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The etiology of insulin resistance (IR) development in type 1 diabetes mellitus (T1DM) remains unclear; however, impaired
skeletal muscle metabolism may play a role. While IR development has been established in male T1DM rodents, female
rodents have yet to be examined in this context. Resistance exercise training (RT) has been shown to improve IR and is
associated with a lower risk of hypoglycemia onset in T1DM compared to aerobic exercise. The purpose of this study was to
investigate the effects of RT on IR development in female T1DM rodents. Forty Sprague Dawley eight-week-old female rats
were divided into four groups: control sedentary (CS; n = 10), control trained (CT; n = 10), T1DM sedentary (DS; n = 10), and
T1DM trained (DT; n = 10). Multiple low-dose streptozotocin injections were used to induce T1DM. Blood glucose levels were
maintained in the 4-9mmol/l range with intensive insulin therapy. CT and DT underwent weighted ladder climbing 5 days/
week for six weeks. Intravenous glucose tolerance tests (IVGTT) were conducted on all animals following the six-week period.
Results demonstrate that DS animals exhibited significantly increased weekly blood glucose measures compared to all groups
including DT (p < 0 0001), despite similar insulin dosage levels. This was concomitant with a significant increase in insulin-
adjusted area under the curve following IVGTT in DS (p < 0 05), indicative of a reduction in insulin sensitivity. Both DT and
DS exhibited greater serum insulin concentrations compared to CT and CS (p < 0 05). DS animals also exhibited significantly
greater glycogen content in white gastrocnemius muscle compared to CS and DT (p < 0 05), whereas DT and DS animals
exhibited greater p-Akt: Akt ratio in the white vastus lateralis muscle and citrate synthase activity in the red vastus lateralis
muscle compared to CS and CT (p < 0 05). These results indicate that female rodents with T1DM develop poor glycemic
control and IR which can be attenuated with RT, possibly related to differences in intramyocellular glycogen content.

1. Background

Type 1 diabetes mellitus (T1DM) is a chronic metabolic dis-
ease characterized by the loss of endogenous insulin produc-
tion resulting from autoimmune-mediated pancreatic beta
cell destruction. The significant reduction in systemic circu-
lation of insulin results in hyperglycemia which can lead to
the accumulation of advanced glycation end products within
bodily tissues and the development of complications such as
nephropathy, neuropathy, retinopathy, and cardiovascular
disease (CVD) (1). The current standard of care for patients

with T1DM consists of exogenous insulin administration to
normalize glycemia; specifically, intensive insulin therapy
(IIT) which involves the maintenance of blood glucose
within the 4-9mmol/l range (2). While IIT helps individuals
with T1DM to avoid prolonged hyperglycemia, insulin resis-
tance (IR) is a prominent feature in approximately 20-30%
of patients treated with IIT (3–7). Termed “double diabetes,”
the presence of IR in T1DM significantly increases the risk
of diabetes-related complications such as CVD (5, 8–13).

While the etiology of IR in T1DM is currently unknown,
it has been shown to be distinct from that of other
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dysfunctional metabolic states such as metabolic syndrome
and type 2 diabetes mellitus (T2DM) (14). Indeed, IR is
present in otherwise healthy and normal-weight adolescents
and young adults with T1DM and is not explained by com-
mon predictive factors such as body mass index, plasma
lipids, reduced physical activity levels, and visceral adiposity
(15–18).

Skeletal muscle is responsible for ~80% of postprandial
glucose uptake, making this tissue an important determinant
of whole-body insulin sensitivity (19). Furthermore, skeletal
muscle is a heterogeneous tissue consisting of oxidative
slow-twitch/type I (red) and glycolytic fast-twitch/type IIA/
type IIB (white) myofibers. Importantly, red and white mus-
cle tissues exhibit different metabolic characteristics which
influence insulin-action (e.g., differences in capillary density
and mitochondrial content), such that slow-twitch fibers
typically exhibit greater insulin sensitivity (20). Unlike in
otherwise healthy individuals, the peripheral administration
of insulin bypasses the natural flow of insulin through the
liver. That is, skeletal muscle becomes the “first-pass” tissue
for insulin and is the primary tissue for managing dysglyce-
mia in T1DM (21–23). Previous research has reported
impairments in skeletal muscle metabolism in humans with
T1DM including mitochondrial dysfunction and muscle
fiber type alterations (24–32). Specifically, mitochondrial
impairments in skeletal muscle have been shown to relate
to IR in patients with T1DM (29, 30). Considering the
important “first-pass” role of skeletal muscle in T1DM,
impairments in substrate oxidation in this tissue likely lead
to the impairment of glycemic control and insulin sensitivity
in T1DM (22). Importantly, it has been shown that ~30-40%
of glucose is oxidized by skeletal muscle following an oral
glucose tolerance test (33) and that skeletal muscle oxidative
capacity is a superior predictor of insulin sensitivity com-
pared to intramyocellular lipid status (34). Our laboratory
has shown that sedentary male T1DM rodents with IR
exhibit reduced skeletal muscle oxidative capacity (35).
Therefore, skeletal muscle oxidation of glucose may be an
important determinant of insulin sensitivity in T1DM; how-
ever, the exact cellular mechanisms governing IR in T1DM
remain unclear.

Exercise training has been shown to significantly
increase insulin sensitivity and improve glucose homeostasis
in patients with T1DM and animal models of this disease
(35–43). Unfortunately, individuals with T1DM are largely
inactive due to the fear of hypoglycemia, which is one of
the largest barriers to exercise in this population, especially
for those with IR (44–46). Aerobic exercise is associated with
hypoglycemia onset in T1DM, characterized by a significant
drop in blood glucose below 3.9mmol/l (45, 47–49). Con-
versely, resistance exercise has been shown to be associated
with a lower risk of exercise-induced hypoglycemia in
patients with T1DM (45, 50, 51). Therefore, resistance exer-
cise may be a safe and effective exercise intervention to
improve IR in patients with T1DM.

Most work investigating IR in T1DM from a mechanistic
standpoint has been conducted solely in males (35, 38–40,
52), while very limited work has been conducted in females
(53, 54). The investigation of females with T1DM is war-

ranted as it has been shown that sex differences exist in the
metabolic effects of exercise (55, 56). Indeed, it has been
shown that female adults with T1DM exhibit differential
alterations of mitochondria including lower oxidative capac-
ity and greater skeletal muscle IR compared to their male
counterparts (25, 27, 57, 58). Moreover, no study has
assessed the effects of resistance exercise training (RT) on
IR development in female rodents with T1DM.

The purpose of this study was to examine the effects of
six weeks of RT on IR development in female rodents with
T1DM. It was hypothesized that IR in female rodents with
T1DM would be concomitant with impairments in skeletal
muscle mitochondrial capacity and that six weeks of RT
would ameliorate IR and improve the capacity of mitochon-
dria in skeletal muscle.

2. Materials and Methods

2.1. Ethics Approval. The protocols utilized in this study
were approved by the University Council of Animal Care
of Western University (London, Ontario, Canada) in accor-
dance with the standards of the Canadian Council on Ani-
mal Care.

2.2. Animals. Forty female Sprague Dawley rats were
obtained from Charles River Laboratories (St. Constant,
Que., Canada) at eight weeks of age. All rats were caged in
pairs and housed in a room with a 12-hour light-dark cycle,
a temperature of 20.5°C, and relative humidity of 40%. Rats
were provided access to standard rat chow and water ad libi-
tum over the course of the study.

2.3. Experimental Groups. Rats were randomly assigned into
one of four groups: control (non-T1DM) sedentary (CS;
n = 10), control resistance trained (CT; n = 10), T1DM
sedentary (DS; n = 10), and T1DM resistance trained
(DT; n = 10).

2.4. Experimental Procedures

2.4.1. T1DM Induction and Insulin Pellet Implantation.
Upon arrival, all rats underwent an acclimatization process
for one week. Following this, the two T1DM groups (DS
and DT) underwent seven consecutive days of intraperito-
neal low-dose injections of streptozotocin (STZ; Sigma-
Aldrich) to induce T1DM. Over the seven days, 20mg/kg
of STZ dissolved in citrate buffer (0.1M, pH 4.5) was
injected within fifteen minutes of solution preparation. Dia-
betes was confirmed following the seven days of STZ injec-
tions by two nonfasting blood glucose measurements of
~11mmol/l or greater (59). After confirmation of diabetes
induction, one insulin pellet (2 IU insulin/day) was surgi-
cally implanted subcutaneously into the abdominal region.
The insulin dose was modified over the course of the study
via the removal of a portion of the insulin pellet if required
for appropriate blood glucose maintenance. Blood glucose
was intended to be maintained between 4 and 9mmol/l for
each T1DM rat throughout the study.
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2.4.2. Exercise Training. RT consisted of vertical ladder
climbing with a weight-loaded bag secured to the proximal
portion of the tail. Prior to week one of RT, CT and DT ani-
mals underwent two separate familiarization sessions con-
sisting of 10 consecutive ladder climbs at 5, 15, 20, and
35% of their body weight (2-3 climbs at each weight). This
allowed rats to become acquainted with the process of ladder
climbing before the commencement of training. Rats were
allowed to rest in a dark box at the top of the ladder for
~1-2 minutes in-between climbs. An initial maximal carry-
ing capacity was determined during the first day of week
one of training for each rat. This was determined by begin-
ning each rat at a carrying load equal to 75% of their body
weight and progressively adding 10-30 g until failure was
reached (defined as an unwillingness to climb despite hind
limb stimulation via touch and air bursts). Following the
determination of maximal carrying capacity, training
periods consisted of rats performing four consecutive climbs
at 50, 75, 90, and 100% of their maximal carrying capacity,
followed by as many climbs as possible until failure at
100% maximal carrying capacity. A new maximal carrying
capacity was established every four days by starting with
each rat’s previous maximal capacity and gradually adding
10-30 g until failure, following the progressive overload
principle. CT and DT rats performed RT five days/week
for six weeks.

2.5. Experimental Measures

2.5.1. Body Weights and Blood Glucose. The body weight of
each rat was measured and recorded once per week over
the course of the study. Weekly nonfasting blood glucose
was also measured from a small blood droplet (~50μl)
obtained from the saphenous vein using the Freestyle Lite
Blood Glucose Monitoring System (Abbott Diabetes Care,
INC.).

2.5.2. Intravenous Glucose Tolerance Test. Intravenous
glucose tolerance tests (IVGTTs) were performed for all rats
following the 6-week training period. Following a 4-12 hour
fast, a baseline blood glucose measurement was obtained.
Shorter fasting periods were used for DS and DT (~4 hours)
compared to non-T1DM control (~12 hours) animals to
avoid hypoglycemic episodes. A sterile dextrose solution
(10%; 5 g dextrose in 50ml ddH2O) was injected (2ml/kg)
into the tail vein of the conscious rats. Blood glucose was
then measured in 10-minute intervals up to 40 minutes post-
injection. The area under the curve (AUC) for the IVGTT
was determined 40 minutes postdextrose injection.

2.5.3. Blood and Tissue Collection. Rats were sacrificed
immediately following the IVGTT during the final week of
the study. Sacrifice was performed via anaesthetization with
isoflurane, followed by cardiac exsanguination. Approxi-
mately three blood samples of 500μl were collected from
each rat. Blood samples were centrifuged for 30 minutes at
3000 rpm, and serum was then transferred to 1.5ml Eppen-
dorf tubes. The lower limbs were dissected, and the vastus
lateralis (red and white), gastrocnemius (red and white),
and soleus muscles were removed and immediately frozen

in liquid nitrogen. Tissues and serum were then stored at
-80°C until later analysis.

2.5.4. Muscle Glycogen Content. Red and white gastrocne-
mius muscle (~20mg) was homogenized in 30% KOH satu-
rated with Na2SO4 and boiled for 30 minutes (47). Glycogen
in muscle samples was precipitated with 95% ethanol, and
samples were left to rest on ice for an additional 30 minutes.
Samples were then centrifuged for 20-30 minutes at 3000 rpm.
After centrifugation, the supernatant was discarded, and gly-
cogen pellets were immediately resuspended in 3ml of
ddH2O. Glycogen pellets were placed on ice until a homoge-
nous solution resulted and then split into three 1ml glass
tubes for triplicate analysis. One ml of 5% phenol and 5ml
of sulfuric acid (96-98%) were subsequently added to each
tube and allowed to stand for 5 minutes at room temperature
and then incubated at 25-30°C for 10 minutes. The colour
reaction of samples was analyzed using a spectrophotometer
at a wavelength of 490nm.

2.5.5. β-Oxidation Activity. Approximately 30mg of soleus
muscle was excised and placed in a 1.5ml Eppendorf tube.
Sample buffer (5mM K2HPO4, 1mM EDTA, 0.1mM DTT;
pH of 7.4) was added to soleus muscle samples for a 1 : 10
weight-volume (w/v) ratio of tissue to buffer. Submerged tis-
sue samples were homogenized with three, 1-3 second pulses
by a basic mechanical homogenizer (IKA Laboratories).
Homogenized soleus muscle samples were added to an
Eppendorf tube with assay buffer (1M Tris-HCl, pH 7.0,
0.5M EDTA, pH 8.0, 10% Triton X-100) and 5mM nicotin-
amide adenine dinucleotide (NADH). Sample Eppendorf
tubes were incubated for 4 minutes at 30°C to permeabilize
mitochondria. Following incubation, the sample mixture
was transferred to a cuvette, and the reaction was initiated
by adding 5mM acetoacetyl CoA (60). The sample cuvette
was vortexed, and the reaction was read for 2 minutes in
30-second intervals on a NanoDrop2000 C Spectrophotom-
eter (Waltham, MA, USA) at 340nm.

2.5.6. Citrate Synthase Activity. Citrate synthase activity was
measured in the red vastus lateralis muscle using an assay kit
(#ab239712, Abcam, Cambridge, MA, USA). Approximately
10mg of red vastus lateralis muscle was excised and placed
in a 1.5ml Eppendorf tube. Citrate synthase assay buffer
was added to red vastus samples for a 1 : 10 weight-volume
(w/v) ratio of tissue to buffer. Submerged tissue samples
were homogenized with three, 1-3 second pulses by a basic
mechanical homogenizer (IKA Laboratories, Wilmington,
NC, USA). On a 96-well plate, 5μl of sample was added to
wells with reaction buffer, and the rate of absorbance change
was read using a microplate reader at 412 nm at 13-second
intervals over 6.5 minutes.

2.5.7. Western Blot. Red and white vastus lateralis muscle
(20mg) was submerged 1 : 20 (w/v) in lysis buffer (15mM
Tris pH = 7 0, 600mM NaCl, and 0.1mM EDTA). The sub-
merged tissue was homogenized with three, 1-3 second
pulses using a basic mechanical homogenizer (IKA Labora-
tories, Wilmington, NC, USA). Tissue homogenate was
transferred into Eppendorf tubes (1.5ml) and agitated on a
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shaker for 2 hours on ice. Samples were then centrifuged at
12,000 rpm for 20 minutes at 4°C. Sample supernatant was
extracted and transferred to a different Eppendorf tube
(1.5ml) and stored at -80°C. Total sample protein concen-
tration and loading volumes were determined using a Brad-
ford protein assay (61). In Eppendorf tubes, protein samples
mixed with an equal volume of 2x Laemmli SDS-PAGE (4%
SDS, 20% glycerol, 10% β-mercaptoethanol, 0.015% bromo-
phenol blue, 0.125M Tris, pH 6.8) were subsequently boiled
at 90°C in a water bath for 5 minutes. Twenty μg of the sam-
ple protein was then loaded into 12% polyacrylamide gels
and ran at 75-150V for 2 hours. Transfer of gel protein to
nitrocellulose membranes (Bio-Rad, Mississauga, ON, Can-
ada) was conducted at 70V for 90 minutes. Following com-
pletion of the transfer, membranes were stored at 4°C in
TBS-T (Tris Buffer Saline, 0.1% Tween-20), overnight. The
following morning, membranes were washed in fresh TBS-
T for 5 minutes. Following washing, membranes were
blocked with a 5% w/v solution of TBS-T and skim milk
powder or bovine serum albumin (BSA) for 1-2 hours.
Blocked membranes were then washed for 5 minutes in
TBS-T. Washed membranes were incubated for 2 hours at
room temperature with primary antibodies detecting: Akt
(Cell Signalling; 4691, Danvers, MA, USA), phosphorylated
(ser473) Akt (Cell Signalling; 4060, Danvers, MA, USA),
and mitochondrial complexes (Abcam; ab110413, Cam-
bridge, MA, USA). Following incubation, the primary anti-
body was removed, and membranes were subsequently
washed in TBS-T for 10 minutes and repeated for three
washes. Membranes were then incubated in a 5% w/v solu-
tion of TBS-T and skim milk powder or BSA, and secondary
antibody (#170-6515 goat anti-rabbit IgG HRP conjugate,
#170-6516 goat anti-mouse IgG HRP conjugate; Bio-Rad,
57 Hercules, CA, USA) at a 1 : 20000 dilution for 2 hours
at room temperature. After incubation, membranes were
washed for 10 minutes in TBS-T and repeated for three
washes. Membranes were then treated with Bio-Rad chemi-
luminescence substrate, and the images were subsequently
captured using the Bio-Rad ChemiDoc MP System. Western
blot image quantification was conducted using ImageJ.

2.5.8. Insulin and Estradiol Quantification. Insulin and
estradiol serum concentrations were determined using
enzyme-linked immunosorbent assay (ELISA) kits (ELISA;
Rat Insulin ELISA Kit, ALPCO; 17-β Estradiol ELISA Kit,
Abcam). Blanks, standards, and serum samples were added
to a 96-well microplate precoated with anti-insulin or anti-
estradiol IgG. Insulin or 17-β estradiol-HRP conjugate was
added to each well, and plates were incubated for 2 hours
at 25-37°C. Following incubation, plates were aspirated
and washed three to six times with wash buffer. The sub-
strate solution was then added to each well and further
incubated for 15-30 minutes. Following substrate incuba-
tion, stop solution was added to each well, and plates were
immediately read at 450nM using a microplate reader.
The absorbance values of samples were adjusted based on
the absorbance of blanks. Hormone concentration was
interpolated from a standard curve generated from the
blank and standards.

2.6. Data Analysis. GraphPad Prism 8 (GraphPad Software,
Inc.) was used to complete statistical data analysis. Weekly
blood glucose and body mass measures were analyzed using
a three-way analysis of variance (ANOVA) with time, diabe-
tes, and exercise training as factors. Maximal carrying capac-
ity, serum estradiol and insulin concentrations, IVGTT
AUC and skeletal muscle content (glycogen, Akt, p-Akt,
and mitochondrial complexes), and enzyme activity (β-oxi-
dation and citrate synthase) were analyzed using a two-way
ANOVA with diabetes and exercise training as factors. Bon-
ferroni’s multiple comparisons test was used for post hoc
analysis when significant differences were observed. Statisti-
cal significance was accepted at an alpha value of 0.05. Cor-
relational analysis of IVGTT AUC and serum estradiol was
completed using linear regression.

3. Results

3.1. Animal Characteristics. Weekly nonfasting blood glu-
cose (Figure 1(a)) and body mass (Figure 1(b)) measures
were analyzed to examine and maintain the health and gly-
cemic control of each animal. One animal from the DS
group met its endpoint prematurely and did not contribute
to the data. For blood glucose, main effects of diabetes
(F 1, 343 = 64 11, p < 0 0001) and time (F 9, 343 = 23 25,
p < 0 0001) were statistically significant. There was a signifi-
cant interaction between time and diabetes (F 9, 343 = 22 93,
p < 0 0001), time and training (F 9, 343 = 3 799, p < 0 05),
diabetes and training (F 1, 343 = 10 66, p < 0 05) and time,
and diabetes and training (F 9, 343 = 3 062, p < 0 05).
During week 2 of the study, DS and DT had significantly
higher blood glucose levels compared to CT and CS
(p < 0 0001), while DS and DT blood glucose did not differ
(p > 0 05). During week 10, DS blood glucose was signifi-
cantly greater than all groups (p < 0 0001). For body weight,
main effects of diabetes (F 1, 345 = 8 059, p < 0 05), time
(F 9, 345 = 59 86, p < 0 0001), and training (F 1, 345 =
16 61, p < 0 0001) were statistically significant, and there
was a significant interaction between diabetes and training
(F 1, 345 = 26 70, p < 0 0001). These results indicate that
DS animals exhibited a relative reduction in glycemic con-
trol over the course of the study period compared to control
and trained T1DM animals.

3.2. Carrying Capacity. Carrying capacities of CT and DT
(Figure 2) were recorded and analyzed to ensure that similar
loads were carried by each group throughout the training
period. A main effect of training day was statistically signif-
icant (F 6, 126 = 71 21, p < 0 0001). No significant differ-
ences (p > 0 05) were observed in carrying capacity loads
(expressed in grams) between CT and DT over the course
of the study. Therefore, differences in outcome measures
between CT and DT are likely not attributable to different
training stimuli.

3.3. Serum Insulin and Estradiol Concentration. To deter-
mine the hormonal influence on glucose metabolism, we
next measured the concentrations of circulating 17-β estra-
diol and insulin from serum samples taken immediately
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after the IVGTT during animal sacrifice. No differences in
serum estradiol were observed between groups (p > 0 05)
(Figure 3(a)). Serum insulin exhibited a main effect of
diabetes (F 1, 31 = 44 99, p < 0 0001) (Figure 3(b)). DS
(p < 0 0001) and DT (p < 0 05) serum insulin values were
significantly greater than CS and CT animals, while DS and
DT serum insulin values did not differ significantly
(p > 0 05). Elevated serum insulin concentrations in both
T1DM groups compared to control animals suggest a state
of hyperinsulinemia in these animals likely as a result of
exogenous insulin treatment.

3.4. Intravenous Glucose Tolerance Test. Blood glucose mea-
sures during the IVGTT (Figure 4(a)) were used to deter-
mine AUC as an indicator of insulin sensitivity. IVGTT
AUC (Figure 4(b)) was then adjusted for serum insulin con-

centration to gain a more accurate measure of glucose clear-
ance. For insulin-adjusted IVGTT AUC, there was a main
effect of diabetes (F 1, 30 = 23 52, p < 0 0001) and training
(F 1, 30 = 5 078, p < 0 05), and a significant interaction
between diabetes and training (F 1, 30 = 5 072, p < 0 05).
DS exhibited significantly greater insulin-adjusted IVGTT
AUC compared to CS (p < 0 0001), CT (p < 0 0001), and
DT (p < 0 05), indicative of IR in these animals. As hypoth-
esized, this suggests that RT prevented IR development in
female T1DM rodents.

3.5. Correlation between Serum Estradiol Concentration and
Insulin-Adjusted IVGTT AUC. As 17-β estradiol may influ-
ence insulin sensitivity in females, we conducted a correla-
tional analysis between serum estradiol concentration and
insulin-adjusted IVGTT AUC. While significantly nonzero
(F 1, 31 = 4 176, p < 0 05), linear regression analysis
revealed a limited explanation of the variance in insulin sen-
sitivity measures by serum estradiol (R2 = 0 1187) when
values from all groups were pooled (Figure 5). This result
persisted when data was segregated by group (Supplemental
Figure 1). This suggests that the influence of estradiol
concentration on glucose clearance in these animals was
negligible.

3.6. Muscle Glycogen Content, β-Oxidation Activity, and
Citrate Synthase Activity. We next aimed to investigate the
metabolism of skeletal muscle following a glucose challenge
using muscle samples obtained immediately post-IVGTT.
A series of assays were conducted to measure intramyocellu-
lar glycogen content, lipid metabolism, and oxidative capac-
ity as these represent important determinants of insulin
sensitivity and glucose uptake. Red gastrocnemius muscle
glycogen content (Figure 6(a)) did not differ between groups
(p > 0 05), whereas glycogen content in the white gastrocne-
mius muscle (Figure 6(b)) exhibited a main effect of diabetes
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(F 1, 34 = 5 989, p < 0 05) and a significant interaction
between diabetes and training (F 1, 34 = 10 49, p < 0 05).
DS animals exhibited significantly greater glycogen content
in white gastrocnemius muscle compared to CS and DT
(p < 0 05), whereas DS animals approached significance
compared to CT (p = 0 0622). Soleus muscle β-oxidation and
short-chain β-hydroxyacyl-CoA dehydrogenase (SCHAD)
activity (Figure 6(c)) did not differ between groups (p > 0 05).
Red vastus lateralis muscle citrate synthase activity
(Figure 6(d)) exhibited a main effect of diabetes
(F 1, 32 = 14 59, p < 0 05) and training (F 1, 32 = 4 532,
p < 0 05). Contrary to our hypothesis, the results of these
assays suggest that insulin-insensitive DS animals do not
exhibit impairments in skeletal muscle oxidative capacity,
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rather alterations in intramyocellular glycogen content which
was prevented with RT.

3.7. Muscle Insulin Signalling Activation and Mitochondrial
Enzyme Content. Akt (protein kinase B) activation via phos-
phorylation was assessed to determine insulin sensitivity at
the level of distal intracellular insulin signalling in skeletal
muscle. In the red vastus lateralis muscle, the ratio of p-
Akt(ser473) to total Akt (Figure 7(a)) approached signifi-
cance for a main effect of diabetes (p = 0 0804) but did not
significantly differ between groups (p > 0 05). In the white
vastus lateralis muscle, the ratio of p-Akt(ser473) to total
Akt (Figure 7(b)) exhibited a main effect of diabetes
(F 1, 35 = 13 02, p < 0 05). Red vastus lateralis muscle oxi-
dative phosphorylation (OXPHOS) protein content of com-
plexes I-V (Figure 7(c)) did not significantly differ between
groups (p > 0 05). Protein content was normalized to Pon-
ceau staining of membranes. This suggests that Akt activa-
tion and mitochondrial content in skeletal muscle were not

impaired in DS animals exhibiting IR and were not altered
with RT.

4. Discussion

The primary finding of the current study is that, similar to
their male counterparts (35, 38–40, 52), female rodents with
T1DM develop IR. By the end of the study, DS animals
exhibited nonfasting blood glucose measures significantly
greater than all groups. Additionally, IVGTT AUC was sig-
nificantly greater in DS animals, indicative of a reduction
in insulin sensitivity. To our knowledge, this would be the
first evidence that insulin-treated female rodents with well-
controlled T1DM develop IR. DT animals exhibited reduced
blood glucose levels and lower IVGTT AUC compared to
DS, which indicates that six weeks of RT in female rodents
with T1DM were able to prevent IR development. These
findings are in line with our previous report in male
T1DM rodents (38), and literature reporting RT-induced
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improvements in insulin sensitivity in individuals with
T2DM, and in both males and females (62–68).

Our analyses of skeletal muscle tissue revealed distinct
alterations in intramyocellular glycogen storage in sedentary
and trained rodents with T1DM. Specifically, DS animals
exhibited an elevation in white gastrocnemius muscle glyco-
gen content. This may have been a result of the elevated
levels of serum insulin observed in T1DM animals in this
study, as insulin plays an important role in promoting intra-
muscular glycogen synthesis (69). Indeed, patients with

T1DM exhibit insulin levels ~2.5 times greater than non-
T1DM individuals with similar glycemia (21). Subcutaneous
insulin delivery bypasses the liver (and the first-pass hepatic
insulin extraction) and results in elevated levels of systemic
insulin in T1DM. Termed “peripheral hyperinsulinemia,”
elevated levels of systemic insulin have been implicated in
the development of IR in this population (21, 70). Regardless
of training status, T1DM rodents exhibited elevated Akt
activation in the white vastus lateralis muscle during the
IVGTT. Insulin-stimulated Akt activation has been shown
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to play an important role in glucose uptake and incorpora-
tion into glycogen in muscle cells (71). Despite elevated
serum insulin and Akt activation in both T1DM groups,
only DS animals exhibited increased intramyocellular glyco-
gen content. These findings may provide mechanistic
insights into IR development in T1DM: (1) IR in skeletal
muscle in T1DM may develop downstream of Akt activation
and (2) elevated intramyocellular glycogen content may play
a negative role on insulin sensitivity. In support of the latter,
it has been shown that high muscle glycogen content signif-
icantly reduces insulin-stimulated glucose uptake in white
gastrocnemius muscle (72). However, this reduction in insu-
lin sensitivity in white muscle with high glycogen content
was accompanied by reduced insulin-stimulated Akt activa-
tion (72). The assimilation into glycogen is a major pathway
for insulin-stimulated glucose disposal in skeletal muscle
and is tightly regulated to avoid glycogen overaccumulation.
As such, glycogen content is inversely related to glycogen
synthase (GS) activity such that elevated glycogen levels fur-
ther inhibit glycogen synthesis via a reduction in GS activity
(73–77). In humans without diabetes, chronic hyperglyce-
mia via glucose infusion has been shown to increase intra-
myocellular glycogen content, reduce insulin-stimulated GS
activity, and reduce insulin sensitivity (78). The mechanisms
leading to elevated glycogen content in white gastrocnemius
muscle in DS animals are unclear; however, it is plausible
that hyperinsulinemia led to an increase in fast-twitch mus-
cle glucose uptake, which resulted in elevated glycogen con-
tent. It has been shown that glycolytic fast-twitch muscle
fibers exhibit a greater capacity to store glycogen compared
to oxidative slow-twitch muscle fibers (79), which in turn
may explain why elevated glycogen content was not
observed in red gastrocnemius muscle. In support of this
theory, we have previously reported elevated glycogen con-
tent in type IIa fibers in male T1DM rodents treated with
IIT (52). While few studies have directly compared muscular
glycogen content in humans with and without T1DM, they
did not observe differences between patients with T1DM
treated with IIT and non-T1DM individuals (80, 81). How-
ever, these studies used noninvasive magnetic resonance
spectroscopy and did not distinguish between glycogen in
red versus white muscle tissue. This suggests that alterations
in muscle glycogen storage with T1DM may be fiber-spe-
cific, as has been previously reported in patients with
T2DM (82).

In the current study, the increase in intramyocellular gly-
cogen content observed in DS animals was not found in DT
animals, suggesting that RT prevented this metabolic abnor-
mality. Following training, it is plausible that more glucose
entering the skeletal muscle of DT animals would be
diverted towards anabolic and biosynthetic pathways to sup-
port RT-induced muscle hypertrophy. This in turn would
reduce glycogenesis flux and prevent elevated muscle glyco-
gen content. Moreover, it has been shown that fast-twitch
muscle fibers preferentially develop hypertrophy with high-
intensity RT in females (83, 84), which would support our
observations of reduced fast-twitch but not slow-twitch
muscle glycogen content in DT compared to DS animals.
Based on observational and isotope tracer analysis, it has

recently been theorised that intracellular glucose and glyco-
lytic intermediates are incorporated into muscle proteins
and may support the process of hypertrophy via the pentose
phosphate, serine synthesis, and hexosamine pathways (85).
Furthermore, additional work is warranted to better under-
stand the mechanisms governing RT-induced improvements
in IR and the relationship between muscle glycogen content
and anabolic pathways in T1DM.

In the current investigation, citrate synthase activity was
elevated in both DS and DT animals despite no differences
in mitochondrial enzyme protein content compared to
non-T1DM control rodents. This suggests that T1DM
rodents exhibited alterations in intrinsic mitochondrial
capacity rather than mitochondrial content, which is sup-
ported by data in young adults with T1DM (24). This find-
ing contrasts our hypothesis and previous findings that
citrate synthase activity is reduced in male T1DM rodents
(35) as well as other reports of impaired skeletal muscle
mitochondrial function in male and female patients with
T1DM (24, 25, 27–30, 58). In alignment with our observa-
tions, studies in human patients with T1DM and STZ-
induced T1DM rodents have reported enhanced intrinsic
mitochondrial OXPHOS capacity (27, 86). An explanation
for our observation may be that T1DM rodents exhibited a
compensatory increase in muscle oxidative capacity to man-
age the increased intracellular glucose load during the
IVGTT. Indeed, experimental chronic hyperinsulinemia in
healthy humans has been shown to significantly reduce
insulin-stimulated glucose utilization while enhancing oxi-
dative glucose disposal in skeletal muscle (87). It has previ-
ously been shown that young women with T1DM do not
exhibit impairments in in vivo muscle mitochondrial oxida-
tive capacity compared to age-matched women without
T1DM (88). In combination with our findings, these data
may suggest that impairments in mitochondrial oxidative
capacity in skeletal muscle are not implicated in the develop-
ment of IR in females with T1DM. However, the mechanis-
tic relationship between skeletal muscle mitochondrial
capacity and IR development in female patients with
T1DM remains unclear and requires further investigation.

Additionally, we observed a reduction in citrate synthase
activity with RT in T1DM and non-T1DM control rodents,
which may appear counterintuitive to our previous findings
of improved skeletal muscle oxidative capacity following aer-
obic and combined (aerobic and resistance) exercise training
in male T1DM rodents (35). However, our findings are in
line with multiple investigations reporting reductions in cit-
rate synthase activity with RT (89). A potential explanation
for this phenomenon is a “dilution” of the mitochondrial
pool with RT-induced muscle fiber hypertrophy, i.e., mito-
chondrial biogenesis with RT occurs at a slower rate com-
pared to increases in muscle cell volume, resulting in a
reduction in citrate synthase activity per unit of muscle
(89). Further work is needed to understand the morpholog-
ical changes in skeletal muscle in T1DM as a result of RT
and its impact on the oxidative capacity of the muscle.

Our laboratory has previously shown increases in
insulin-desensitizing lipid intermediates, such as diacylglyc-
erol (90), in skeletal muscle following a hyperinsulinemic-
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euglycemic clamp in male T1DM rodents using pre- and
postclamp tissue analysis (40). This suggests that excess
glucose is converted to lipid in skeletal muscle in T1DM
through de novo lipogenesis (DNL) (91). Increased citrate
synthase activity in T1DM rodents post-IVGTT may reflect
DNL resulting from excess intracellular glucose. The
increased glucose metabolism would significantly increase
acetyl-CoA production, thereby overloading the Krebs
cycle leading to excess citrate production by citrate syn-
thase (92). Increased citrate can allosterically activate
acetyl-CoA carboxylase to produce malonyl-CoA and pro-
mote lipid synthesis (92). Therefore, β-oxidation activity
was assessed in the current study to investigate the ability
of skeletal muscle to oxidize lipid formed through DNL
during IVGTT, as this may impact insulin sensitivity
(93). No differences in soleus muscle β-oxidation activity
were observed between groups, suggesting that improve-
ments in IR were unrelated to differences in lipid oxida-
tion. Immediately following the IVGTT, it is plausible
that glucose and lipid would “compete” for oxidation in
skeletal muscle, such that lipid oxidation may be downreg-
ulated during periods of hyperglycemia (i.e., high glucose
availability) (94, 95). Indeed, malonyl-CoA has been shown
to limit fatty acid entry into the mitochondria for β-oxida-
tion via inhibition of carnitine palmitoyltransferase-1 (92).

Since estradiol is associated with changes in insulin sen-
sitivity and glucose and lipid metabolism (55, 96), we mea-
sured circulating serum levels of 17-β estradiol in all
groups. We did not observe a significant difference in serum
estradiol between groups and did not observe a strong expla-
nation of variance in IVGTT AUC by estradiol, which sug-
gests that circulating estradiol in these animals did not
significantly influence glucose tolerance. Previous work has
suggested that a subset of the female population with
T1DM exhibits fluctuations in insulin sensitivity through
the menstrual cycle, while other female patients do not
(97–100). Our findings indicate a weak relationship between
estradiol serum concentration and insulin sensitivity
assessed by IVGTT in our female rodents with T1DM.
Indeed, we have previously shown that estradiol concentra-
tion over the menstrual cycle likely does not play an impor-
tant role in glycemic control during exercise in our female
rodent model of T1DM (48).

4.1. Limitations. A limitation of the current study was the
lack of pre-IVGTT tissue analysis to determine the effects
of a glucose challenge on skeletal muscle metabolism, which
limits the interpretation of the data. Specifically, it is unclear
if white gastrocnemius muscle glycogen content was elevated
at baseline or as a result of the IVGTT in DS animals. As
such, mechanistic insights into the causative effects of intra-
myocellular glycogen content on insulin sensitivity in our
female rodent model of T1DM remain unclear. Additionally,
the use of a rat model to investigate the effects of T1DM on
skeletal muscle metabolism may limit the transferability to
patients due to the differences in the heterogeneity of muscle
fiber composition between rodents and humans. For exam-
ple, alterations in the metabolism of red and white muscle
tissues reported in the current study may be more robust

than in human patients. Furthermore, we utilized a preclin-
ical rodent model of well-controlled T1DM, and therefore,
our results provide insights exclusively into the effects of
RT on skeletal muscle metabolism and IR in well-
controlled female patients with T1DM using IIT. Finally,
differences in the pre-IVGTT fasting period between
T1DM and non-T1DM control animals (4 versus 12 hours,
respectively) may have influenced intramuscular substrate
content (e.g., glycogen) and confounded the results pertain-
ing to insulin sensitivity and skeletal muscle metabolism.

5. Conclusions

The results of the current study demonstrate that female
rodents with T1DM develop IR and that six weeks of RT
prevent the decline in insulin sensitivity. In T1DM rodents,
intramyocellular glycogen content in white gastrocnemius
muscle is elevated but is prevented with RT independent of
changes in circulating insulin levels, Akt signalling and mus-
cle oxidative capacity associated with T1DM. This suggests
that alterations in muscle glycogen storage may have a neg-
ative effect on insulin sensitivity in T1DM. While the role of
RT in the mitigation of increased muscle glycogen storage is
unclear, increased anabolic pathway flux to support muscle
hypertrophy is a plausible mechanism which warrants future
investigation. Taken together, these findings support the
therapeutic role of RT as an effective intervention to
improve IR in a female rodent model of T1DM.
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