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Objective: This study is aimed at investigating diagnostic biomarkers associated with lipotoxicity and the molecular mechanisms
underlying diabetic nephropathy (DN).
Methods: The GSE96804 dataset from the Gene Expression Omnibus (GEO) database was utilized to identify differentially expressed
genes (DEGs) in DN patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
were conducted using the DEGs. A protein–protein interaction (PPI) network was established to identify key genes linked to
lipotoxicity in DN. Immune infiltration analysis was employed to identify immune cells with differential expression in DN and to
assess the correlation between these immune cells and lipotoxicity-related hub genes. The findings were validated using the
external dataset GSE104954. ROC analysis was performed to assess the diagnostic performance of the hub genes. The Gene set
enrichment analysis (GSEA) enrichmentmethodwas utilized to analyze the key genes associated with lipotoxicity as mentioned above.
Result: In this study, a total of 544 DEGs were identified. Among them, extracellular matrix (ECM), fatty acidmetabolism, AGE-RAGE,
and PI3K-Akt signaling pathways were significantly enriched. Combining the PPI network and lipotoxicity-related genes (LRGS), LUM
and ALB were identified as lipotoxicity-related diagnostic biomarkers for DN. ROC analysis showed that the AUC values for LUM and
ALB were 0.882 and 0.885, respectively. The AUC values for LUM and ALB validated in external datasets were 0.98 and 0.82,
respectively. Immune infiltration analysis revealed significant changes in various immune cells during disease progression.
Macrophages M2, mast cells activated, and neutrophils were significantly associated with all lipotoxicity-related hub genes. These key
genes were enriched in fatty acid metabolism and extracellular matrix-related pathways.
Conclusion: The identified lipotoxicity-related hub genes provide a deeper understanding of the development mechanisms of DN,
potentially offering new theoretical foundations for the development of diagnostic biomarkers and therapeutic targets related to
lipotoxicity in DN.

Keywords: bioinformatic analysis; biomarker; diabetic nephropathy; immune cell infiltration; lipotoxicity-related genes

1. Introduction

Diabetes is a prevalent global health issue, with an estimated
439 million people projected to have diabetes by 2030 [1].
Diabetic nephropathy (DN) is the most common complica-
tion of diabetes, leading to end-stage renal failure and car-
diovascular events [2, 3]. About 40% of diabetes patients
develop type 2 diabetes within 10 years of diagnosis [4].
DN is characterized by persistent albuminuria (excretion
rate > 300mg/d or 200μg/min), requiring at least two mea-

surements within 3 to 6 months to confirm, along with a
gradual decline in renal function (GFR) [5]. Chronic hyper-
glycemia and hypertension are primary risk factors for DN,
although the exact pathogenesis remains incompletely
understood. Current main treatments include renin–angio-
tensin system blockers, anti-inflammatory agents, and anti-
oxidative stress measures [2]. Despite these treatments,
there is still a significant risk of disease progression, and
the use of microalbuminuria as an early diagnostic marker
for diabetic kidney disease (DKD) has limitations. Some
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diabetic patients may develop DKD even with normal uri-
nary albumin levels [6, 7], underscoring the importance of
identifying new biomarkers and exploring the molecular
mechanisms of DKD.

Lipotoxicity is a condition characterized by the abnor-
mal accumulation of lipids in nonadipose tissues, disrupting
cellular balance and leading to metabolic, inflammatory, and
oxidative stress (OS) responses that ultimately result in cell
death [8]. This lipid buildup, particularly in the kidneys, is
closely linked to the development of kidney diseases such
as DN [9]. Research suggests that disturbances in lipid quan-
tity and quality play a crucial role in the renal damage
caused by lipotoxicity [9]. The excessive accumulation of
lipids induces insulin resistance, activating lipid synthesis
and glycogen pathways. Elevated levels of esterified fatty
acids (NEFAs) contribute to podocyte injury, renal tubular
damage, mesangial cell proliferation, endothelial activation,
and the formation of foam cells derived from macrophages
[10]. Lipotoxic effects impact various renal cell types, with
lipid deposits surrounding glomeruli and tubules, leading
to glomerular enlargement and tubulointerstitial fibrosis
[11]. The rise in saturated free fatty acids, particularly palmi-
tic acid (PA) and steroidal acid, is considered a key factor in
the damage to proximal tubular cells and podocytes in DN.
Therefore, safeguarding renal cells from lipotoxicity associ-
ated with saturated free fatty acids may present a promising
therapeutic strategy for patients with challenging cases of
DN [12]. Sirtuins, a group of NAD-dependent deacetylase
enzymes, particularly SIRT3, have been identified as poten-
tial mitigators of lipotoxicity-induced tubular injury. In kid-
neys affected by FFA-binding proteinuria, the decrease in
SIRT3 expression is linked to increased MCP-1 expression.
Augmented SIRT3 levels help lower reactive oxygen species
accumulation by boosting the oxidative capability of proxi-
mal tubular epithelial cells when exposed to PA [13]. This
suggests that reduced SIRT3 expression might contribute
to the development of lipotoxicity-induced renal tubular cell
injury and could serve as a promising target for therapy to
prevent and manage DN progression. Sterol regulatory ele-
ment binding protein (SREBP) plays a crucial role in lipid
metabolism alterations, as evidenced in DN studies [14].
SREBP-1 is a pivotal player in promoting lipid buildup in
renal tubular damage and inflammation in DKD [15]. While
some research indicates its association with TGF-β activa-
tion leading to worsened tubulointerstitial fibrosis [16], the
exact effects and mechanisms of DN necessitate further
investigation. FFA-triggered DAG-PKC pathway activation
sparks inflammatory responses in cultured proximal tubular
cells by upregulating NFκB and causing mitochondrial cell
death [17]. Palmitate triggers TLR4 signaling and inflamma-
tion through downstream pathways in proximal tubular cells
[18]. Kidney-protective effects are seen with PPARα ago-
nists, and the PPARδ agonist GW501516 can curb NFκB-
mediated MCP-1 overexpression by reducing TLR4/TAK1
activity [18].

The PPARα agonist fenofibrate tablets inhibit palmitate-
induced proximal tubular cell damage by enhancing fatty
acid oxidation and reducing saturated FFA-related lipotoxi-
city in mice and cultured proximal tubular cells [19].

Research has also shown that inhibiting the TLR4 signaling
pathway can eliminate proinflammatory cytokine synthesis
induced by saturated FFA, indicating a potential renoprotec-
tive effect in diabetic podocyte pathology. Studies have dem-
onstrated that palmitate can activate mTORC1, leading to
podocyte damage and apoptosis [20], thus establishing a link
between mTORC1 activation and podocyte damage in
patients with diabetes. Currently, the majority of research
on lipotoxicity is centered around fatty liver, with clinical
intervention drugs primarily focused on preventing nonal-
coholic fatty liver. Limited attention has been given to the
kidneys, particularly DN, and the underlying mechanisms
in DN remain largely unknown. This area of study is still
in its early stages and requires further investigation. To
address this gap, the present study utilized network bioinfor-
matics data mining techniques to analyze differentially
expressed genes (DEGs) in DN patients. Enrichment analy-
sis was conducted to identify relevant biological pathways,
and a protein–protein interaction (PPI) network was estab-
lished using DEGs to pinpoint key genes. By intersecting
these key genes with lipotoxicity-related genes (LRGS),
important LRGS were identified. Additionally, immune infil-
tration analysis revealed changes and correlations among
different immune cells, along with an analysis of the rela-
tionship between immune cells and key LRGS. The primary
objective of this study is to uncover crucial LRGS that play a
significant role in DN progression and their influence on the
immune microenvironment. Ultimately, this research is
aimed at offering novel targets for the prevention and treat-
ment of DN.

2. Materials and Methods

2.1. Microarray Data and Preprocessing. Expression profiling
by array was searched in the Gene Expression Omnibus
(GEO) database using the keywords DN, DKD, and Homo
sapiens. It was decided to screen and download the gene
expression microarray datasets: GSE96804 (GPL17586 Affy-
metrix Human Transcriptome Array 2.0) contained forty-
one cases of DNs and twenty controls, and GSE104954
(GPL24120 Affymetrix Human Genome U133A Array)
contained ten DNs and five control samples, respectively.
Additionally, we use a relevance score of greater than 0 as
a screening criterion in order to extract 433 genes associated
with lipotoxicity from the GeneCard database and online
literature [21]. The details of the above datasets are shown
in Table 1. The flow chart of the research is shown in
Figure 1.

2.2. Identification of DEGs. After normalization and prepro-
cessing of the data, the probes were annotated. It was done
through the “GEOquery” package of R software. If multiple
probes correspond to the same gene, only the probe with
the highest average expression is retained. After completion
of probe annotation with log2 fold change FC > 1 and
p < 0 05 as screening criteria, DEGs from GSE96804 were
identified utilizing “Limma” R package, where log FC > 1,
p < 0 05 was up and log FC ≤ 1, p < 0 05 was down. The heat
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map and volcanomap of DEGs were plotted using the “Pheat-
map” R package and “ggplot2” R package, respectively.

2.3. Functional Annotation and Enrichment Analysis of
DEGs. To further illuminate the biofunction of the selected
DEGs, Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway anal-
ysis were done using “ClusterProfiler” (version 4.6.2) within
R on DEGS. And then the “ggplot2” R package was used to
screen the biological process (BP), cellular component (CC),
molecular function (MF), gene-related signaling pathways,
and p value < 0.05 as a threshold.

2.4. Construction of PPI Network and Identification of Hub
Genes. Import the DEGs into the STRING database to con-
struct the PPI network. It was visualized by importing the
results of the analysis into Cytoscape software. The core tar-
gets of the PPI network were analyzed using the CytoHubba
plug-in. The top 10 targets with MCC, MNC, degree, and
closeness scores were calculated separately [22]. The inter-
section of the four scores was hub genes. The results were
screened using the Venn diagram.

2.5. CIBERSORT Immune Cell Infiltration Analysis. We used
the CIBERSORT method to identify the ratios of 22 immune
cell species in all samples in the DN and control groups and

to depict the abundance of immune cells based on the gene
expression matrix. The “corrplot” program was allowed to
construct the heat map illustrating the quantitative relation-
ship between the different immune cells, and p value < 0.05
indicates a statistically significant difference. In addition, the
“ggplot2” program package was employed to analyze the
correlation between the expression of hub LRGs and the
proportions of immune cells.

2.6. Construction and Validation of a Nomogram. The R
package “ggplot2” (version 4.2.1) was used to calculate the
expression of hub LRGS in the DN and control groups.
The area under the receiver operating characteristic (ROC)
curve (AUC) was recognized as the quantitative evaluation
criterion for determining the discrimination capacity of each
hub LRG. The ROC analysis was performed using the R
package “pROC” (version 1.18.0) [23].

2.7. GSEA. In addition, a signal gene set enrichment analysis
(GSEA) was utilized to determine the most significant roles
of hub LRGS [24]. The predefined gene set was obtained
from the C2 KEGG database. These gene sets summarize
and represent well-defined signal pathways and have consis-
tent expression. One thousand times gene set permutations
were performed in order to obtain a normalized enrichment

Table 1: The detailed dataset information.

Datasets Platforms Sample size Organism Tissue subregion

GSE96804 GPL17586 41 DNs vs. 20 normal Homo sapiens Glomerulus

GSE104954 GPL24120 10 DNs vs. 5 normal Homo sapiens Tubulointerstitial

Diabetic nephropathy database
from GSE96804

Identification of
DEGs

Go and KEGG
analysis

Identification of two
key LRGS

GSEA
analysis

Screening hub genes by PPI
network

Lipotoxicity-
related genes

External dataset of
GSE104954

Immune cell
infiltration

3 hub LRGS

ROC curve

Figure 1: Flow chart of the study. DEGs: differentially expressed genes; LRGS: lipotoxicity-related genes.
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Figure 2: Continued.

4 Journal of Diabetes Research



score in each analysis. After 1000 permutations, a false dis-
covery rate FDR < 0 25 and p value < 0.05 were considered
highly enriched.

2.8. Statistical Analysis. The Wilcoxon rank-sum test was
used to verify statistical significance comparisons between
groups in nonnormally distributed data. Correlation scores

were calculated using Spearman’s method. p < 0 05 was con-
sidered statistically different.

3. Results

The specific study chart is shown in Figure 1.
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Figure 2: Identification of DEGs in GSE96804 (a) volcano plot of DEGs and (b) heat map of DEGs.
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3.1. Screening DEGs. According to the set screening criteria
(p < 0 05 and log FC > 1), a total of 544 DEGs were
obtained after screening. Among them, there were 244
upregulated DEGs and 300 downregulated DEGs. The vol-
cano plot and heat map of DEGs distribution are shown in
Figures 2(a) and 2(b)).

3.2. Biological Pathway Enrichment Analysis. The GO and
KEGG pathway enrichment analyses were performed using

upregulated/downregulated DEGs separately. In the BP
assessment, upregulated DEGs were mostly involved in
complement activation, production of molecular immune
responses, and other pathways that may be activated. The
DEGs have been localized to the collagen-containing extra-
cellular matrix (ECM), basement membrane, and other
structures in CC. The function changes of DEGs are associ-
ated with antigen binding and collagen binding. According
to KEGG analysis, DEGs were mostly engaged in the AGE-
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Figure 3: Functional enrichment analysis of DEGs. (a) Results of GO and KEGG in upregulated DEGs are depicted on bar charts. (b)
Results of GO and KEGG in downregulated DEGs are depicted on bar charts. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes
and Genomes; BP: biological process; CC: cellular component; MF: molecular function.
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RAGE signaling pathway, ECM-receptor interaction, and
PI3K-Akt signaling pathway (Figure 3(a)). In the enrich-
ment results of downregulated DEGs, DEGs were engaged
mostly in the organic acid process, fatty acid process, fatty
acid binding, and other processes in BP. The DEGs have
been localized to the apical part of the cell, apical plasma
membrane, and brush border in CC. In terms of MF,
DEGs were associated with fatty acid binding, antioxidant
activity, and organic acid transmembrane transporter activ-
ity. According to KEGG analysis, DEGs were particularly
abundant in drug metabolism, renin–angiotensin system,
arginine and proline metabolism, and other pathways
(Figure 3(b)).

3.3. Construction of PPI Network and Identification of Hub
Genes. PPI networks are created using the STRING database.
The generated network has 371 nodes, 1727 edges, an aver-
age node degree was 9.31, and PPI enrichment p value <
1 0e − 16. The results were imported into Cytoscape soft-
ware for visualization (Figure 4(a)). Using the CytoHubba
plug-in to calculate MNC, MCC, degree, and closeness

scores and taking their intersection, a total of 15 hub genes
were found: FN1, MMP2, COL3A1, COL1A2, POSTN,
LUM, LOX, IGF1, CCL2, PTGS2, EGF, ALB, JUN, and
KDR (Figure 4(b)). A total of 433 LRGS were obtained from
previous studies, and a total of 3 hub LRGS were obtained by
intersecting LRGS with hub genes: LUM, IGF1, and ALB
(Figure 4(c)).

3.4. Immune Infiltration Analysis. We measured the charac-
teristics of immunocytes through the CIBERSORT algorithm
to further explore the differential expression of immune
components in each sample, and the relative proportions of
22 immune cells were displayed in the cumulative histograms
(Figure 5(a)). The results indicated that T cells CD8, T cells
CD4 naive, T cells CD4 memory activated, T cells regulatory
(Tregs), monocytes, macrophages MO, macrophages M2,
and mast cells resting constituted the majority. The correla-
tion heat map for 22 immune cell types revealed a strong pos-
itive link between T cells CD4 naive and dendritic cells
activated, T cells CD4 naive and T cells CD4 memory, T cells
CD4 memory activated and Tregs, and macrophages MO

11 3 431

Number of elements: specific (1) or shared by 2, 3, ... lists

Size of each list

2 (3) 1

442

0

Hub genes
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LRGS

LRGS

217

434
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Figure 4: Construction of PPI networks and identification of hub genes and hub LRGS. (a) PPI network constructed using DEGs. Each
diamond represents a DEG. (b) The hub genes were screened by four algorithms (MCC, MNC, degree, and closeness). (c) Intersecting
hub genes with LRGS to identify hub LRGS. PPI: protein–protein interaction.
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and Tregs and a significant negative correlation between T
cells CD4 memory resting and T cells CD8, NK cells
activated and T cells gamma delta, macrophages M2 and
mast cells activated, and macrophages M2 and neutrophils
(Figure 5(b)). In addition, the box plot revealed signifi-
cantly higher T cells CD8, Tregs, macrophages M2, macro-
phages M1, and dendritic cells resting in the DN group
than in the CN group, whereas mast cells resting, mast cells
activated, and neutrophils were significantly decreased
(Figure 5(c)).

3.5. Correlation Analysis of Immune Cells and Hub LRGS.
We used the Spearman correlation coefficient between hub
LRGS and immune cells to further explore the correlation
between hub LRGS and immune cells and visualize it in
the correlation heat map (Figure 6). The results showed that
the immune cells that were significantly correlated with
three hub LRGs were macrophages M2, mast cells activated,
and neutrophils. It implicated a significant influence on
these immune cells during the regulation of hub LRGs in
disease. They may play a regulatory role in the advancement
of DN.

3.6. Expression of Hub LRGS and Validation of External
Datasets. We discovered in the GSE96804 datasets that the
expression levels of LUM and IGF1 were higher in DN
(Figures 7(a) and 7(b)), while ALB expression was signifi-
cantly lower in DN than in control (Figure 7(c)). We next
confirmed the expression of these genes using another data-

set, and the results revealed that LUM and ALB expression
levels were found to be consistent in the tubulointerstitial
(GSE104954), and they were all statistically significant differ-
ences (Figures 7(d) and 7(e)). IGF1 was not found in the
GSE104954 dataset.

3.7. ROC Curve Analysis. A ROC curve analysis was imple-
mented to test the diagnostic value of the hub LRGS, and
an AUC value > 0 7 in these hub LRGS was used as diagnos-
tic criteria. In the GSE96804 datasets, the AUC values were
0.882 for LUM and 0.885 for ALB (Figure 8(a)). In the
GSE10495 datasets, the AUC value of LUM was 0.98 and
the AUC value of ALB was 0.82 (Figure 8(b)).

3.8. GSEA. The result of GSEA shows that the LUM high
expression group was highly enriched for cytokine–cytokine
receptor interaction, TGF-β signaling pathway, and ECM
receptor interaction (Figure 9(a)). The ALB high expression
group was mostly involved in glycosylphosphate, metabo-
lism, and adipocytokine signaling pathway (Figure 9(b)).

4. Discussion

DN is a complex condition influenced by multiple factors,
although its exact mechanism remains unclear and current
treatment options are limited. Recent research has identified
new molecules for both treating and diagnosing DN. Studies
suggest that the progression of DN is linked to both lipotoxi-
city and immunity. Enrichment analysis has highlighted the
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significance of pathways such as AGE-RAGE signaling,
ECM receptor interaction, TGF-β signaling, PI3K-Akt
signaling, and fatty acid metabolism in relation to lipotoxi-
city. A PPI network was constructed, and central genes
related to lipotoxicity were identified through various analy-
sis methods. Two key genes, lumican and ALB, showed
promising diagnostic value in ROC curve analysis. Further-
more, the CIBERSORT algorithm revealed potential correla-
tions between these genes and immune cells, suggesting a
role in regulating the immune microenvironment in DN.

KEGG enrichment analysis was performed separately on
upregulated and downregulated DEGs. The enrichment
analysis results of upregulated DEGs mainly focused on the
AGE-RAGE signaling pathway, ECM-receptor interaction,
and PI3K-Akt signaling pathway [25]. High glucose induces
the formation of advanced glycation end products (AGE)
and their receptors (RAGEs), altering various intracellular
signaling mechanisms and leading to the occurrence and
progression of DN [25]. The RAGE was initially described
as a signal-transduction receptor for AGEs and is also
considered a signal-transduction receptor associated with
proteins or lipids [26]. AGEs belong to nonenzymatic glyca-
tion and are products of protein and lipid oxidation accu-

mulated in diabetes and various inflammatory lesions [27,
28]. Once bound to RAGE, they can regulate lipid metabo-
lism [29]. An animal study found 31 significantly altered
lipid metabolism products in a DN mouse model, including
glycerophospholipid metabolism and sphingolipid metabo-
lism, which can participate in the development of DN by
regulating the AGE-RAGE and PI3K/Akt signaling path-
ways affecting insulin resistance and abnormal lipid accu-
mulation [30]. Excessive lipid flux and biologically active
lipid substances, such as triglycerides (TG), ceramides, and
other derivatives, not only release saturated free fatty acid
signals but also enhance the input of free fatty acids into
the triglyceride pool. Additionally, they directly counteract
insulin signal transduction, leading to insulin resistance
[31]. Elevated plasma NEFA concentrations are recognized
as an autonomous risk factor for insulin resistance. Pro-
longed exposure to NEFA raises levels through two distinct
mechanisms: metabolic interference leading to cell death,
reduced insulin secretion, direct downregulation of insulin
transcription, and beta cell death [20]. FFA activates G
protein-coupled receptor 40 (also known as FFAR1), and
single nucleotide polymorphisms in the FFAR1 locus are
associated with human insulin secretory function. FFAR1
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agonists, such as Tak875 and Gw-9508, enhance glucose-
stimulated insulin secretion in diabetic ZDF rats, leading to
positive effects on insulin secretion. Saturated fatty acids
reduce FFAR1 expression and induce insulin resistance,
potentially contributing to lipotoxicity. Studies have shown
that treatment with palmitate on human pancreatic islet tis-
sue decreases insulin content and secretion, but this adverse
outcome can be reversed by FFAR1 antagonists [17].

Dyslipidemia encompasses various abnormal blood
lipid levels, including low-density lipoprotein (LDL-R), free
fatty acids, abnormal lipoproteins, ceramides, and other
lipids. These components can impact the proximal renal
tubules by increasing the release of reactive oxygen species
and lipid peroxidation, leading to inflammation and mito-
chondrial damage in epithelial cells, podocytes, and renal
tubulointerstitial tissues. The AGE/RAGE signaling path-
way has been identified as a key target of lipid action, with
certain drugs targeting these pathways showing potential in
improving symptoms of DN [32]. For instance, using dif-
ferent concentrations of the AGE/ALE inhibitor LR-90 in
STZ diabetic rats’ kidneys has been found to reduce renal
AGE/ALE accumulation and RAGE protein expression in
a concentration-dependent manner, thereby preventing
lipid peroxidation, lowering blood lipid levels, and mitigat-
ing the progression of diabetic renal disease [33]. Addition-

ally, HMG-R inhibitor statins have shown promise in
inhibiting the interaction of glycation end products (AGEs)
with receptors for glycation end products (RAGE) and
sugar-oxidized LDL-R, thereby reducing LDL receptor
(LDL-R) uptake of LDL. This regulation of cholesterol syn-
thesis through HMG-R helps reduce abnormal lipid deposi-
tion in the kidney [34], potentially offering a protective
effect against DN. Ezetimibe (EZ) significantly reduces
renal AGE levels in diabetic rats and downregulates renal
AGE receptors, decreases lipid peroxidation and protein-
bound carbonyl content (CC), increases paraoxonase-1
(PON-1) associated with high-density lipoprotein (HDL)
and renal antioxidant enzyme activity, improves lipid and
lipoprotein levels in the body, and protects the kidneys
[35]. Abnormal lipid metabolism plays an important role
in the pathogenesis of DN, and Akt activation has been
shown to be associated with fat synthesis [36]. Overexpres-
sion of sterol regulatory element-binding protein-1
(SREBP-1) mediates abnormal lipid accumulation in DN
renal tubular epithelial cells, and inhibiting the PI3K/Akt
pathway can reduce SREBP-1 expression and lipid accumu-
lation, indicating that the PI3K/Akt signaling pathway
plays an important role in mediating high glucose-
induced SREBP-1 expression in DN renal tubular cells
[37]. Another animal and cell experiment also found that
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inhibiting the mTOR/AMPK/PI3K/Akt signaling pathway
in DN can significantly reduce levels of total cholesterol
(TC), TG, and low-density lipoprotein (LDL-C) while
increasing HDL-C levels and improving blood lipid abnor-
malities [38]. Various drugs that regulate metabolic disor-
ders have been shown to reduce blood sugar levels in
diabetic rats by activating the PI3K/Akt pathway and
upregulating PPARγ expression. This results in improved
insulin resistance, blood lipid profile levels, reduced adipo-
cyte inflammation, and potential benefits for diabetic
microvasculature [39, 40]. Further research is needed to
determine the impact of the PI3K/Akt pathway on lipid
metabolism in DN. The accumulation of ECM protein in
the glomerulus is a key factor in the progression of DN
to end-stage renal failure [41]. Transforming growth factor
beta (TGF-β) plays a crucial role in this process by upreg-
ulating genes encoding ECM proteins and downregulating
genes for ECM-degrading enzymes [42]. In a high-glucose
environment, polyols and hexosamines increase, leading
to the production of reactive oxygen species, activation of
the TGF-β-Smad-MAPK pathway, increased production
of AGEs, and stimulation of renal function. TGF-β1 pro-
duced by glomerular cells contributes to glomerulosclerosis
and excessive ECM accumulation, resulting in tubulointer-
stitial fibrosis damage, cellular dysfunction, and progression
of DN [43]. Abnormal accumulation of ECM not only
plays a crucial role in renal fibrosis in DN but also impacts
lipid metabolism. Lipotoxicity in nonadipose tissues caused
by hyperlipidemia and lipid peroxidation contributes to the
progression of DN, with a connection to lipid oxidation.
OS is linked to fibrotic lesions [44]. Research by Yang
et al. demonstrated that obese rats with TLR4 gene knock-

out could attenuate PA-induced lipotoxicity in islet β cells
and improve insulin secretion disorders through the
ECM-receptor pathway, highlighting the significance of this
pathway in lipotoxicity [45]. Additionally, a study on non-
alcoholic fatty liver disease revealed that diabetic mice with
reduced insulin receptor (InsR) fed a methionine choline
(MCD)-deficient diet exhibited impaired liver fat content
and hepatic insulin signaling, leading to the accumulation
of Forkhead box protein O1 (FoxO1) and subsequent
induction of lysyl oxidase-like 2 (Loxl2). This enhanced
liver cell lipotoxicity induced insulin resistance and abnor-
mal ECM deposition and ultimately resulted in liver fibro-
sis [46], illustrating the intricate relationship between ECM
and cellular lipotoxicity. Enrichment analysis of downregu-
lated differential genes revealed their association with the
renin–angiotensin system, a pivotal factor in the pathogen-
esis of DN. This system has been extensively linked to the
development of DN and serves as a cornerstone of its man-
agement. Various drugs targeting the renin–angiotensin
system, including sodium-glucose cotransporter 2 inhibi-
tors, steroidal mineralocorticoid receptor antagonists [47],
and glucagon GLP-1 receptor agonists, have been investi-
gated for their potential to slow disease progression and
exhibit cardiorenal protective effects [48]. GO enrichment
analysis suggests a potential involvement of fatty acid
metabolism in the pathogenesis of DN. Elevated levels of
saturated free fatty acids are recognized as contributors to
proximal tubular and podocyte damage in this condition
[49]. Disorders in fatty acid oxidation and lipid metabolite
accumulation are also significant factors leading to kidney
tissue damage. Studies have identified a substantial pres-
ence of lipid deposits and intracellular accumulation in
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the kidneys of individuals with DN, accompanied by
increased lipid droplets and downregulation of fatty acid
β-oxidation pathways such as L-FABP. These findings sup-
port the hypothesis that reduced fatty acid oxidation con-
tributes to abnormal lipid accumulation [9]. Another
study on metabolomics in patients with DKD revealed ele-
vated levels of lipid metabolites LPC (16:0) and (18:0) in
the renal tubulointerstitium, which were linked to a rapid
decline in renal function. Subsequent animal and in vitro
experiments confirmed these results, suggesting a role for

lipid metabolites in mediating lipotoxicity in proximal renal
tubular cells [50]. In contrast, lipotoxicity in glomerular
podocytes is characterized by increased fatty acid uptake,
enhanced synthesis, or reduced degradation. Podocyte-
specific JAML upregulation was found to increase the
expression of sirtuin-1-dependent cholesterol regulatory
element binding protein (SREBP)-1, facilitating free fatty
acid synthesis. Furthermore, upregulation of the G
protein-coupled FFA1 receptor and CD36 scavenger recep-
tor was observed, promoting fatty acid uptake and leading
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to fatty acid accumulation in podocytes [51]. The results of
the GO and KEGG enrichment analyses underscore the sig-
nificance of lipotoxicity in the progression of DN.

To further explore the role of lipotoxicity in DN, we uti-
lized differential gene analysis to construct a PPI network
diagram, identifying 15 hub genes. These hub genes were
then intersected with lipotoxicity-related disease genes, lead-
ing to the identification of three key LRGS: lumican, ALB,
and IGF1. Subsequent validation with external datasets con-
firmed that lumican and ALB are crucial LRGS with signifi-
cant diagnostic potential. Lumican, a biologically active
40 kDa member of the keratin sulfate proteoglycan family,
is primarily expressed in the lung [52], cornea [53], skeletal
muscle [54], and liver tissues. Proteomic analysis by Charl-
ton et al. revealed lumican protein overexpression in mild
and fibrotic nonalcoholic fatty liver disease, suggesting a
novel mechanism of lipotoxicity involving decreased free
fatty acid-binding proteins and impaired free fatty acid
clearance [55]. As a component of the ECM, lumican plays
a role in collagen fiber formation, interacts with transform-
ing growth factor-β1 (TGF-β1), and contributes to renal cell
death in DN by promoting glomerulosclerosis and renal
tubular fibrosis [56, 57], aligning with our enrichment anal-
ysis findings. A study on liver fibrosis demonstrated that
lumican can be upregulated by the profibrotic cytokine
TGF-β1 and lipotoxic PA [58]. This upregulation leads to
increased collagen fiber production through the secretion
of collagen in subcutaneous adipose tissue, exacerbating
abnormal cellular lipid metabolism and inducing insulin
resistance [59]. Lumican has been associated with adipocyte
dysfunction and its impact on fat metabolism in diabetic
patients. In animal and model studies of diabetes mellitus
(DM), treatment with human recombinant lumican has
been shown to enhance lipolysis in adipocytes and elevate
free fatty acid levels in the body [60]. While most
research on lumican lipotoxicity has focused on nonalco-
holic fatty liver disease, further investigation is needed to
elucidate its specific mechanism of action in the patho-
genesis of DN.

Human serum albumin (ALB), a plasma albumin syn-
thesized in the liver, has the ability to bind various sub-
stances and is increasingly being recognized as a potential
predictive marker for certain diseases. While proteinuria
and glomerulopathy are known risk factors for DN, the
impact of serum albumin levels on kidney function remains
unclear. Zhang et al. conducted a study on patients with DN
and observed that hypoalbuminemia in diabetic patients
with renal disease is linked to a poorer prognosis and a
higher risk of developing end-stage renal disease, indepen-
dent of proteinuria levels, indicating the involvement of
other pathogenic mechanisms [61]. As DN progresses, mas-
sive proteinuria is often accompanied by a decrease in serum
albumin levels. A prospective study revealed a positive corre-
lation between massive proteinuria in DN patients and
serum adiponectin, which can potentially predict the sever-
ity of DN [62]. It is suggested that albumin may be linked
to the adipocytokine signaling pathway, consistent with the
findings of this study’s enrichment analysis. Albumin iso-
lated from DN patients undergoes significant aminoacyla-

tion, which can hinder cholesterol efflux mediated by
HDL2 and HDL3, leading to abnormal lipid accumulation
[63]. In a state of disrupted blood glucose and lipid metabo-
lism, filtered albumin exposes albumin-bound long-chain
fatty acids on the surface of the proximal tubule. Notably,
albumin itself does not exhibit cytotoxicity to the proximal
tubule [64, 65]. It has been shown that albumin-bound fatty
acids, rather than albumin alone, can induce OS and apopto-
sis in tubular cells [66, 67]. This effect can be enhanced by
combining with FA to promote apoptosis in the proximal
tubule [64].

In our study, analysis of immune cell infiltration
revealed significant differences in the resting states of macro-
phages, mast cells, dendritic cells, and neutrophils between
DN patients and the control group. Macrophages are the
most common infiltrating immune cells in the kidneys of
DN patients and are closely associated with renal function
decline [68]. In DN, macrophages are closely linked to lipo-
toxicity, with studies showing macrophage infiltration sur-
rounding lipotoxic renal tubular epithelial cells [69]. The
role of macrophages in renal lipotoxicity is twofold. First,
lipid accumulation in renal cells promotes the recruitment
of macrophages, and second, lipotoxicity directly activates
macrophages, leading to their differentiation and migration.
Excessive and chronic uptake of lipids by macrophages is a
contributing factor to the exacerbation of glomerular dam-
age and atherosclerosis progression in patients with chronic
kidney disease [10]. Our central gene and immune-related
analysis results indicate a significant correlation between
key genes related to lipotoxicity in DN and macrophages,
consistent with the above findings. Mast cell infiltration
and degranulation are closely related to the development of
DN [70]. Mast cells are associated with angiogenesis, chronic
inflammation, and fibrosis, with studies showing a signifi-
cant increase in the number of mast cells in the glomeruli,
interstitium, and perivascular areas of DN [71]. Mast cells
release biologically active substances such as tryptase, chy-
mase, TGF-β1, renin, and tumor necrosis factor α through
degranulation into the renal tubulointerstitium, promoting
kidney inflammation and fibrosis, thereby contributing to
DN [72]. Neutrophil influx is associated with the acute
response to inflammation or injury, but its contribution to
the onset and progression of DN remains unclear. Evidence
suggests that heightened spontaneous adhesion of neutro-
phils may play a role in this pathological process. However,
it is important to note that this study is limited by its reliance
on data from a public database. While we utilized another
database to assess inflammation, additional experiments
are necessary to validate these two biomarkers prior to their
potential clinical application.

5. Conclusion

This study elucidates the fundamental mechanism underlying
the onset and progression of DN. Enrichment analysis high-
lights the involvement of lipotoxicity-related pathways in dis-
ease advancement. Through the construction of a PPI
network, two hub genes associated with lipotoxicity are iden-
tified as pivotal players in DN development. Furthermore,
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significant alterations in various immune cell populations
during DN progression, closely linked to key LRGS, suggest
that immune modulation can impact DN evolution. This
study underscores the significance of investigating and com-
prehending the central LRGS lumican and ALB in DN, offer-
ing potential novel diagnostic biomarkers and laying a
foundation for the development of drug targets related to
lipotoxicity.
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