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Background. Diabetic keratopathy (DK) poses a significant challenge in diabetes mellitus, yet its molecular pathways and effective
treatments remain elusive. The aim of our research was to explore the pyroptosis-related genes in the corneal epithelium of the
streptozocin-induced diabetic rats. Methods. After sixteen weeks of streptozocin intraperitoneal injection, corneal epithelium
from three diabetic rats and three normal groups underwent whole-transcriptome sequencing. An integrated bioinformatics
pipeline, including differentially expressed gene (DEG) identification, enrichment analysis, protein-protein interaction (PPI)
network, coexpression, drug prediction, and immune deconvolution analyses, identified hub genes and key drivers in DK
pathogenesis. These hub genes were subsequently validated in vivo through RT-qPCR. Results. A total of 459 DEGs were
screened out from the diabetic group and nondiabetic controls. Gene Set Enrichment Analysis highlighted significant
enrichment of the NOD-like receptor, Toll-like receptor, and NF-kappa B signaling pathways. Intersection of DEGs and
pyroptosis-related datasets showed 33 differentially expressed pyroptosis-related genes (DEPRGs) associated with pathways
such as IL-17, NOD-like receptor, TNF, and Toll-like receptor signaling. A competing endogenous RNA network comprising
16 DEPRGs, 22 lncRNAs, 13 miRNAs, and 3 circRNAs was constructed. After PPI network, five hub genes (Nfkb1, Casp8,
Traf6, Ptgs2, and Il18) were identified as upregulated in the diabetic group, and their expression was validated by RT-qPCR in
streptozocin-induced rats. Immune infiltration characterization showed that diabetic corneas owned a higher proportion of resting
mast cells, activated NK cells, and memory-resting CD4 T cells. Finally, several small compounds including all-trans-retinoic acid,
Chaihu Shugan San, dexamethasone, and resveratrol were suggested as potential therapies targeting these hub genes for DK.
Conclusions. The identified and validated hub genes, Nfkb1, Casp8, Traf6, Ptgs2, and Il18, may play crucial roles in DK
pathogenesis and serve as therapeutic targets.

1. Introduction

Diabetic keratopathy (DK) is a prevalent diabetic ocular com-
plication, including superficial keratopathy, delayed epithelial
wound healing, persistent epithelial defects, and recurrent
ulceration, potentially leading to sight-threatening conse-

quences [1, 2]. Current estimates suggest that DK occurs in
47-64% of all diabetic people [3]. With the global increase in
the prevalence of diabetes, it could impose a heavy burden
on public health worldwide. The pathogenesis of DK involves
multiple cell types and events, such as decreased tear secretion,
damaged innervation, weakened cell junctions, and impaired
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wound healing responses [4, 5]. Currently, the primary
therapeutic strategies for DK focus on the promotion of epi-
thelial repair with growth factors and artificial tears. The lack
of explicit interventions targeting pathogenic mechanisms
underscores our dedication to comprehending the intricate
mechanisms associated with DK.

Hyperglycemia-induced excessive or chronic inflamma-
tion constitutes a pivotal factor in the pathogenesis of DK,
leading to subsequent damage to the corneal “epineuroim-
mune” functional unit. As emphasized in literature [6], cell
death and inflammation are intricately linked responses.
Inflammasome-mediated pyroptosis is an important cell
death process closely linked to diabetes and its complica-
tions, such as diabetic nephropathy [7], diabetic cardiopathy
[8], and diabetic retinopathy [9]. Abnormal signals can stim-
ulate cells to aggregate pattern recognition receptors, apo-
ptosis speck-like protein, and pro-caspase-1 protein into a
complex inflammasome. Moreover, the cleaved gasdermin
D forms membrane pores, leading to cell swelling and lysis.
This process further regulates the inflammatory cascade
reaction by releasing proinflammatory cytokines like IL-1β
and IL-18 [10]. In recent years, pyroptosis, a proinflammatory
programmed cell death process, has emerged as a potential
mechanism contributing to DK [10]. Among them, NLRP3
is the most extensively studied inflammasome within the pat-
tern recognition receptor family. Existing literature has
reported the association between the NLRP3 inflammasome
and DK [11]. Local application of recombinant IL-receptor
antagonist has been shown to alleviate impaired diabetic
corneal wound healing [12], while subconjunctival administra-
tion of MCC950, a selective inhibitor of the NLRP3 inflamma-
some, has been found to expedite diabetic corneal wound
closure and nerve regeneration [13]. Based on the finding
above, we hypothesize that more pyroptosis-related key genes
may participate in the pathogenesis of DK. However, no
research has analyzed the pyroptosis-related gene profile.
Therefore, establishing a system focused on pyroptosis-related
genes is crucial for understanding the pathogenic mechanisms
and treatment targets of DK.

