinker Ref. Ref.

Low-to-moderate drinker 1.01 (0.75, 1.36) 0.959 NA NA

Heavy drinker 0.91 (0.55, 1.51) 0.714 NA NA

BMI (kg/m2), n (%)

<25.00 Ref. Ref.

25.00–29.99 0.70 (0.48-1.01) 0.051 0.82 (0.55-1.23) 0.344

≥30.0 0.75 (0.49, 1.16) 0.255 0.78 (0.53, 1.20) 0.297

PIR, n (%)

<1.0 Ref. Ref.

1.0-3.0 1.30 (0.81, 2.09) 0.959 NA NA

>3.0 1.29 (0.91, 1.85) 0.714 NA NA

Medication use 1.07 (0.82, 1.39) 0.641 NA NA

Hypertension 0.94 (0.69, 1.28) 0.685 NA NA

CVD 0.80 (0.54, 1.21) 0.291 NA NA

Antihyperlipidemic drug 1.42 (1.06-1.90) 0.019 1.18 (0.86-1.62) 0.316

Lymphocyte 1.03 (0.96, 1.10) 0.392 NA NA

AST 1.01 (1.00-1.02) 0.030 1.01 (1.00-1.02) 0.089

Total cholesterol 1.00 (0.99, 1.00) 0.942 NA NA

Uric acid 1.07 (0.98, 1.18) 0.147 NA NA

Triglyceride 1.00 (0.99, 1.00) 0.813 NA NA

ALT 0.99 (0.98, 1.01) 0.782 NA NA

High-density lipoprotein 1.01 (0.99, 1.02) 0.389 NA NA

Hosmer-Lemeshow test χ2 = 6 954 0.542

Abbreviations: PIR: poverty-to-income ratio; BMI: body mass index; CVD: cardiovascular disease; EGFR: estimated glomerular filtration rate; ALT: alanine
aminotransferase; AST: aspartate aminotransferase.

5Journal of Diabetes Research



–8

0.75

0.80

0.85

0.90

–7 –6 –5
Log (�)

30 29 29 27 27 24 19 12 9 7 6 2 1 03
Bi

no
m

ia
l d

ev
ia

nc
e

–4 –3 –2

(a)

30 29 25 14 7 2 0

–8

–0.4

–0.2

0.0

0.2

–7 –6 –5
Log (�)

C
oe

ffi
ci

en
ts

–4 –3 –2

(b)

Figure 2: (a) Cross-validation plot for the penalty term. (b) Plot for LASSO regression coefficients.
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DR. The area between the black and gray lines in the model
curve represents the clinical applicability of the model. If the
dashed line is above the black and gray lines, it indicates that
the range of values covered by the dashed line provides
benefits.

4. Discussion

In the NHANES follow-up cohort, our study developed and
validated a novel and practical nomogram diabetes predic-
tion model for estimating the 5-year risk of all-cause death
from T2D in older adults. We used the logistic regression
model and lasso regression to identify four factors predicting

5-year mortality: age, sex, EGFR, and albumin. The model
revealed that male sex, older age, higher EGFR, and lower
albumin were key factors in determining the 5-year all-
cause mortality of T2D patients, which were consistent with
risk factors reported in previous studies [23–26].

In recent years, nomograms have been increasingly uti-
lized to diagnose and predict various diseases, including can-
cer [27], myocardial infarction [28], and hypertension [15].
Utilizing nomograms simplifies the interpretation of rele-
vant risk factors, aiding clinicians and patients in navigating
disease challenges. With the increasing life expectancy and
the growing population of elderly patients with diabetes, it
is imperative to develop a universal risk assessment tool
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Figure 5: (a) Calibration curve for the training cohort. (b) Calibration curve for the validation cohort.
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for all-cause mortality in this population. However, no pre-
vious study has constructed a nomogram to predict 5-year
all-cause mortality in elderly patients with diabetes. There-
fore, our study is aimed at constructing a prognostic nomo-
gram incorporating demographic characteristics and routine
laboratory parameters, providing important prognostic
information to guide the development of individualized
intervention strategies aimed at reducing the risk of prema-
ture death in older patients with diabetes.

