
Research Article
NET-Related Gene as Potential Diagnostic Biomarkers for
Diabetic Tubulointerstitial Injury

Yufeng Liang ,1,2 Jiaqun Lin ,1,3,4 Binsan Huang ,2 Mengjie Weng ,1,3,4

Tingting Zhen ,1,3,4 Liyan Yang ,1,3,4 Yongping Chen ,2 Qiu Li ,2

and Jianxin Wan 1,3,4

1Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University,
Fuzhou 350005, China
2Department of Nephrology, The Second Hospital of Longyan, Longyan, Fujian 364000, China
3Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University,
Fuzhou 350005, China
4Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital,
Fujian Medical University, Fuzhou 350005, China

Correspondence should be addressed to Jianxin Wan; wanjx@fjmu.edu.cn

Received 25 January 2024; Revised 23 March 2024; Accepted 26 March 2024; Published 10 May 2024

Academic Editor: Akira Sugawara

Copyright © 2024 Yufeng Liang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background: Tubulointerstitial injury plays a pivotal role in the progression of diabetic kidney disease (DKD), yet the link
between neutrophil extracellular traps (NETs) and diabetic tubulointerstitial injury is still unclear.
Methods:We analyzed microarray data (GSE30122) from the Gene Expression Omnibus (GEO) database to identify differentially
expressed genes (DEGs) associated with DKD’s tubulointerstitial injury. Functional and pathway enrichment analyses were
conducted to elucidate the involved biological processes (BP) and pathways. Weighted gene coexpression network analysis
(WGCNA) identified modules associated with DKD. LASSO regression and random forest selected NET-related characteristic
genes (NRGs) related to DKD tubulointerstitial injury.
Results: Eight hundred ninety-eight DEGs were identified from the GSE30122 dataset. A significant module associated with
diabetic tubulointerstitial injury overlapped with 15 NRGs. The hub genes, CASP1 and LYZ, were identified as potential
biomarkers. Functional enrichment linked these genes with immune cell trafficking, metabolic alterations, and inflammatory
responses. NRGs negatively correlated with glomerular filtration rate (GFR) in the Neph v5 database. Immunohistochemistry
(IHC) validated increased NRGs in DKD tubulointerstitial injury.
Conclusion: Our findings suggest that the CASP1 and LYZ genes may serve as potential diagnostic biomarkers for diabetic
tubulointerstitial injury. Furthermore, NRGs involved in diabetic tubulointerstitial injury could emerge as prospective targets
for the diagnosis and treatment of DKD.
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1. Introduction

Diabetic kidney disease (DKD) has emerged as a primary
cause of end-stage renal disease (ESRD) worldwide [1, 2],
with rising incidence and considerable societal burden.
However, despite advancements in treatment options [1, 3,
4], effective prevention and management of DKD remain

limited, and reliable biomarkers to predict disease progres-
sion are lacking. Although recent research has mainly
concentrated on glomerular diseases, emerging evidence
indicates that tubulointerstitial injury may independently
contribute to renal disease progression [5, 6]. More impor-
tantly, tubular damage mediated by inflammation seems to
predominate over glomerular injury in early DKD [7].
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Inflammation has been associated with tubulointerstitial
injury through various pathways, thereby contributing to
the progression of DKD [8, 9]. Neutrophil extracellular traps
(NETs) are net-like DNA structures studded with histones
and antimicrobial proteins that are released from activated
neutrophils via NETosis, a unique cell death process. How-
ever, in addition to their antimicrobial roles, NETs have
been implicated in numerous inflammatory diseases, partic-
ularly by driving autoimmunity [10]. Recent studies have
highlighted increased NET deposition within the glomeruli
of DKD patients, pointing to possible pathogenic roles
beyond their traditional antimicrobial functions in DKD
[11–13]. Immunohistochemistry (IHC) revealed increased
NET deposition within glomeruli of DKD patients relative
to nondiabetic controls [13, 14]. Supporting the histological
findings, biochemical assays have shown increased levels
of NET components, including myeloperoxidase (MPO)-
DNA or neutrophil elastase (NE)-DNA complexes, and have
been detected in blood and urine samples from DKD patients
[13]. Notably, heightened NET levels exhibited positive cor-
relations with clinical parameters of DKD severity, including
declining glomerular filtration rate (GFR) and glomerulo-
sclerosis [15]. These findings highlight the potential role of
NETs in mediating progressive tubulointerstitial damage in
DKD. In vitro studies have shown that NETs can exacerbate
DKD via oxidative stress, apoptosis, and abnormal prolifera-
tion in renal tubular epithelial cells. The expression of NETs
in tubular epithelium also differs at various stages of DKD,
with gradual upregulation as DKD advances, likely due to
increased NET formation and/or impaired NET degradation.
NET expression levels within these cells also fluctuate across
different DKD stages [15]. These results indicate that NETs
participate in mediating tubular epithelial cell injury in
DKD. Nevertheless, the exact mechanisms underlying NET-
mediated tubular injury remain to be elucidated. Considering
the dynamic changes of NETs during DKD progression, elu-
cidating the key genes governing NET-mediated tubular
injury may offer new perspectives into the intricate patho-
genesis underlying DKD.

Bioinformatics approaches have been increasingly uti-
lized to identify differentially expressed genes (DEGs) from
gene microarrays and high-throughput sequencing data.
Recent efforts [6, 16] have identified DEGs associated with
tubulointerstitial injury in DKD, potentially obtaining a
novel, effective approach to elucidate the pathogenic mecha-
nisms of DKD and uncover new therapeutic targets. This
study is aimed at comprehensively analyzing the association
between NET-related genes (NRGs) [17] and the DEGs to
discern DKD patients effectively. DEGs in DKD patients will
be sourced from databases and previous literature reports.
We screened differentially expressed NRGs (DE-NRGs) in
DKD using various bioinformatics methods. These feature
genes demonstrate notable diagnostic potential. Their
expression patterns and GFR correlations will be analyzed
using the Nephroseq v5 database. We also performed path-
way enrichment analysis and immune cell infiltration analy-
sis. Finally, key findings will be experimentally validated in a
mouse DKD model, to provide novel insights into DKD
diagnosis and treatment.

2. Method

2.1. Data Download. Access Gene Expression Omnibus
(GEO) database: gene expression data were obtained from
the National Center for Biotechnology Information’s GEO
public repository. Search query: use the search bar at the
top of the page to search for diabetic nephropathy (DN)
and DKD. Download dataset: locate the dataset GSE30122
[18] (GPL571, Affymetrix Human Genome U133A 2.0
Array) in the search results. This dataset consists of 10
DKD interstitial tubular samples and 24 control renal inter-
stitial tubular samples. DE-NRGs: based on previous
research, identify the gene set associated with NETs within
the downloaded data [17](Frontiers|Identification of renal
ischemia reperfusion injury subtypes and predictive strate-
gies for delayed graft function and graft survival based on
NRGs (http://frontiersin.org)).

2.2. Data Processing and Identification of Differential
Expression. The raw data were transformed using log2 trans-
formation and Z-score normalization. Based on the GEO
database, we identified 898 DEGs associated with DKD
tubular interstitial injury. The DEGs between renal tubular
interstitial tissues of DKD patients and healthy controls were
calculated using the R software limma package with adjusted
p values of 0.05 and log FC (fold change) greater than 1. Sub-
sequently, a volcano plot was generated to visualize the
DEGs, and a heat map was employed to display the top 50
upregulated and top 50 downregulated DEGs. Both the vol-
cano plot and heat map were drawn utilizing the ggplot2
package in R software.

2.3. Functional and Pathway Enrichment Analyses. The clus-
ter Profiler package in R enables functional enrichment anal-
ysis of DEGs in the context of Gene Ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [19].
GO analysis [20] probes into the biological processes (BP)
of DEGs, encompassing the categories of BP, cellular compo-
nents (CC), and molecular functions (MF). Concurrently,
KEGG analysis is employed to explore potential signaling
pathways that are pertinent to these DEGs.

2.4. Weighted Gene Coexpression Network Analysis (WGCNA).
The WGCNA method is deployed to structure the GSE310122
cohort into distinct modules, utilizing the pick soft threshold
function from the WGCNA software package [21]. The topo-
logical overlap matrix (TOM) and the dynamic tree cutting
algorithm are applied to discern clusters (referred to as mod-
ules) of highly correlated genes. Following this, module mem-
bership (MM) values are utilized to pinpoint the final module
that is significantly associated with DKD. Genes contained
within this specific module are then selected for subsequent
in-depth scholarly examination.

2.5. Screening and Validation of Signature Genes by Machine
Learning Methods. To screen and validate signature genes,
we employed two machine learning algorithms—the least
absolute shrinkage and selection operator (LASSO) and the
random forest method—to minimize the risk of prediction
bias. We conducted LASSO regression using the glmnet
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package in R, implementing 10-fold cross-validation [22].
Simultaneously, we utilized the support vector machine-
recursive feature elimination (SVM-RFE) to pinpoint opti-
mal predictive features [23]. Additionally, we executed the
random forest algorithm via the random forest package in
R, determining the most suitable number of features based
on the average error rate amongst candidate genes. Follow-
ing modeling, genes with importance values exceeding 25
were selected. The intersecting genes identified by both the
LASSO and random forest algorithms were considered core
drivers of DKD tubulointerstitial injury and NET formation.
The diagnostic efficacy of these genes was evaluated using
the area under the receiver operating characteristic curve
(AUC), with AUC values above 0.7 indicating strong diag-
nostic performance.

2.6. Gene Set Enrichment Analysis (GSEA) of Biological
Functions and Pathways. To investigate the connection
between hub genes and signaling pathways, we segmented
the samples into high-expression and low-expression groups
according to the mean expression values of hub genes. Sub-
sequently, we conducted GSEA [24] between these two sub-
groups to pinpoint pathways enriched with statistical
disparities (using an adjusted p value <0.05 as the threshold).
This analysis is aimed at shedding light on the potential
pathological mechanisms that hub genes may play in the
progression of DKD.

2.7. Immune Cell Infiltration Analysis. To investigate differ-
ences in immune cell populations between patients with
NET-associated DKD tubulointerstitial injury and healthy
samples, we employed the CIBERSORT computational
method to analyze the GSE30122 dataset [25]. The algo-
rithm was run for 500 iterations to estimate the proportions
of 22 distinct immune cell types. Following this, samples
were carefully selected based on a statistical significance
threshold of p < 0 05. This facilitated the calculation of the
percentage representation of each immune cell type within
the chosen samples. To further analyze the disparities in
immune infiltration levels between the two cohorts, we uti-
lized the vioplot package in R software.

2.8. Validation of Key Genes in Online Database. The mRNA
expression profiles of NET genes in renal tubules of DKD
patients were analyzed using the Nephroseq v5 database
(http://www.nephroseq.org). Pearson’s correlation analyses
were conducted to examine associations between the
screened key genes and patient GFR using this database.
At last, we conducted immunology in a DKD mouse. For-
malin-fixed, paraffin-embedded kidney sections were
deparaffinized, rehydrated through graded ethanol, and
subjected to microwave-mediated antigen retrieval in
double-distilled water. Endogenous peroxidase activity was
quenched with 3% hydrogen peroxide prior to blocking
with 3% bovine serum albumin. Sections were incubated
overnight at 4°C with primary antibodies against CASP1
(1 : 1000 dilution; Servicebio, Wuhan, China) and lysozyme
(LYZ) (1 : 1000; Servicebio). An HRP-conjugated secondary
antibody was then applied for 50 minutes at room temper-

ature. Immunoperoxidase staining was developed using
3,3′-diaminobenzidine as the chromogen, followed by hema-
toxylin counterstaining of nuclei. Stained sections were visual-
ized and photographed under a light microscope. Quantitative
immunohistochemical analysis was performed by measuring
optical density in ImageJ software (National Institutes of
Health, Bethesda, MD, USA).

2.9. Validation of Feature Genes in DKD Mouse Model. To
validate the identified hub genes in vivo, DKD was
induced in 6 male DKD mice and 6 age-matched nondia-
betic controls.

2.9.1. Animal Preparation. Seven-week-old male C57BL/6J
mice were purchased from Gempharmatech Co., Ltd
(Jiangsu, China). At 8 weeks of age, the mice were intraper-
itoneally injected with multiple low doses of streptozoto-
cin(STZ, Sigma-Aldrich, 50mg/kg) for five consecutive
days to induce diabetes. Control mice received citrate buffer
only. Body weight and fasting blood glucose levels were
monitored biweekly. Fasting blood glucose ≥ 15mmol/L
was considered indicative of successful model establishment.

2.9.2. Immunohistochemical Staining. After kidney harvest
and fixation in 4% paraformaldehyde, paraffin-embedded
sections (3μm) underwent antigen retrieval and incubation
with primary antibodies for CASP1 (1 : 1000; Servicebio)
and LYZ (1 : 1000; Servicebio) overnight at 4°C. Sections
were then incubated with secondary antibodies for 1 h at
room temperature, followed by 3,3′-diaminobenzidine to
visualize immunohistochemical staining. Stained sections
were imaged under a light microscope (Olympus) and quan-
titatively analyzed using ImageJ software (NIH). Animal
procedures were conducted in accordance with institutional
guidelines and were approved by the Institutional Animal
Care and Use Committee at Fujian Medical University
(FJMU IACUC 2020-0104).

2.10. Statistical Analysis. Differences between the two groups
were analyzed using unpaired Student’s t-tests and Wilcox-
on’s rank-sum tests. Associations between variables were
evaluated by the Pearson or Spearman correlation analyses.
Statistical analyses were conducted using R software (version
4.3.1). Differences were considered statistically significant at
p < 0 05 unless otherwise stated.

3. Result

3.1. Identification of DEGs Between Diabetic Tubulointerstitial
Injury and Control Group. DEGs from diabetic tubulointer-
stitial injury samples and controls were analyzed rigorously
using the “limma” package in the R software for statistical
analysis. The R language code for DEGs is provided in Sup-
porting Information S1. Transcriptomic analysis identified
898 DEGs between DKD tubulointerstitial injury samples
and controls, including 379 upregulated and 519 downregu-
lated genes (Figure 1(a)). The DEGs are listed in Table S2.
A heat map shows the top 50 up- and downregulated DEGs
distinguishing tubulointerstitial injury samples from controls
(Figure 1(b)).
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Figure 1: Continued.
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3.2. Functional and Pathway Enrichment Analyses. Our
GO analysis assessed three categories: BP, CC, and MF
(Figure 1(c); Table S3). The BP category revealed significant
enrichment in processes including positive regulation
of defense response, neutrophil chemotaxis, leukocyte
chemotaxis, neutrophil migration, and cellular response to

biotic stimulus.CC enrichment analysis demonstrated that
DEGs were significantly enriched in multiple secretory
vesicle components, including secretory granule lumen,
cytoplasmic vesicle lumen, vesicle lumen, specific granules,
and tertiary granules. In the MF category, chemokine
activity, chemokine receptor binding, peptidase regulator
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Figure 1: Differential expression analysis in DKD tubulointerstitial injury. (a) Volcano plot depicting the DEG profiles between diabetic
tubulointerstitial injury samples and healthy controls. (b) Heat map representation of the 50 most upregulated and 50 most
downregulated DEGs. Enrichment analysis of functional annotations for DEGs. (c) Top 5 enriched functional terms in biological
processes (BP), cellular components (CC), and molecular functions (MF). (d) Pathway enrichment analysis using KEGG for DEGs.
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activity, cytokine activity, and G protein-coupled receptor
binding were identified as playing essential roles. The
KEGG pathway analysis highlighted NET formation as the
most significant pathway, with Legionellosis, rheumatoid
arthritis, and viral protein interaction as other major
enriched pathways (Figure 1(d); Table S4).

3.3. Weighted Gene Coexpression Network Construction. The
scale-free topology index reached its peak at a soft-
thresholding power of 10 (Figure 2(a)). The mean connectiv-
ity plateaued at approximately one (Figure 2(b)), facilitating
the comparison of networks. A dendrogram was formed
based on topological overlap through hierarchical clustering
(Figure 2(c)). Colored modules were assigned through
dynamic tree cutting. The heat map indicates that the
magenta module showed the highest positive correlation
with DKD tubulointerstitial injury (Figure 2(e)). The Venn
diagram displays 15 overlapping genes between the magenta
module and NRGs (Figure 2(D)).

3.4. LASSO and Random Forest Approaches Were Employed
to Select Optimal Feature Genes. Feature genes were selected
via LASSO regression and random forest models. LASSO
regression enabled automated feature selection and optimiza-
tion of the regularization parameter by cross-validation to
minimize error, identifying 10 feature genes (Figures 3(a)
and 3(b)). Increasing the number of decision trees led to
a gradual decline in the prediction error of the random
forest model, which stabilized at approximately 300 trees

(Figure 3(c)). The top 15 features from the random forest
model ranked LTF, FCGR2B, LYZ, and CASP1 as the
most important variables (Figure 3(f)). A Venn diagram
shows CASP1 and LYZ as the two feature genes com-
monly selected by LASSO regression and random forest
models (Figure 3(d)). Feature genes identified through
machine learning are shown in Table S5.

3.5. The Diagnostic Efficacy Evaluation and Validation of
Feature Genes. Boxplots showed upregulated CASP1 and
LYZ mRNA expression (p < 0 01) in patient samples
(Figures 4(a) and 4(b)). Receiver operating characteristic
analysis demonstrated high area under the curve (AUC)
values of 0.921 and 0.954 for CASP1 and LYZ, respectively
(Figures 4(c) and 4(d)), indicating excellent diagnostic per-
formance. To validate the expression changes, the tubuloin-
terstitial transcriptome of DKD patients was analyzed using
Nephroseq v5, confirming elevated CASP1 and LYZ mRNA
levels compared to controls (Figures 4(e) and 4(f)). Corre-
lation analysis showed significant negative correlations
between estimated GFR and CASP1/LYZ expression
(Figures 4(g) and 4(h)), indicating their potential as pre-
dictive biomarkers for declining renal function.

3.6. Function Enrichment Analysis. To elucidate the func-
tional roles of the identified feature genes during tubuloin-
terstitial injury, GSEA compared pathway regulation
between high and low hub gene expression groups in the
GSE30122 dataset. GSEA showed CASP1 and LYZ
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Figure 2: Network construction and module detection in GSE30122 using WGCNA. (a) Selection of the soft-thresholding power in
WGCNA. (b) Analysis of network connectivity within WGCNA. (c) The WGCNA generated a cluster dendrogram. Identification of
candidate hub genes. (d) The Venn diagram illustrating the overlap between the magenta module and NRGs. (e) Cluster dendrogram of
gene modules from WGCNA.
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expression to be associated with phagocytosis, leukocyte
migration, amino acid metabolism, and steroid biosynthesis
pathways. Figures 5(a) and 5(b) display the top 10 ranked
pathways by enrichment score. These functional enrich-
ments implicate the potential involvement of CASP1 and
LYZ in regulating immune cell trafficking, metabolic alter-
ations, and inflammatory responses during DKD tubuloin-
terstitial injury.

3.7. Immune Cell Infiltration Analysis. Immune cell infiltra-
tion analysis was performed to assess immunologic features.
Compared to normal controls, DKD tubulointerstitial
injury patients showed increased levels of CD4 memory
resting T cells, regulatory T cells (Tregs), gamma delta T
cells, monocytes, M1/M2 macrophages, resting/activated
mast cells, and neutrophils (Figure 5(c)). Furthermore,
CASP1 and LYZ expression exhibited positive correlations
with resting dendritic cells, M0/M1/M2 macrophages, and
neutrophils, while showing negative correlations with acti-

vated dendritic cells, resting mast cells, NK cells, and mono-
cytes (Figure 5(d)).

3.8. IHC Staining. We attempted to perform IHC staining
for NRGs (CASP1 and LYZ) in the DKD mouse model
and nondiabetic controls. The results of IHC staining
revealed that CASP1 and LYZ exhibited statistical differ-
ences in the DKD group compared with the non-DKD
group mainly in the tubular epithelial cells (p < 0 05).
(Figures 6(a) and 6(b)).

4. Discussion

DKD is a complex, heterogeneous disorder characterized by
overlapping pathogenetic mechanisms that can contribute to
declining renal function [3]. Identifying and exploring
potential DKD biomarkers to slow or prevent disease pro-
gression is clinically significant. Recent studies [8, 9] indicate
that immune-inflammatory injury plays a crucial role in
DKD pathogenesis. NETs are an inflammatory neutrophil
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Figure 3: Machine learning algorithms applied to signature gene identification. (a) Penalty parameter selection in the LASSO model
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cell death pathway characterized by the release of nonspe-
cific components [26]. Excessive NET activation and release
can elicit uncontrolled inflammation and subsequent tissue
damage, owing to the accumulation of extracellular chroma-
tin and inflammatory factors such as tumor necrosis factor-α
(TNF-α) and interleukin-1β (IL-1β) [11, 13, 27]. Emerging
evidence shows that DKD can promote NETosis to release self-
antigens, thereby eliciting immune-inflammatory responses
that contribute to disease progression [3, 11, 13, 28, 29].
NETs have been demonstrated to play a vital role in the
pathogenesis and deleterious effects associated with DKD.
However, the potential mechanisms of NETs in mediating
tubulointerstitial injury in diabetes remain unclear. The
widespread application of microarrays and bioinformatics
facilitates the identification of key genes involved in diabetic
tubulointerstitial injury. This may yield additional therapeu-
tic targets for DKD.

We evaluated DEGs between DKD patients and healthy
controls and explored key modules using WGCNA. NET-
related signature genes for DKD tubulointerstitial injury,
including CASP1 and LYZ, were identified by LASSO and
random forest analysis. Validation was performed in the
Neph v5 database and DKD mouse models. GSEA then
explored signaling pathways associated with the signature
genes. The CIBERSORT algorithm finally analyzed correla-
tions between immune cell infiltration and signature genes
in DKD tubulointerstitial injury versus healthy groups.

Caspase-1 (CASP1) is an inflammatory cysteine prote-
ase that is pivotal for maturation of the proinflammatory
cytokines IL-1β and IL-18, which can activate neutrophils
and promote NETosis [11, 30]. CASP1 critically regulates
inflammation and pyroptosis. Previous studies implicate
CASP1 in DKD pathogenesis. Increased renal CASP1
expression and activity are demonstrated in both animal
models and human studies of diabetes [31]. These findings
suggest that CASP1 plays a role in DKD not limited to a

single cell type but may also mediate tubular injury [13].
These findings suggest that the role of CASP1 in DKD is
not limited to a single intrinsic cell type but likely also
mediates tubular injury. Although direct evidence linking
CASP1 to DKD tubulointerstitial injury is currently absent,
our integrative bioinformatics analysis identified an associa-
tion between tubulointerstitial injury and increased CASP1
expression, given the inflammatory and cytotoxic roles of
CASP1. Renal tubular CASP1 may thus have utility as
an early diagnostic biomarker of tubulointerstitial injury
in DKD.

LYZ is an immunomodulatory and antibacterial protease
[32]. Prior bioinformatics studies show upregulated renal
LYZ expression and activity in DKD patients and models
[33]. LYZ has been identified as a key gene in bioinformatics
analyses, with increased urinary LYZ mRNA levels correlat-
ing with renal pathology severity in DKD [32]. Moreover,
increased renal LYZ is confirmed in DKD animal models
by IHC [34]. Although direct evidence linking LYZ to
diabetic tubulointerstitial injury is currently absent, these
findings suggest that LYZ-mediated inflammation may pro-
mote interstitial injury in DKD, with utility as a biomarker.
Further studies should investigate the mechanisms of LYZ
in DKD and validate its diagnostic and monitoring value
using in vitro and in vivo models.

Functional enrichment and immune infiltration analy-
ses indicate aberrant immunopathology in DKD intersti-
tial injury. GO analysis implicates neutrophil infiltration
and chemotaxis in driving inflammation, while KEGG
analysis emphasizes the critical role of NETs, suggesting
neutrophil-mediated tissue damage via NET release [29,
35]. Further immune cell analysis reveals intricate crosstalk
between innate and adaptive immunity underlying disease
progression.

Activated neutrophils release NETs, stimulating macro-
phage recruitment and antigen presentation to trigger
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Figure 4: Evaluating the performance of signature genes within GSE30122. (a, b) Boxplots illustrating expression levels of signature genes in
DKD tubulointerstitial injury and healthy cohort. (c, d) ROC curve analysis of the diagnostic performance of signature genes CASP1 and
LYZ. (e, f) Expression levels of CASP1 and LYZ in tubulointerstitial injury patients versus healthy controls based on the Nephroseq v5
dataset. (g, h) Correlations between CASP1/LYZ expression and GFR in tubulointerstitial injury patients compared to healthy controls
using the Nephroseq v5 dataset.
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cytotoxic T cell responses [36]. Conversely, IFN-γ and TNF-
α from T cells can reciprocally promote M1 macrophage
polarization and neutrophil activation [37], perpetuating a
self-amplifying inflammatory loop. CASP1/LYZ correlations
show that NETs have immunomodulatory effects on macro-

phages, neutrophils, and dendritic and mast cells. Macro-
phage accumulation in DKD kidney correlates with
declining renal function [38]. NETs may aggravate inflam-
mation and fibrosis by perturbing macrophage polarization
[29, 38]. In summary, infiltrating immune cells contribute
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to DKD, and targeting CASP1/LYZ may mitigate tubuloin-
terstitial injury by modulating aberrant immunity. Activated
macrophages can also secrete TNF-α and CCL2 to recruit
more neutrophils [8], perpetuating a positive feedback loop
exacerbating disease. Moreover, macrophage engulfment of
mast cell granules may suppress excess activation [38], con-
sistent with our findings that targeting CASP1/LYZ could
ameliorate aberrant immunity and arrest DKD tubulointer-
stitial injury.

To investigate NRG correlations with renal function, we
analyzed NRG expression in Nephroseq, finding negative
correlations with GFR in DKD. Using a DKD mouse model,
we performed IHC to validate the role of NRGs in tubuloin-
terstitial injury, highlighting their biomarker potential. Our
findings reveal the potential of NRGs as noninvasive bio-
markers for early tubular injury in DKD, stratifying patients
based on tubular damage profile. This enables more person-
alized treatment by targeting tubulointerstitial inflamma-
tion. Longitudinal NRG analysis may complement GFR for
monitoring tubular injury progression. Effective biomarkers
might lessen the need for invasive kidney biopsies. NRGs
have potential as noninvasive pharmacodynamic markers
of therapeutic response. Further studies are warranted to
validate NRGs’ diagnostic accuracy and determine their
prognostic and therapeutic monitoring value.

However, limitations exist. Our literature-based NRG
selection may have missed newly discovered NET genes, as
NET research continues to identify novel-related genes.
Additionally, a lack of human validation and potential data-
set biases represent limitations. Larger DKD cohorts would
help verify these findings and overcome computational
biases.

5. Conclusion

Our study reveals CASP1 and LYZ as promising diagnostic
and therapeutic targets for tubulointerstitial injury in
DKD. The aberrant expression of NRGs is closely associated
with the pathogenesis of tubulointerstitial lesions in DKD.
Future investigations should focus on delineating the molec-
ular mechanisms of NRGs in DKD progression. We envision
that these efforts will uncover more targeted therapies to
combat DKD.
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