In order to better understand the mechanisms of pyropto-
sis in DK, we employed data mining and analysis techniques
to screen differentially expressed genes in the streptozocin-
(STZ-) induced diabetic rat model in order to gain a deeper
understanding of the underlying mechanisms of DK. Through
the investigation and validation of hub differentially expressed
pyroptosis-related genes, we were able to identify potential key
players in the pathogenesis of DK. Our findings not only
supplement existing research but also provide a reference for
pyroptosis as a therapeutic target for DK.

2. Materials and Methods

2.1. Animal Study. Six male Brown Norway rats weighing
150-200 g from Slaccas, China, were used in this study. The
experiments were conducted in strict accordance with the
Animal Research: Reporting of In Vivo Experiments
(ARRIVE) guidelines for the Use of Animals in Ophthalmic
and Vision Research. The animal study was approved by the
Fujian Medical University Animal Ethics Committee prior

to initiation, and every effort was made to minimize any dis-
comfort or harm to the animals involved. Animals were kept
in controlled environmental conditions, including a 12-hour
light and dark cycle, constant temperature and humidity,
and ad libitum access to food and water. Diabetes induction
was performed as previously described [4, 14]. In brief, rats
were randomly divided into two groups. Streptozocin
(STZ, Sigma-Aldrich, USA) was administered by a single
intraperitoneal injection at 50mg/kg to induce diabetes in
rats, while citrate buffer was injected for the control group.
Glucose blood readings (Ascensia Contour glucometer,
Bayer Diabetes Care, USA) above 16.67mmol/l were consid-
ered diabetic models in this study.

A Cochet-Bonnet esthesiometer (Luneau Ophtalmolo-
gie, France) was used to assess corneal sensitivity [15].
Briefly, rats were presented with a monofilament at varying
lengths (6.0-0.5 cm) while unanesthetized to elicit a blink
response. The longest filament length resulting in a positive
response was considered the threshold of corneal sensitivity,
which was verified twice. A low score indicating the absence
or loss of corneal sensitivity was considered a model of DK,
which was conducted in this study.

2.2. Sequence Analysis and Identification of Pyroptosis-
Related Genes. After inducing diabetes for 16 weeks, the
full-thickness cornea was meticulously trimmed off from
the eyeball using surgical scissors under a microscope. Sub-
sequently, the cornea was oriented with the epithelial side
up, and the corneal epithelium was delicately scraped using
a razor blade.

Total RNA was extracted from the corneal epithelium of
six corneas from STZ-induced diabetic rats and six corneas
from normal controls and subjected to whole-transcriptome
sequencing analysis. The quantitative results can be obtained
from the GEO DataSets database (accession number:
GSE227165). A list of 1539 pyroptosis-related genes was
curated from the MSigDB database [16] and the GeneCards
database [17].

2.3. Data Preprocessing and Assessment of Differentially
Expressed Genes (DEGs). The data obtained from the whole-
transcriptome sequencing analysis were log-transformed
(base = 2) and normalized by the “affy” R package. Principal
component analysis was applied to these data, and the results
were plotted using the “ggplot2” package. The DEGs between
diabetic corneal epithelial samples and normal samples were
identified using the “limma” package [18]. The differentially
expressed mRNAs (DEmRNAs), differentially expressed
microRNAs (DEmiRNAs), differentially expressed long non-
coding RNAs (DElncRNAs), and differentially expressed
circular RNAs (DEcircRNAs) were screened uniformly fol-
lowing the criteria of log 2FC > log 2 1 2 and adjusted
p value < 0.05. Volcano plots and heatmaps visualized the
aforementioned DEGs with the “ggplot2” and “ComplexHeat-
map” package [19], respectively.