One important result of this study is the internal and exter-
nal validation of our model. We observed that the nomogram
exhibited a discrimination ability greater than 0.7 in distin-
guishing 5-year all-cause death from T2D, and the predicted
probability of all-cause death closely aligned with the actual
probability along the 45-degree diagonal. These findings dem-
onstrate the effectiveness of our prediction model.

According to our study, the 5-year all-cause mortality of
elderly patients with T2D was negatively correlated with albu-
min levels, suggesting that worse body nutrition is associated
with higher mortality rates. Many studies have confirmed
the impact of high and low albumin levels on the survival of
diabetic patients, with the mortality rate being higher in the
group with low albumin levels [29, 30]. Arques [31] reported
a reduced risk of T2D with high serum albumin concentra-
tions. Similar to previous studies, our study found a negative
correlation between serum albumin concentration and T2D,
as well as associations between serum albumin concentration
and the prognosis of cardiovascular disease [31], cancer mor-
tality [32], and all-cause mortality [33]. Additionally, in our
study, T2D participants with higher uric acid (UA) levels
had higher all-cause mortality rates.

Although many previous studies have addressed the rela-
tionship between estimated glomerular filtration rate
(EGFR) and all-cause mortality, most of them have focused
on the general population [34, 35]. Some studies, however,
have investigated the relationship between EGFR and all-
cause mortality specifically in diabetic patients. For instance,
in a large prospective study in China that recruited 4421
patients, all-cause mortality increased from 1.2% (95% CI
0.8-1.7) to 18.3% (9.1-27.5) (P < 0 001) after a median
follow-up period of 39.4 months, as renal function deterio-
rated from stage 1 (EGFR ≥ 90mL/min/1.73m2) to stage 4
(15-29mL/min/1.73m2) [36]. Similarly, the results of
another randomized controlled trial involving 8879 patients
showed that in diabetic patients, an annual sharp decline in
EGFR was significantly associated with the risk of all-cause
mortality [37]. These findings align with our results regard-
ing the relationship between EGFR and all-cause mortality
in diabetic patients based on the prediction model.

Age emerged as the most influential risk factor for
diabetes-related death. In a large cohort study involving
435,369 diabetic patients, it was found that all-cause mortal-
ity and cardiovascular mortality increased exponentially
with age, consistent with a Swedish study in 2015 [38]. A
recent study in Australia included 743,709 diabetic patients
registered from 1997 to 2011 and explored the impact of
age at diagnosis and disease duration on diabetes mortality.
The study ultimately found that young-onset T2D increased
the risk of death, primarily through early cardiovascular dis-

ease death. Therefore, efforts to delay the onset of T2D may
help reduce mortality rates [39].

Gender is also an important factor in T2D-related death.
Wang et al. studied 2535 NHANES participants with con-
firmed diabetes between 1999 and 2018 and observed that
the risk of all-cause mortality and cardiac mortality was sig-
nificantly higher in men compared to women, with or with-
out diabetes. Male patients with T2D also have a higher risk
of microvascular and macrovascular complications com-
pared to female patients with diabetes. Previous studies have
suggested that sex hormones, like estrogen and androgen,
may contribute to the sex difference in diabetes-related mor-
tality. The relative risk for women may also be higher, espe-
cially for mortality related to cardiovascular disease and
kidney disease [40, 41].

However, our study has certain limitations. Firstly, it is
important to note that except for selected variables in the
questionnaire survey, all of our data originates from the
health examination conducted by NHANES in the family
interview and mobile screening center. This reliance on a
single data source may introduce potential inaccuracies
and compromise the objectivity of our results. Secondly, cer-
tain potential predictors, such as diet and exercise, were not
considered in our model. This omission limits the compre-
hensiveness of our analysis and may impact the overall find-
ings. Thirdly, due to the extensive database of NHANES
variables, it was not feasible to include all relevant covariates
related to diabetes. Consequently, some important variables
might have been overlooked during the selection process.
Fourthly, the lack of follow-up of some diabetic patients in
our study may have affected the results of the nomogram.
Lastly, our study lacks external validation. In order to estab-
lish the reliability of our findings, it is necessary to validate
the results using external datasets.

5. Conclusion

The newly developed nomogram proves to be a valuable tool
in accurately predicting the 5-year all-cause mortality risk
among elderly patients with diabetes, providing crucial
information for tailored interventions.

