
Review Article
Effects of Glucagon-Like Peptide-1 Receptor Agonists and
Sodium-Glucose Cotransporter 2 Inhibitors on Intima-Media
Thickness: Systematic Review and Meta-Analysis

Abolfazl Akbari ,1,2 Shiva Hadizadeh ,2,3 and Leida Heidary 4,5

1Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of
Medical Sciences, Tehran, Iran
3Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
4Laboratory of Medical Genetics, ART and Stem Cell Research Centre (ACECR), Tabriz, Iran
5Nahal Infertility Center, Tabriz, Iran

Correspondence should be addressed to Abolfazl Akbari; masteraa1379.ir@gmail.com

Received 16 September 2023; Revised 8 February 2024; Accepted 23 February 2024; Published 18 March 2024

Academic Editor: Emmanuel K Ofori

Copyright © 2024 Abolfazl Akbari et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Background. Beyond glycemic control, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter
2 inhibitors (SGLT2is) have been proposed to reduce the risk of cardiovascular events. The aim of the present systematic review
and meta-analysis is to demonstrate the effects of GLP-1 RA and SGLT2is on intima-media thickness (IMT). Methods. PubMed,
EMBASE, Web of Science, SCOPUS, and Google Scholar databases were searched from inception to September 9, 2023. All
interventional and observational studies that provided data on the effects of GLP-1 RAs or SGLT2is on IMT were included.
Critical appraisal was performed using the Joanna Briggs Institute checklists. IMT changes (preintervention and
postintervention) were pooled and meta-analyzed using a random-effects model. Subgroup analyses were based on type of
medication (GLP-1 RA: liraglutide and exenatide; SGLT2i: empagliflozin, ipragliflozin, tofogliflozin, and dapagliflozin),
randomized clinical trials (RCTs), and diabetic patients. Results. The literature search yielded 708 related articles after
duplicates were removed. Eighteen studies examined the effects of GLP-1 RA, and eleven examined the effects of SGLT2i.
GLP-1 RA and SGLT2i significantly decreased IMT (MD= −0 123, 95% CI (-0.170, -0.076), P < 0 0001, I2 = 98% and MD= −
0 048, 95% CI (-0.092, -0.004), P = 0 031, I2 = 95%, respectively). Metaregression showed that IMT change correlated with
baseline IMT, whereas it did not correlate with gender, duration of diabetes, and duration of treatment. Conclusions.
Treatment with GLP-1 RA and SGLT2i can lower IMT in diabetic patients, and GLP-1 RA may be more effective than SGLT2i.

1. Introduction

Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs)
and sodium/glucose cotransporter 2 inhibitors (SGLT2is)
have been introduced for the treatment of type 2 diabetes
mellitus (T2DM). Their promising results in glycemic con-
trol and weight loss, as well as their low risk of hypoglyce-
mia, less adverse events, and favourable renocardiovascular
effects have made them desirable therapies for the treatment
of T2DM and its concomitant diseases and complications

[1]. In addition to their putative target, numerous molecular
targets for GLP-1s have been identified, justifying their
potential for broader medical applications, including
autophagy, oxidative stress, platelet function, lipid metabo-
lism, and inflammation [2–9]. GLP-1 RA causes an increase
in insulin secretion and a decrease in glucagon levels in
response to glucose and delays gastric emptying, thereby
suppressing postprandial hyperglycemia and appetite,
resulting in a decrease in total energy intake and body
weight [10]. SGLT2is act independently of insulin; they
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block renal glucose reabsorption mediated by SGLT2
expressed along proximal tubules and cause glucosuria [7].

Carotid intima-media thickness (IMT) is a quick and
noninvasive ultrasound marker that indicates the thickness
of the two innermost layers of the carotid artery. It is a risk
stratification tool used as a surrogate marker for atheroscle-
rosis in numerous studies to assess the risk of cardiovascular
events [11–13]. We are interested in comparing the effects of
GLP-1 RA and SGLT2i therapies on IMT, which may reflect
the cardioprotective effects of these drugs. A direct compar-
ison of the cardioprotective benefits of two second-line ther-
apies in T2DM could help us find a better strategy for
glycemic control. However, no systematic comparison has
been performed for GLP-1 RA or SGLT2i therapies in terms
of their effect on IMT. Therefore, we performed a compre-
hensive systematic review and meta-analyses to determine
the effects of GLP-1 RA and SGLT2i drugs on IMT.