To assess the effect of pyroptosis-related genes (PRGs)
on DK, we intersected the PRGs with DEmRNAs to identify
differently expressed pyroptosis-related genes (DEPRGs) by
using the “ggVennDiagram” package [20]. The location of
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DEPRGs on rats’ 21 chromosomes was drawn using the
“RCircos” package [21]. In addition, the volcano plot and
circle heatmap were also produced by the “ggplot2” package.

2.4. Establishment of Competing Endogenous RNAs (ceRNA)
Networks. To investigate the hypothesis that lncRNAs or cir-
cRNAs could indirectly regulate mRNA expression by com-
peting with miRNA as a natural sponge, the ceRNA network
[22, 23] was constructed by the following steps: (1) the
sequences of circRNAs and miRNAs were downloaded from
circBase [24] and miRbase [25]; then, miRanda (https://www.
miranda.org) was used to predict the interaction between cir-
cRNAs and miRNAs. (2) The function of lncRNA-mRNA
was achieved in cis or in trans by diverse mechanisms [26].
(3) miRTarBase [27], miRecords [28], and TarBase [29]
were used to forecast the validated target genes of miRNA.
(4) RNA nodes that did not interact with other RNAs were
removed. The generated lncRNA-mRNA-miRNA-circRNA
networks were visualized by Cytoscape software [30] (ver-
sion 3.7.0).

2.5. Functional Enrichment Analysis. With the “clusterProfi-
ler” and “org.Rn.eg.db” (Genome wide annotation for Rat)
packages, GSEA [31] was adopted to assess the distribution
of the DEGs in ranked genes to determine their contribu-
tions to phenotype. The adj. p value, gene ratio, and normal-
ized enrichment score (NES) were used to sort the pathways
enriched in each phenotype with the “dotplot” package. A
false discovery rate FDR < 0 25 and an adj. p value < 0.05
were considered significant enrichment.

To further explore the potential functional annotation
and pathway attributions of DEPRGs, Gene Ontology
(GO) [32] annotations were conducted to characterize bio-
logical properties, including biological process (BP), cellular
component (CC), and molecular function (MF). Pathway
enrichment was also undertaken with the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [33]. Both GO and KEGG
were performed using the “clusterProfiler” package [34] and
visualized with the “GOplot” package [35]. p < 0 05 was
considered statistically significant for screening.

2.6. Construction of the Protein-Protein Interaction (PPI)
Network and Identification of Hub Genes. The PPI networks
of DEPRGs were constructed by the Search Tool for the
Retrieval of Interacting Genes (STRING [36], version 11.5)
online database with a combined confidence score ≥ 0 4 set
as the filter condition.

Through the clusters devised by Molecular Complex
Detection (MCODE) [37] in Cytoscape, key modules of the
PPI network were established in line with the threshold of
degree cutoff = 2, K‐core = 2, and node score cutoff = 0 2.
Correlations between key module expressions were calcu-
lated using the nonparametric Spearman method with the
“circlize” package [38].

To further narrow down the list of candidate genes, the
cytoHubba [39] plugin app was conducted to explore hub
genes from preloaded key modules via 10 topological
algorithms, including Maximal Clique Centrality (MCC),
Density of Maximum Neighborhood Component (DMNC),

Maximum Neighborhood Component (MNC), Degree,
Edge Percolated Component (EPC), Bottleneck, EcCentric-
ity, Closeness, Radiality, and Stress. The final list of hub
genes was screened by taking the intersection of different
algorithms.

The “GOSemSim” package [40] was used to calculate the
functional correlations between the hub genes linked in DK.
This approach determines the likelihood of a gene being
expressed by assessing its functional correlation with other
genes in a pathway. The analysis was performed to identify
critical genes associated with DK.

2.7. Immune Infiltration Analysis. To identify the immune
cells in diabetic and control samples, we applied the CIBER-
SORTx deconvolution algorithm, which integrates labeled
cell signatures derived from diverse sources, to calculate
the proportion of the LM22 signature matrix based on the
principle of linear support vector regression [41, 42]. We
then used the Spearman correlation to determine the corre-
lations between different immune cell types and the correla-
tion between hub genes and significant immune cells using
the “corrplot” package.

2.8. Prediction of Small Compounds Targeted Analysis of
Hub Genes. MiRNet [43] is a miRNA-centric network visual
analytic platform that contains information about miRNA-
target interactions by integrating existing knowledge with
users’ data. miRNet was used to predict the potential down-
stream DEmiRNAs of candidate hug genes and further
identify DEmiRNAs targeting small compounds. The hub
gene-DEmiRNA-small compound networks were estab-
lished by the “ggalluvial” package.

2.9. Validation of Characteristic Genes. The corneal epithelial
samples were obtained from STZ-induced diabetic rats and
nondiabetic controls. Total RNA was extracted, and cDNA
was synthesized as previously described [44]. The quantita-
tive real-time PCR (qRT-PCR) assays were conducted in
triplicate using 3 independent sets of cDNA denaturation
at 95°C for 10 seconds, annealing at 58°C for 30 seconds,
and elongation at 72°C for 30 seconds on an Agilent Strata-
gene Mx3000P QPCR System. The comparative 2-ΔΔCt
method was used to calculate the relative expression values,
which were normalized to β-actin as a control. The primer
sequences used are listed in Supplementary Table 1.

2.10. Statistics Analysis. All data processing and analysis
were performed using the R software (version 4.1.0). PCR
data were analyzed using SPSS 23.0 and compared using
Student’s t-test. All statistical p values were two-sided, and
p < 0 05 was considered to be statistically significant.

3. Results

3.1. Establishment of the DK Model. Following STZ injection,
blood glucose levels and corneal nerve sensitivity were assessed
every four weeks (supplementary Figure 1). Blood glucose
levels in the diabetic rat group consistently remained above
16.67mmol/l, a statistically significant elevation compared to
the normal control group. Corneal nerve sensitivity showed a
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mild decline at 4 and 8 weeks postinjection. A notable and
statistically significant decline in corneal sensitivity was
observed at both 12 and 16 weeks post-STZ injection. Thus,
diabetic rats at 16 weeks postinjection conformed to the
diabetic keratopathy model. Subsequently, corneal epithelial
tissue was harvested for further analysis.

3.2. Identification of Differentially Expressed Genes (DEGs).
The flowchart of the analysis procedure is shown in
Supplementary Figure 1. The PCA exhibited a clear picture
of the diabetic and normal samples (Supplementary
Figure 2). Following the aforementioned threshing, a total of
459 DEmRNAs (278 upregulated and 181 downregulated
mRNAs), 198 DEmiRNAs (173 upregulated and 25
downregulated miRNAs), 88 DElncRNAs (35 upregulated
and 53 downregulated lncRNAs), and 96 DEcircRNAs (26
upregulated and 70 downregulated circRNAs) were sorted
out from the diabetic group and normal group. The
distribution of DEmRNAs, DEmiRNAs, DElncRNAs, and
DEcircRNAs was illustrated by volcano plots and heatmaps,
respectively (Figure 1).

3.3. Establishment of the Gene Set Enrichment Analysis
(GSEA) of the DEmRNAs. As shown in Figure 2(a), GTPase
activator activity, nucleoside-triphosphatase regulator activ-
ity, and GTPase regulator activity were activated in the
diabetic groups, while negative regulation of response to
organophosphorus, mitochondrial protein-containing com-
plex, and mitochondrial matrix were suppressed. In
addition, significant enrichment was observed in several sig-
naling pathways, including the NOD-like receptor signaling
pathway, Toll-like receptor signaling pathway, C-type lectin
receptor signaling pathway, NF-kappa B signaling pathway,
and inflammatory mediator regulation of TRP channels, in
the diabetic group compared to the normal group (p < 0 05
, Figure 2(b)). The important enriched pathway of the
detailed GSEA is presented in Figures 2(c)–2(f). Complete
result lists from the GSEA are provided in Supplementary
Table 2.

3.4. Identification of Differentially Expressed Pyroptosis-
Related Genes (DEPRGs). To evaluate the expression pat-
terns of pyroptosis-related genes (PRGs), we overlapped
the DEmRNAs with PRGs to obtain 33 differentially
expressed pyroptosis-related genes (DEPRGs) for further
analyses (Figure 3(a) and Supplementary Table 3). Most of
these genes were annotated on chromosomes 3, 4, 8, and 13
(Figure 3(b)). Of the DEPRGs identified, 30 were
upregulated and 3 were downregulated, as shown in the
volcano plot and circle heatmap (Figures 3(c) and 3(d)).

3.5. Competing Endogenous (ceRNA) Networks Based on
DEPRGs. Based on the ceRNA hypothesis, we constructed
a lncRNA-mRNA-miRNA-circRNA network involving
DEPRGs and took the intersection with our DEPRG list
described above. A total of 17 mRNA-miRNA pairs (10
DEPRGs and 10 DEmiRNAs), 60 mRNA-lncRNA pairs
(14 DEPRGs and 22 DElncRNAs), and 3 miRNA-circRNA
pairs (3 DEmiRNAs and 3 DEcircRNAs) were identified to
predict the interaction. This network was visualized by rep-

resenting the distribution of interactions through Cytoscape
(Figure 3(e)).

3.6. Functional Enrichment Analysis Based on DEPRGs. To
elucidate the biological functions and pathways of DEPRGs,
GO and KEGG analyses were performed. In the biological
process category, the results revealed that the DEPRGs
mainly affect response to tumor necrosis factor, cellular
response to external stimulus, cytokine-mediated signaling
pathway, and NIK/NF-kappa B signaling (Figure 4(a)). In
the cellular component category, the majority of DEPRGs
were enriched in the RNA polymerase II transcription
regulator complex, membrane raft, transcription regulator
complex, and inflammasome complex (Figure 4(b)). Formolec-
ular function, the most significant entries were DNA-binding
transcription repressor activity (RNA polymerase II-specific),
ubiquitin-like protein ligase binding, cysteine-type endopepti-
dase activity involved in the apoptotic process, and tumor
necrosis factor receptor binding (Figure 4(c)). Furthermore,
the KEGG analysis exhibited that the most involved pathways
were IL-17 signaling, NOD-like receptor signaling pathway,
TNF signaling pathway, Toll-like receptor signaling pathway,
and C-type lectin receptor signaling pathway (Figure 4(d)).
Additional information regarding the GO and KEGG analyses
is shown in Supplementary Table 4.

3.7. Protein-Protein Interaction (PPI) Network Construction
and Hub Gene Analyses. After eliminating the isolated genes
without interaction, the PPI network was constructed,
which contained 33 nodes and 185 edges (Figure 5(a)).
The functional enrichment analysis via the STRING
database indicated that these DEPRGs were significantly
associated with pyroptosis, I-kappa B phosphorylation,
cysteine-type endopeptidase activity involved in apoptotic
process, NLRP3 inflammasome complex, and AIM2 inflam-
masome complex. Furthermore, the distribution of 33
DEPRGs in the different clusters was displayed in a heat-
map (Figure 5(b)).

Through the MCODE plugin in Cytoscape, two key
modules from the PPI network were established
(Figure 5(c)). There were 11 nodes in module 1, namely,
Ptgs2, Il18, Tlr3, Traf6, Nfkb1, Birc3, Casp8, Irf1, Casp4,
Jun, and Ikbke, with the highest MCODE scores. Three
genes were obtained in module 2, including Pparg, Foxo3,
and Cebpb. The Spearman correlation analysis was per-
formed for each gene individually (Figure 5(d)). All genes
belonged to the upregulated DEPRGs, and most of them dis-
played a strong positive correlation. Specifically, Traf6 and
Tlr3, Il18 and Casp4, and Jun and Cebpb showed a signifi-
cantly positive correlation (r > 0 95, p < 0 01). Nfkb1 was
reflected by a positive correlation with Irf1 and Ikbke
(r > 0 99, p < 0 01). Moreover, we calculated the semantic sim-
ilarity and found that Nfkb1 exhibited the highest similarity
among the other 13 hub genes (Figure 5(e)).

Furthermore, according to the scores with cytoHubba
in Cytoscape, all key modules were ranked in the top 10
of each algorithm. The intersection of these 10 algo-
rithms was then identified as hub genes, which included
Nfkb1, Casp8, Traf6, Ptgs2, and Il18 (Figure 5(f)). Based

4 Journal of Diabetes Research



2

4

6

8
mRNA

−2.5 0.0 2.5

Down
no significant
Up

Log2 (Fold change)

–L
og

10
 (P

 v
al

ue
)

(a)

1

2

3

4

5

miRNA

−2 0 2
Log2 (Fold change)

–L
og

10
 (P

 v
al

ue
)

Down
no significant
Up

(b)

1

2

3

4

5
6

−L
og

10
 (P

va
lu

e)

−2 0 2

lncRNA

Log2 (Fold change)

Down
no significant
Up

(c)

−L
og

10
 (P

va
lu

e)

2

4

6

−6 −3 0 3 6

circRNA

Log2 (Fold change)
Down
no significant
Up

(d)

Figure 1: Continued.

5Journal of Diabetes Research



on the semantic similarity, Nfkb1 exhibited the highest
similarity among the other 4 hub genes (Figure 5(g)).
Therefore, we decided to use these 5 genes as hub genes
for subsequent analysis.

3.8. Immune Infiltration Landscape Analysis. Many pieces of
evidence indicate a strong link between the immune
response and DK [1, 45, 46]. Therefore, we explored the
panorama of the immune microenvironment with the
CIBERSORTx algorithm. The distribution of immune cells

is demonstrated in Figure 6(a), revealing different fractions
of immune cells. The diabetic groups showed a higher
proportion of resting mast cells, activated NK cells, and
memory-resting CD4 T cells than those in the normal
groups. However, the levels of naïve B cells, monocytes,
and regulatory T cells were significantly lower than those
in the normal groups (p < 0 05, Figure 6(b)). The propor-
tion of the remaining immune cells did not differ signifi-
cantly between the two groups. The regulatory T cells
showed significantly positive correlations with monocytes,
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Figure 1: Differentially expressed genes between diabetic and normal samples. (a–d) The volcano plots indicate DEmRNAs, DEmiRNAs,
DElncRNAs, and DEcircRNAs based on the fold changes > log2 1 2 and the adjusted p value < 0.05. Red dots indicate upregulation
genes, blue dots indicate downregulation genes, and gray dots represent other genes that are not differentially expressed. (e–h) The
heatmap also describes DEmRNAs, DEmiRNAs, DElncRNAs, and DEcircRNAs between different groups. The color scale represents the
relative expression levels of the DEGs, where red indicates higher expression and blue indicates lower expression. DEmRNAs:
differentially expressed mRNAs; DEmiRNAs: differentially expressed microRNAs; DElncRNAs: differentially expressed long noncoding
RNAs; DEcircRNAs: differentially expressed circular RNAs.
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and activated NK cells were positively correlated with rest-
ing mast cells (p < 0 05, Figure 6(c)). In addition, we
implemented the relationship between hub gene expression

and the immune cells in the diabetic groups (Figure 6(d)).
The results displayed that all hub genes had strong posi-
tive correlations with resting mast cells and activated NK
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Figure 2: The results of Gene Set Enrichment Analysis (GSEA). (a) The top gene sets that were significantly upregulated and downregulated
based on enrichment analysis in the Gene Ontology. (b) The top gene sets were significantly upregulated and downregulated based on
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Figure 3: Identification of the differentially expressed pyroptosis-related genes (DEPRGs). (a) Venn diagram shows the overlap between the
pyroptosis-related genes (in red) and DEmRNAs (in blue). (b) Circos plot depicts the chromosome positions of the 33 DEPRGs on the 21
chromosomes of rats. (c, d) The volcano and circle heatmap illustrate the upregulated and downregulated DEPRGs in the diabetic and
control groups. Red represents higher expression, while blue represents lower expression. (e) Construction of the lncRNA-mRNA-
miRNA-circRNA regulatory network. The colors pink, blue, yellow, and purple denote DEPRGs, DEmiRNAs, DElncRNAs, and
DEcircRNAs, respectively. DEmiRNAs: differentially expressed microRNAs; DElncRNAs: differentially expressed long noncoding RNAs;
DEcircRNAs: differentially expressed circular RNAs.
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cells (r > 0 8, p < 0 05), while Ptgs2 was negatively corre-
lated with regulatory T cells (r = −0 82, p = 0 045).

3.9. Prediction of Hub Gene-miRNA-Small Compound
Networks. Target prediction revealed that numerous hub
genes were potentially regulated by DEmiRNAs, and small
compounds were potentially regulated by these miRNAs.
We searched for a hub gene-DEmiRNA-small compound
regulatory network using the miRNet 2.0 database. A total
of 20 significant interactions (p < 0 05) were identified,
which included 4 hub genes (Il18, Nfkb1, Ptgs2, and Traf6),
2 DEmiRNAs (rno-mir-146a-3p and rno-mir-9a-5p), and 5

small compounds (ATRA (all-trans-retinoic acid), Chaihu Shu-
gan San, dexamethasone, Longevinex (modified resveratrol),
and resveratrol) (Figure 7).

3.10. Validation of the Hub Genes. The expression of five
genes related to pyroptosis was analyzed by qRT-PCR in
twelve corneal epithelial tissues from rats, including six nor-
mal samples and six diabetic samples. All 5 genes (Nfkb1,
Casp8, Traf6, Ptgs2, and Il18) were significantly upregulated
in diabetic corneal samples compared to normal controls
(p < 0 05) (Figure 8), indicating that the results were repro-
ducible and reliable.
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4. Discussion

Diabetes mellitus is a major public health issue because of its
high morbidity and mortality rate [47]. Diabetic patients are
at increased risk of developing corneal complications such as
recurrent erosions, delayed epithelial healing, increased
endothelial cell loss, and a higher possibility of infections fol-
lowing cataract and refractive surgeries. It is well known that
severe or chronic inflammation leads to outcomes in terms
of corneal clarity, thickness, and healing [2]. To delineate
the molecular alterations and explore potential disease

markers associated with DK, we analyzed and identified
the pyroptosis-related genes in the cornea of diabetic rats.

In this study, we found that pyroptosis-specific markers,
including IL-18 and gasdermin D (GSDMD), were upregu-
lated in the DK group. The major canonical inflammasome
NLRP3 can recruit and activate the adaptor protein
apoptosis-associated speck-like protein-containing CARD
and caspase-1, which further cleaves GSDMD and induces
the release of proinflammatory cytokines such as IL-1β
and IL-18 [48]. GSDMD is a physiological substrate of the
canonical inflammasome pathway and plays a central role
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in the impairment of diabetic wound healing [49]. IL-18,
produced by human corneal epithelial and stromal fibroblast
cells [49–51], could mediate a series of intracellular signal
transduction including the activation of NF-κB, which was
also elevated in the DK group, and promote the inflamma-
tory response. Recent research found that increased IL-18
was involved in the pathogenesis of diabetic cardiomyopathy
[52] and expressed in the renal and retinas of the STZ-
induced diabetic rats [53, 54]. Moreover, the observation of
the cell viability and ultrastructure of retinal stem cells
revealed that IL-18 induces pyroptosis protein expression
in retinal cells [55]. These findings extend the impact of
IL-18 beyond DK, suggesting potential research avenues.
We also found that FOXO3 was upregulated in the DK
group. This gene belongs to the forkhead family of tran-
scription factors, which are characterized by a distinct
forkhead domain. It encodes a protein that functions as
a trigger for apoptosis through the expression of genes

necessary for cell death [56, 57]. Recently, activating
FOXO3 was shown to promote diabetic corneal epithelial
wound healing [58]. It unravels FOXO3’s role in DK path-
ogenesis, and its interactions may reveal novel therapeutic
or diagnostic prospects.

In diabetic corneas, epithelium and immune cells are
altered during wound healing. Hence, exploring the immune
microenvironment is critical for understanding the patho-
physiology of DK. In this study, we found that the diabetic
groups owned a higher proportion of NK cells, CD4+ T cells,
and mast cells. Previous evidence supported the idea that
NK cells could modulate the inflammatory response to cor-
neal epithelial abrasion and promote wound healing [59].
When activated, NK cells induce apoptosis of the target cells
by secreting proinflammatory cytokines such as interferon-
gamma, tumor necrosis factor, granulocyte-macrophage
colony-stimulating factor, and macrophage inflammatory
proteins 1a and 1b. Mast cells are bone marrow progenitor-
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Figure 6: Comparison of immune cells and hub genes between diabetic and normal groups. (a) The percentage of 22 immune cell types is
shown using the CIBERSORTx algorithm. (b) Box plot shows the differences in the abundance of immune cells in different groups (∗p < 0 05).
(c) The correlation of significant immune cell proportions in the diabetic groups, with red indicating positive correlation and blue indicating
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derived immune cells that are increased in diabetic patients
and animal models of diabetes, and they have been shown to
modulate local inflammation and improve diabetic wound
healing [60, 61]. Tregs play a critical role in maintaining self-
tolerance and preventing the onset of autoimmune diseases
[62]. Loss of Treg function can result in chronic inflammation
[63], whereas excess activation of Tregs increases the risk of
ocular pathologies ranging from delayed epithelial wound
healing and chronic pain to recurrent erosions [64]. These
conditions can further lead to corneal scarring and thinning.

To further explore the enriched pathways involved in the
development of DK, we found several enriched pathways in
the diabetic group, including the IL-17 signaling pathway,
NOD-like receptor signaling pathway, TNF signaling path-
way, and Toll-like receptor signaling pathway. Previous
studies have demonstrated that the expression of NLRP3,
NF-κB p65, and p-NF-κB protein and mRNA was signifi-
cantly enhanced in the diabetic group [65]. Also, high con-
centrations of TNF-α and the activated IL-17 signaling
pathway have been shown to play an essential role in STZ-
induced diabetic corneal epithelium and diabetic nephropa-
thy [66, 67]. The diabetic corneas had significantly increased
Toll-like receptor 4 expression, which was involved in cor-
neal wound and nerve healing [68]. These findings collec-
tively suggested that inflammation and immune response
are critical factors involved in the pyroptosis-mediated path-
ogenesis of DK.

Through building hub gene-miRNA-small compound
networks, we uncovered some potential small compounds
like resveratrol and dexamethasone that may have therapeu-
tic benefits in DK. Resveratrol, an antioxidant phytogenic
substance, has been reported to control NF-κB activation
and modulate inflammatory gene expression through the
Toll-like receptor pathway in epithelial cells [69, 70].
Similarly, dexamethasone, a glucocorticoid receptor (GR)
agonist, may reversed neuroinflammation through the GR/
NF-κB signaling pathway in diabetic rats [71]. However,
topical steroid use is usually not recommended for corneal
epithelial defects due to the potential to delay healing [72].
Further experiments are warranted to investigate the efficacy
of these potential candidates in the treatment of DK.

Although our current study improved the understand-
ing of the relationship between hub genes and DK, there
were still some limitations. First, the sample size used in
the analysis was relatively small, and this may have
impacted the results obtained. Additionally, although we
were able to validate the expression of hub genes, we did
not comprehensively evaluate additional important signal-
ing pathways or direct mechanisms of hub genes and
potential compounds involved in the process of DK. In
the future, our focus will be exploring the protective effects
of diverse compounds on DK to pave the way for innova-
tive treatment strategies. Furthermore, the current study
was performed using RNA sequencing from corneal tissue
of diabetic rats, and therefore, we were unable to illustrate
the expression of hub genes at the cellular level. Further
studies could consider using single-cell sequencing to
explore the direct mechanisms underlying the relationship
between hub genes and DK.

5. Conclusions

In conclusion, we conducted a thorough and systematic bioin-
formatics analysis, identifying a hub gene signature related to
pyroptosis that includes five genes (Nfkb1, Casp8, Traf6, Ptgs2,
and Il18) and investigating potential compound treatment
approaches for DK. Additionally, our research specifically tar-
gets transcriptomic analysis of the corneal epithelium under
STZ-induced diabetic conditions, filling a notable gap in previ-
ous investigations in this area. The findings offer promising
insights into DK’s underlyingmechanisms and propose a novel
strategy for diagnosis and treatment. Further studies are essen-
tial to validate these findings.
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