Data Availability

All data were included in the NHANES database (https://
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Ethical Approval

This study involves human participants. The National
Center for Health Statistics Research Ethics Review Board
approved all NHANES protocols (protocol numbers: Proto-
col #98-12, Protocol #2005-06, and Protocol #2011-17).

Consent

Participants gave informed consent to participate in the
study before taking part.

8 Journal of Diabetes Research

https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm


Disclosure

The funders had no role in the design and conduct of the
study; in the collection, analysis, and interpretation of the data;
or in the preparation, review, or approval of the manuscript.

Conflicts of Interest

No potential conflicts of interest relevant to this article were
reported.

Authors’ Contributions

Pan D. wrote the first draft of the article. Ning Y. and Guo J.
conducted the analyses. Wu S., Wang J., and Wang C. con-
ceived the study design. Guo J. and Gu Y. decided on the
final draft. All authors contributed to the interpretation of
the results and critical revision of the manuscript for impor-
tant intellectual content. Gu Y. is the guarantor of this work
and, as such, has full access to all the data in the study and
takes responsibility for the integrity of the data and the accu-
racy of the data analysis.

Acknowledgments

We would like to thank the data collection team and
NHANES administration for the related data available
through the NHANES website. This study was supported
by grants from the National Key Research and Development
Program of China (No. 2021YFC2500500).

References

[1] A. Clegg, J. Young, S. Iliffe, M. O. Rikkert, and K. Rockwood,
“Frailty in elderly people,” The Lancet, vol. 381, no. 9868,
pp. 752–762, 2013.

[2] L. Partridge, J. Deelen, and P. E. Slagboom, “Facing up to the
global challenges of ageing,” Nature, vol. 561, no. 7721,
pp. 45–56, 2018.

[3] T. Niccoli and L. Partridge, “Ageing as a risk factor for dis-
ease,” Current Biology, vol. 22, no. 17, pp. R741–R752, 2012.

[4] K. Barnett, S. W. Mercer, M. Norbury, G. Watt, S. Wyke, and
B. Guthrie, “Epidemiology of multimorbidity and implications
for health care, research, and medical education: a cross-
sectional study,” Lancet, vol. 380, no. 9836, pp. 37–43, 2012.

[5] A. Marengoni, S. Angleman, R. Melis et al., “Aging with multi-
morbidity: a systematic review of the literature,” Ageing
Research Reviews, vol. 10, no. 4, pp. 430–439, 2011.

[6] T. Lucchi, “Dyslipidemia and prevention of atherosclerotic
cardiovascular disease in the elderly,” Minerva Medica,
vol. 112, no. 6, pp. 804–816, 2021.

[7] P. Dovjak, “Polypharmacy in elderly people,” Wiener Medizi-
nische Wochenschrift (1946), vol. 172, no. 5-6, pp. 109–113,
2022.

[8] M. Lopreite and M. Mauro, “The effects of population ageing
on health care expenditure: a Bayesian VAR analysis using
data from Italy,” Health Policy, vol. 121, no. 6, pp. 663–674,
2017.

[9] GBD 2019 Diabetes Mortality Collaborators, “Diabetes mor-
tality and trends before 25 years of age: an analysis of the

Global Burden of Disease Study 2019,” The Lancet Diabetes
and Endocrinology, vol. 10, no. 3, pp. 177–192, 2022.

[10] Z. Wan, J. Guo, A. Pan, C. Chen, L. Liu, and G. Liu, “Associa-
tion of serum 25-hydroxyvitamin D concentrations with all-
cause and cause-specific mortality among individuals with dia-
betes,” Diabetes Care, vol. 44, no. 2, pp. 350–357, 2021.

[11] D. Pan, J. Guo, Z. Su et al., “Association of the controlling
nutritional status score with all-cause mortality and cancer
mortality risk in patients with type 2 diabetes: NHANES
1999-2018,” Diabetology and Metabolic Syndrome, vol. 15,
no. 1, p. 175, 2023.

[12] F. Cacciatore, G. Testa, G. Galizia et al., “Clinical frailty and
long-term mortality in elderly subjects with diabetes,” Acta
Diabetologica, vol. 50, no. 2, pp. 251–260, 2013.

[13] J. Sabbatinelli, S. Castiglione, F. Macrì et al., “Circulating levels
of AGEs and soluble RAGE isoforms are associated with all-
cause mortality and development of cardiovascular complica-
tions in type 2 diabetes: a retrospective cohort study,” Cardio-
vascular Diabetology, vol. 21, no. 1, p. 95, 2022.