2. Methods

This systematic review is in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020 statement [14]. The study protocol was reg-
istered with the International Prospective Registry of Sys-
tematic Reviews (PROSPERO).

2.1. Data Sources and Searching Strategy. To identify poten-
tially relevant studies, searches were conducted in the fol-
lowing four databases (since inception to September 9,
2023): PubMed, EMBASE, Web of Science, and SCOPUS,
with two reviewers (A.A. and S.H.) working independently
and in parallel. Citations of all included studies and relevant
published papers were reviewed by hand search. “Google
Scholar” was also searched to find potentially relevant arti-
cles. Studies were found by searching for three main terms
and their synonyms, including “IM,” “SGLT2i,” and “GLP-
1 RA.” The complete search strategy for each term is shown
in Table S1. The search was not limited by time, type of
article, or language. We used reference management
software (EndNote X8) to import references, remove
duplicates, and review the literature.

2.2. Selection Criteria. Inclusive criteria for this systematic
review were studies that investigated IMT in groups of
patients treated with GLP-1 RA or SGLT2i. Eligible studies
that met the following criteria were included in the meta-
analysis: (1) the studies reported mean IMT at baseline and
final or mean change in IMT after GLP-1 RA or SGLT2i
therapy, and (2) the follow-up period was at least 2 weeks.
Two authors (A.A. and S.H.), working independently and
in parallel, reviewed the abstract and included the paper
reporting the effects of GLP-1 RA or SGLT2i on IMT. Sub-
sequently, A.A. and S.H. independently assessed the full text
of the papers and made the final decision. Disagreements in
study selection were adjudicated by a third reviewer.

2.3. Quality Assessment. Two authors (L.H. and S.H.) inde-
pendently assessed the quality of studies using the JBI check-
lists [15]. The JBI checklist assessed bias in selection,
measurement, and analysis. If there were disagreements,

they were resolved by discussion or referral to another inves-
tigator to achieve consensus. The checklist questions were
answered “yes,” “no,” “unclear,” or “not applicable.” For
each “yes” answer, 1 point is awarded, and after adding the
points, the final score is calculated.

2.4. Data Extraction. The two investigators (A.A. and S.H.)
independently extracted the following data: first name, year
in which studies were conducted (if no data were provided,
the year of study publication was considered), groups, dos-
age, population, size, gender, age, location, study design, fol-
low-up, IMT at baseline, IMT at end, and disease duration.

2.5. Publication Bias and Statistical Analysis. Publication
bias was examined using funnel plots, Egger’s test, and
Duval and Tweedie’s trim and fill test. Pre- and postinter-
vention IMT values were recorded to calculate the mean dif-
ference (MD) and 95% confidence interval (CI). Subgroup
analyses were performed based on drug classes, and sensitiv-
ity analyses were performed based on effect models (random
to fixed or vice versa), RTCs, T2DM patients, and R values
(0.3, 0.5, and 0.8). The Cochrane Q statistic was used to
assess heterogeneity, and if it was less than 0.05, a random-
effects model was used for analysis. Metaregression was per-
formed to determine the correlation between IMT changes
and disease duration, gender, follow-up period, and baseline
IMT. A P value of less than 0.05 was considered statistically
significant for the outcome and heterogeneity analyses. Data
analysis was performed using Comprehensive Meta-Analysis
software (CMA) V.3.

3. Results

The literature search yielded 708 related articles after dupli-
cates were removed. Eighteen studies examined the effects of
GLP-1 RA [11–13, 16–31], and eleven examined the effects
of SGLT2i on IMT [32–42]. Studies that did not provide
IMT results [43–49], duplicate data [50–56], combination
therapies without apparent GLP-1 RA effects [57], or
assessed IMT of arteries other than the carotid artery were
excluded [58–60]. The study selection process is shown in
Figure 1.