[14] Y.Wang, J. Li, Y. Xia et al., “Prognostic nomogram for intrahe-
patic cholangiocarcinoma after partial hepatectomy,” Journal
of Clinical Oncology, vol. 31, no. 9, pp. 1188–1195, 2013.

[15] H. Zhang, W. Tian, and Y. Sun, “Development, validation, and
visualization of a web-based nomogram to predict 5-year mor-
tality risk in older adults with hypertension,” BMC Geriatrics,
vol. 22, no. 1, p. 392, 2022.

[16] K. Thomson, S. Rice, O. Arisa et al., “Oral nutritional interven-
tions in frail older people who are malnourished or at risk of
malnutrition: a systematic review,” Health Technology Assess-
ment, vol. 26, no. 51, pp. 1–112, 2022.

[17] J. Lu, K. Chen,W. Chen et al., “Association of serum homocys-
teine with cardiovascular and all-cause mortality in adults with
diabetes: a prospective cohort study,” Oxidative Medicine and
Cellular Longevity, vol. 2022, Article ID 2156483, 11 pages,
2022.

[18] A. S. Levey, L. A. Stevens, C. H. Schmid et al., “A new equation
to estimate glomerular filtration rate,” Annals of Internal Med-
icine, vol. 150, no. 9, pp. 604–612, 2009.

[19] P. C. Austin, I. R.White, D. S. Lee, and S. van Buuren, “Missing
data in clinical research: a tutorial on multiple imputation,”
Canadian Journal of Cardiology, vol. 37, no. 9, pp. 1322–
1331, 2021.

[20] K. Blazek, A. van Zwieten, V. Saglimbene, and A. Teixeira-
Pinto, “A practical guide to multiple imputation of missing
data in nephrology,” Kidney International, vol. 99, no. 1,
pp. 68–74, 2021.

[21] G. Nattino, M. L. Pennell, and S. Lemeshow, “Assessing the
goodness of fit of logistic regression models in large samples:
a modification of the Hosmer-Lemeshow test,” Biometrics,
vol. 76, no. 2, pp. 549–560, 2020.

[22] B. Van Calster, L. Wynants, J. F. M. Verbeek et al., “Reporting
and interpreting decision curve analysis: a guide for investiga-
tors,” European Urology, vol. 74, no. 6, pp. 796–804, 2018.

[23] T. C. Li, C. I. Li, C. S. Liu et al., “Development and validation of
prediction models for the risks of diabetes-related hospitaliza-
tion and in-hospital mortality in patients with type 2 diabetes,”
Metabolism, vol. 85, pp. 38–47, 2018.

[24] W. H. Lin, C. H. Hsu, H. F. Chen, C. C. Liu, and C. Y. Li, “Mor-
tality of patients with type 2 diabetes in Taiwan: a 10-year
nationwide follow-up study,” Diabetes Research and Clinical
Practice, vol. 107, no. 1, pp. 178–186, 2015.

9Journal of Diabetes Research



[25] G. Penno, E. Orsi, A. Solini et al., “Renal hyperfiltration is
independently associated with increased all-cause mortality
in individuals with type 2 diabetes: a prospective cohort
study,” BMJ Open Diabetes Research & Care, vol. 8, no. 1, arti-
cle e001481, 2020.

[26] S. Seidu, S. K. Kunutsor, and K. Khunti, “Serum albumin, car-
diometabolic and other adverse outcomes: systematic review
and meta-analyses of 48 published observational cohort stud-
ies involving 1, 492, 237 participants,” Scandinavian Cardio-
vascular Journal, vol. 54, no. 5, pp. 280–293, 2020.

[27] S. Chen, X. Chen, R. Nie et al., “A nomogram to predict prog-
nosis for gastric cancer with peritoneal dissemination,” Chi-
nese Journal of Cancer Research, vol. 30, no. 4, pp. 449–459,
2018.

[28] Z. Ye, Y. Xu, L. Tang et al., “Predicting long-term prognosis
after percutaneous coronary intervention in patients with
new onset ST-elevation myocardial infarction: development
and external validation of a nomogram model,” Cardiovascu-
lar Diabetology, vol. 22, no. 1, p. 87, 2023.