3.1. Characteristics of the Included Studies. Three different
GLP-1 RA drugs were investigated in the included studies:
liraglutide [11, 12, 16, 18, 23–29], semaglutide [21], and exe-
natide [19, 22, 30, 31]. Also, five different SGLT2i drugs were
studied, including empagliflozin [32, 36, 38, 42], ipragliflozin
[33, 39, 41], tofogliflozin [34, 40], dapagliflozin [35–37, 42],
and luseogliflozin [40]. The range of intervention periods for
GLP-1 RA trials ranged from 4 months [12, 13, 21, 26] to 3
years [29] and for SGLT2i trials was from 2 weeks [38] to 3.6
years [36]. All SGLT2i studies [32–42] and fifteen GLP-1 RA
studies included T2DM patients [11, 12, 17, 19–27, 29–31].
Italy (n = 7) was the country with the largest number of pub-
lished articles for GLP-1 RA and Japan for SGLT2i (n = 5).
Characteristics of the evaluated studies are presented in
Table 1.

2 Journal of Diabetes Research



3.2. GLP-1 RA. Nineteen GLP-1 RA-treated groups with a
total population of 790 subjects were included in the meta-
analysis. Figure 2 shows that GLP-1 RA significantly reduced
IMT (MD= −0 123, 95% CI (-0.170, -0.076), P < 0 0001, I2
= 98%). A sensitivity analysis on studies that included only
T2DM patients showed a higher potential of GLP-1 RA to
reduce IMT (MD= −0 145, 95% CI (-0.196, -0.094), P <
0 0001, I2 = 98%) (Figure S1). In addition, a sensitivity
analysis based on 5 RCTs reached the same conclusion
(MD= −0 119, 95% CI (-0.219, -0.018), P = 0 021, I2 = 99%
) (Figure 3). A subgroup analysis on liraglutide and
exenatide trials significantly reduced IMT (liraglutide: MD
= −0 127, 95% CI (-0.201, -0.054), P = 0 001, I2 = 99%;
exenatide: MD= −0 144, 95% CI (-0.240, -0.047), P = 0 003
, I2 = 99%) (Figure S2). Metaregression showed that IMT
change was significantly correlated with baseline IMT
(coefficient = −0 246, P = 0 0001) but not significantly
correlated with duration of treatment, duration of diabetes,
and gender (coefficient = −0 003, P = 0 635; coefficient =
0 009, P = 0 108; and coefficient = 0 001, P = 0 849,
respectively) (Figure 4).

Meta-analysis of 4 studies (n = 343) showed a significant
reduction in the GLP-1 RA group compared with the pla-
cebo/control group (MD= −0 398, 95% CI (-0.792, -0.004),
P = 0 048, I2 = 68%) (Figure 5).

3.3. SGLT2i. Ten groups treated with SGLT2i with a total
population of 879 subjects were included in the meta-

analysis. Figure 6 shows that SGLT2i could significantly
reduce IMT (MD= −0 048, 95% CI (-0.092, -0.004), P =
0 031, I2 = 95%). In addition, a sensitivity analysis based
on 4 RCTs reached the same conclusion (MD= −0 043,
95% CI (-0.119, 0.034), P = 0 274, I2 = 98%) (Figure 7), but
the sensitivity analysis based on the change from random
to fixed effects showed a significant reduction in IMT
(MD= −0 067, 95% CI (-0.077, -0.057), P = 0 0001). A sub-
group analysis on empagliflozin and tofogliflozin trials sig-
nificantly reduced IMT (empagliflozin: MD= −0 066, 95%
CI (-0.094, -0.037), P < 0 0001, I2 = 0%; tofogliflozin: MD
= −0 130, 95% CI (-0.145, -0.116), P < 0 0001, I2 = 0%),
whereas ipragliflozin failed to reduce IMT (MD= −0 007,
95% CI (-0.019, 0.004), P = 0 222, I2 = 0%) (Figure S3).
Metaregression showed that IMT change was not
significantly correlated with baseline IMT, treatment
duration, diabetes duration, and gender
(coefficient = −0 092, P = 0 363; coefficient = −0 001, P =
0 623; coefficient = −0 012, P = 0 178, and coefficient = −
0 004, P = 0 171, respectively) (Figure 8).

All comparisons were repeated by changing the R value
to 0.3, 0.5, or 0.8, but no differences were found. A sensitivity
analysis in which the random-effects analysis was replaced
by a fixed-effects analysis also confirmed the results, except
as noted in the manuscript.

3.4. Quality Assessment and Publication Bias. Quality assess-
ment using the JBI checklist and final scores for cohort
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Figure 1: PRISMA flow diagram of the systematic review process.
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studies, cross-sectional studies, RCTs, and nonrandomized
clinical trials are described in detail in Table S2. All funnel
plots of all analyses are shown in the figures. Figure 9
shows the funnel plot of the pre-post comparison of GLP-1
RA and SGLT2i treatment, and Figure S4 shows the funnel
plots of the sensitivity analysis. In addition, the results of
the Egger test and the trim-and-fill method of Duval and
Tweedie, which indicate no significant publication bias, are
shown in Table 2 (Table 2).

4. Discussion

T2DM is associated with a high prevalence of cardiovascular
risk, and pharmacotherapies have been introduced to reduce
the risk of atherosclerosis in various ways, including glyce-
mic control, lipid balance, uric acid lowering, and blood
pressure control [61]. Our meta-analysis showed a signifi-
cant reduction in IMT, a surrogate atherosclerosis marker,
after GLP-1 RA or SGLT2i therapy; however, it appears that
GLP-1 RA is more effective in reducing IMT. Similarly, a
recent meta-analysis of RCTs showed that GLP-1 RAs were
effective in preventing serious adverse cardiovascular events
in T2DM patients with obesity (relative risk = 0 88, 95% CI
(0.81, 0.96)), whereas SGLT2i marginally prevented serious
adverse cardiovascular events (relative risk = 0 91, 95% CI

(0.83, 1.00)) [62]. In contrast to a recent review showing car-
diovascular benefits for liraglutide and semaglutide but not
for exenatide, we demonstrated that exenatide can also
reduce IMT [63]. It appears that the effects of GLP-1 RA
are not class-dependent, whereas the effects of SGLT2i are.

Consistent with our findings, previous studies reported
that GLP-1 RA was effective in reducing major adverse
events associated with cardiac events regardless of gender.
In contrast, in terms of reducing major adverse events asso-
ciated with cardiac events, SGLT2i was effective in men but
not in women [64]. This inconsistency may be due to differ-
ent outcome measures. Metaregression analysis showed that
the effects of GLP-1 RA and SGLT2i persisted with long-
term treatment, suggesting that these drugs do not induce
tolerance. In contrast to a previous study claiming that the
duration of T2DM might influence efficacy, the metaregres-
sion showed no significant correlation between the duration
of diabetes and change in IMT [65]. However, the metare-
gression showed that higher baseline IMT leads to greater
IMT reduction. A study by Kahal et al. showed that GLP-1
RA was not significantly effective in patients with polycystic
ovary syndrome whose baseline IMT was lower than that of
T2DM patients [18]. In these cases, confounding factors and
heterogeneity may affect the results, so well-designed RCTs
are warranted.
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A meta-analysis by Song et al. evaluated the efficacy of
GLP-1-based therapies and concluded that IMT was not sig-
nificantly reduced. Insufficient studies, heterogeneity, and
pooling other GLP-1-based therapy other than GLP-1 RA
including dipeptidyl peptidase-4 inhibitors may lead to dif-
ferent results compared with our findings [66]. They also
showed that brain natriuretic peptide, a marker of athero-
sclerosis, decreased significantly with GLP-1-based thera-
pies. Furthermore, in a prospective study of elderly people
in Sweden, it was observed that higher serum GLP-1 levels
correlated with lower IMT [67].

Prior studies suggest that liraglutide can regulate the
NLRP3 inflammasome and NF-κB signaling pathway, which

causes the inflammatory state [28, 68, 69]. It has also been
shown that GLP-1 RA protects cardiomyocytes from IL
1β-induced metabolic dysfunction and mitochondrial dys-
function [70]. Previous studies have shown that GLP-1 RA
therapy lowers both systolic and diastolic blood pressure
[71], improves endothelial dysfunction [72, 73], and reduces
macrophage foam cell formation and atherosclerosis [74].
Qu and Qu reviewed evidence from epidemiological and
human studies that low-density lipoprotein cholesterol
(LDL-C) is an important regulator in the development of
atherosclerosis [75]. A previous meta-analysis by Zhao
et al. showed a significant reduction in LDL-C following
GLP-1 RA therapy [76], whereas Sánchez-García et al. did
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clinical trials.
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Figure 8: Metaregression plots of the association between IMT with gender, follow-up, duration of diabetes, and baseline IMT for SGLT2i
studies.
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not achieve a significant reduction after SGLT2is [77].
Another mechanism described for GLP-1 RA agonists is that
these drugs increase antioxidant enzymes (superoxide dis-
mutase and glutathione reductase) and decrease reactive
oxygen species and malondialdehyde levels [78]. In vivo
studies have shown that GLP-1 RA reduces atherosclerosis
by suppressing endoplasmic reticulum stress, macrophage
apoptosis, and microvesicle production [79]. Hyperglycemia
has also been shown to lead to a decrease in endothelial
nitric oxide function via a decrease in synthesis and an
increase in degradation and to play a role in endothelial dys-
function, with liraglutide effectively restoring endothelial
nitric oxide synthase activity in the diabetic mouse model
[80, 81]. The same mechanism involving amelioration of
inflammation, insulin resistance, endothelial dysfunction,
dislipidemia, hyperglycemia, and oxidative state has been
proposed for SGLT2is [82–86]. Previous studies have dem-
onstrated the importance of AT1R/NADPH oxidase/SGLT1
and 2 signaling pathways in promoting atherosclerosis

[87–89]. They showed that atherosclerotic plaques have
higher SGLT2 expression [87–89]. A recent meta-analysis
summarizing data from 9 RCTs and 2 cohorts concluded
that SGLT2i improves flow-mediated dilation but not pulse
wave velocity [90].

The paucity of high-quality randomized clinical trials in
this systematic review is one of the major limitations of the
current study. Lacking sufficient studies, we could not evalu-
ate the effects of different classes, different doses, or patient
characteristics of GLP-1 RA or SGLT2i on IMT. Also, there
were insufficient studies to compare SGLT2i with control
groups. There was too much heterogeneity, which could be
due to different inclusion criteria, different types and dos-
ages of GLP-1 RA or SGLT2i, follow-up time, and study
design. Despite these aforementioned biases, sensitivity anal-
yses yielded nearly consistent results.

In conclusion, GLP-1 RA and SGLT2i may reduce IMT.
Among the different GLP-1 RAs, liraglutide was the most
studied and had a significant effect on IMT reduction. In
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Figure 9: Funnel plot displaying the impact of GLP-1 RA and SGLT2i on IMT.

Table 2: Publication bias evaluation by Egger’s regression test and Duval and Tweedie trim and fill test.

Finding/distribution pattern
Egger’s test Trim and fill method

Egger’s intercept P value Number of trimmed studies Point estimate after trim Change after trim

Baseline-final GLP-1 RA -1.191 0.706 1 -0.113 0.010

Baseline-final GLP-1 RA (RCTs) -1.172 0.917 0 -0.119 0.000

Baseline-final GLP-1 RA (T2DM) -1.685 0.565 0 -0.196 0.000

Baseline-final liraglutide -2.523 0.590 0 -0.127 0.000

Baseline-final exenatide -5.933 0.581 0 -0.240 0.000

GLP-1 RA compared to control -6.759 0.085 0 -0.398 0.000

Baseline-final SGLT2i 0.621 0.816 0 -0.048 0.000

Baseline-final SGLT2i (RCTs) 5.190 0.629 0 -0.043 0.000

RCT: randomized clinical trial; T2DM: type 2 diabetes mellitus; GLP-1 RA: glucagon-like peptide-1 receptor agonists; SGLT2i: sodium-glucose cotransporter
2 inhibitors.
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addition, GLP-1 RAs might be more effective than SGLT2is
in lowering IMT.
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