[29] A. Phillips, A. G. Shaper, and P. H. Whincup, “Association
between serum albumin and mortality from cardiovascular
disease, cancer, and other causes,” Lancet, vol. 334, no. 8677,
pp. 1434–1436, 1989.

[30] M. E. Suliman, P. Stenvinkel, P. Bárány, O. Heimbürger,
B. Anderstam, and B. Lindholm, “Hyperhomocysteinemia
and its relationship to cardiovascular disease in ESRD: influ-
ence of hypoalbuminemia, malnutrition, inflammation, and
diabetes mellitus,” American Journal of Kidney Diseases,
vol. 41, no. 3, pp. S89–S95, 2003.

[31] S. Arques, “Human serum albumin in cardiovascular dis-
eases,” European Journal of Internal Medicine, vol. 52, pp. 8–
12, 2018.

[32] W. Peng, C. Zhang, Z. Wang, and W. Yang, “Prediction of all-
cause mortality with hypoalbuminemia in patients with heart
failure: a meta-analysis,” Biomarkers, vol. 24, no. 7, pp. 631–
637, 2019.

[33] E. L. Barr, A. Reutens, D. J. Magliano et al., “Cystatin C esti-
mated glomerular filtration rate and all-cause and cardiovas-
cular disease mortality risk in the general population:
AusDiab study,” Nephrology (Carlton, Vic.), vol. 22, no. 3,
pp. 243–250, 2017.

[34] M. E. Grams, S. P. Juraschek, E. Selvin et al., “Trends in the
prevalence of reduced GFR in the United States: a comparison
of creatinine- and cystatin C-based estimates,” American Jour-
nal of Kidney Diseases, vol. 62, no. 2, pp. 253–260, 2013.

[35] W. Y. So, A. P. Kong, R. C. Ma et al., “Glomerular filtration
rate, cardiorenal end points, and all-cause mortality in type 2
diabetic patients,” Diabetes Care, vol. 29, no. 9, pp. 2046–
2052, 2006.

[36] M. Oshima, M. Jun, T. Ohkuma et al., “The relationship
between eGFR slope and subsequent risk of vascular outcomes
and all-cause mortality in type 2 diabetes: the ADVANCE-ON
study,” Diabetologia, vol. 62, no. 11, pp. 1988–1997, 2019.

[37] M. Tancredi, A. Rosengren, A. M. Svensson et al., “Excess
mortality among persons with type 2 diabetes,” The New
England Journal of Medicine, vol. 373, no. 18, pp. 1720–1732,
2015.

[38] J. J. Yang, D. Yu, W. Wen et al., “Association of diabetes with
all-cause and cause-specific mortality in Asia,” JAMA Network
Open, vol. 2, no. 4, article e192696, 2019.

[39] S. Wang, J. C. Guo, X. Liu et al., “Sexual dimorphism in mito-
chondrial dysfunction and diabetes mellitus: evidence from a
population-based cohort study,”Diabetology &Metabolic Syn-
drome, vol. 15, no. 1, p. 114, 2023.

[40] Prospective Studies Collaboration and Asia Pacific Cohort
Studies Collaboration, “Sex-specific relevance of diabetes to
occlusive vascular and other mortality: a collaborative meta-
analysis of individual data from 980 793 adults from 68 pro-
spective studies,” The Lancet Diabetes and Endocrinology,
vol. 6, no. 7, pp. 538–546, 2018.

[41] A. S. Almasaudi, R. D. Dolan, C. A. Edwards, and D. C.
McMillan, “Hypoalbuminemia reflects nutritional risk, body
composition and systemic inflammation and is independently
associated with survival in patients with colorectal cancer,”
Cancers (Basel), vol. 12, no. 7, p. 1986, 2020.

10 Journal of Diabetes Research


	Unveiling the Hidden Burden: Estimating All-Cause Mortality Risk in Older Individuals with Type 2 Diabetes
	1. Introduction
	2. Methods
	2.1. Study Design and Population
	2.2. Potential Predictors
	2.3. Statistical Analyses

	3. Results
	3.1. Baseline Characteristics and Predictors of Mortality
	3.2. Development of Nomogram
	3.3. Internal and External Validation

	4. Discussion
	5. Conclusion
	Data Availability
	Ethical Approval
	Consent
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments



