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Background. Cellular senescence is thought to play a significant role in the onset and development of diabetic nephropathy. The
goal of this study was to explore potential biomarkers associated with diabetic glomerulopathy from the perspective of senescence.
Methods. Datasets about human glomerular biopsy samples related to diabetic nephropathy were systematically obtained from the
Gene Expression Omnibus database. Hub senescence-associated genes were investigated by differential gene analysis and Least
Absolute Shrinkage and Selection Operator analysis. Cluster analysis was employed to identify senescence molecular subtypes.
A single-cell dataset was used to validate the above findings and further evaluate the senescence environment. The relationship
between these genes and the glomerular filtration rate was explored based on the Nephroseq database. These gene expressions
have also been explored in various kidney diseases. Results. Twelve representative senescence-associated genes (VEGFA,
IQGAP2, JUN, PLAT, ETS2, ANG, MMP14, VEGFC, SERPINE2, CXCR2, PTGES, and EGF) were finally identified. Biological
changes in immune inflammatory response, cell cycle regulation, metabolic regulation, and immune microenvironment have
been observed across different molecular subtypes. The above results were also validated based on single-cell analysis.
Additionally, we also identified several significantly altered cell communication pathways, including COLLAGEN, PTN,
LAMININ, SPP1, and VEGF. Finally, almost all these genes could well predict the occurrence of diabetic glomerulopathy based
on receiver operating characteristic analysis and are associated with the glomerular filtration rate. These genes are differently
expressed in various kidney diseases. Conclusion. The present study identified potential senescence-associated biomarkers and
further explored the heterogeneity of diabetic glomerulopathy that might provide new insights into the diagnosis, assessment,
management, and personalized treatment of DN.

1. Introduction

In recent decades, the prevalence of both type 1 diabetes mel-
litus (T1DM) and type 2 diabetes mellitus (T2DM) has rapidly
increased worldwide, leading to a corresponding rise inmicro-
vascular and macrovascular diabetes-related complications
[1]. Studies estimate that around 30-40% of patients with
diabetes mellitus will develop diabetic nephropathy (DN),
and almost half of these individuals will ultimately progress
to end-stage renal disease (ESRD) [2, 3]. Current therapeutic
approaches for managing DN involve controlling blood pres-

sure and glucose levels and administering angiotensin receptor
blockers (ARBs) and angiotensin-converting enzyme inhibi-
tors [2]. However, despite these interventions, they have
shown limited effectiveness in preventing the progression of
DN [2, 4].

Senescent cells are characterized by a state of permanent
growth arrest and altered secretory phenotype [5]. The accu-
mulation of these cells is commonly observed in the kidney
and other organs during the aging process and in response
to injury [6]. The mechanisms underlying the relationship
between senescence and DN are multifaceted and intricate
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[7]. It has been postulated that senescence leads to a decline
in renal function, resulting in a reduced ability to eliminate
waste from the bloodstream and an increased susceptibility
to damage from free radicals and circulating toxins [8].
Immune system alterations associated with senescence, such
as impaired immunity and chronic low-grade inflammation,
may contribute to the development of DN [8, 9]. Dysregu-
lated metabolism, especially mitochondrial dysfunction,
and oxidative stress, may play a crucial role in the pathogen-
esis of both aging and DN, promoting cellular damage [10,
11]. The identification and characterization of senescence-
associated biomarkers in the context of diabetic glomerulop-
athy have the potential to aid in providing new insights into
the pathogenesis of this disease and the development of
novel therapeutic interventions [4, 12].

In this study, we identified several hub biomarkers
related to diabetic glomerulopathy from the perspective of
senescence. The senescence-associated molecular subtypes
in diabetic glomerulopathy were further explored by cluster-
ing analysis. Single-cell transcriptomics was used to evaluate
this finding and further investigate cellular heterogeneity
and biological changes in diabetic glomerulus cells in differ-
ent senescence environments.

2. Methods

2.1. Differential Gene Analysis and Senescence-Associated
Genes. The framework we selected in this study is shown
in Figure 1. Two DN datasets (GSE96804 and GSE30528)
were collected and integrated from the Gene Expression
Omnibus (GEO) database, encompassing 50 glomerular
tissue samples from DN patients and 33 glomerular tissue
samples from control human kidneys [13]. The specific
details of these sequencing glomerular tissue samples,
including inclusion and exclusion criteria, are well articu-
lated in the original article by the dataset uploader (https://
www.ncbi.nlm.nih.gov/geo/) [14, 15]. Batch effects were
corrected using the ComBat function in the sva R package
[16]. Differential gene analysis was conducted using the
Limma R package, with selection criteria for differentially
expressed genes (DEGs) being a P value < 0.05 and log
2 fold change > 0 5 [17]. Annotation of the DEGs was per-
formed using Gene Ontology (GO) enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway anal-
ysis [18]. GO consists of biological processes (BP), molecular
functions (MF), and cellular components (CC). An intersec-
tion analysis was conducted between the DEGs and
senescence-associated genes, using the set of 125 genes previ-
ously defined by Saul et al. [5]. The Spearman correlation
coefficients of these intersection genes were calculated, and
KEGG pathway analysis was also subsequently performed.

2.2. Identification of Hub Genes and Molecular Subtypes.
Hub senescence-associated genes were identified by per-
forming Least Absolute Shrinkage and Selection Operator
(LASSO) analysis based on the intersection genes. LASSO
analysis is a commonly used method for variable screening,
as it constructs a penalty function that generates a more
refined model, compressing the coefficient size and enabling

more accurate identification of relevant genes [19]. The JAS-
PAR database was employed to predict the potential tran-
scription factors (TFs) that regulate hub genes, and
subsequently construct a TF-gene network. JASPAR is a
publicly accessible and cost-free database for TFs that pro-
vides comprehensive information on the binding sites and
mechanisms of TFs to DNA [20]. Based on the expression
profiles of hub genes in the diabetic glomerulopathy
samples, we used the ConsensusClusterPlus R package with
partitioning around medoid (PAM) clustering and a
sampling fraction of 0.8 to classify distinct senescence-
associated molecular subtypes in diabetic glomerulopathy.
ConsensusClusterPlus is an R package that provides a
consensus clustering method for analyzing various types of
biological data, such as gene expression and proteomic data
[21]. To assess the expression distribution of KEGG signal-
ing pathways, gene set variation analysis (GSVA) was
conducted [22]. Furthermore, the proportions of immune
cells in diabetic glomerulopathy samples were determined
via CIBERSORT, and any differences in immune cell abun-
dance between senescence-associated molecular subtypes
were compared using a significance threshold of P value
< 0.05. CIBERSORT is a computational tool that analyzes
the composition of immune cells by estimating the relative
abundance of different immune cell types from gene
expression data [23].

2.3. Single-Cell Data Analysis. The scRNA-seq dataset
GSE218563 obtained from diabetic kidney cells was proc-
essed and analyzed using the Seurat R package [24]. The
dataset GSE218563 contains kidney samples from a total of
16 mice, including both male and female BTBR ob/ob
(DN) and BTBR WT (control) mice at ages 06 and 12 weeks.
The onset stage of DN was defined as 06 weeks of age, while
the early stage of DN was defined as 12 weeks of age. More
detailed information about scRNA-seq dataset GSE218563
is seen in https://www.ncbi.nlm.nih.gov/geo/ [25]. Quality
control of cells was implemented based on the previous cri-
teria [25]. To mitigate batch effects, the Harmony algorithm
was applied, which projects cells into a shared embedding
where they are grouped by cell type rather than dataset-
specific conditions [26]. Clustering results were visualized
using Uniform Manifold Approximation and Projection
(UMAP), and cell clusters were annotated according to rele-
vant literature [25, 27].

A specific senescence gene set to diabetic kidney cells
was constructed based on the identified hub genes. The
extent of cellular senescence was assessed through the
AddModuleScore function in the Seurat R package. The
Seurat AddModuleScore function is used to calculate and
add module scores to each cell in a Seurat object, which can
be used to assess the activity of gene modules or pathways
within individual cells. The degree of cellular senescence
was compared between diabetic and normal glomerular cells
at 06 and 12 weeks, respectively. The Seurat FindMarker
function was then employed to identify DEGs between glo-
merular cell clusters with high and low senescence scores.
Subsequently, KEGG analysis was performed to investigate
the biological pathways associated with these DEGs.
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The CellChat platform was employed to infer cell-cell
communication between different types of kidney glomeru-
lar cells. CellChat is a computational framework that enables
the analysis of cell-cell communication networks using
single-cell RNA sequencing data. It allows researchers to
explore the interactions between different cell types and
understand the communication dynamics within a complex
biological system [28]. The Mouse database managed by
CellChat, which comprises “secretory signaling,” “cell-cell
contact,” and “ECM-receptor,” was utilized. The intensity,
pathways, and ligand-receptor interactions of communica-
tion between high and low glomerular senescence scores
were compared.

2.4. Clinical Value Evaluation and External Database
Analysis. To evaluate the accuracy of predicting diabetic glo-
merulopathy based on the expression of hub senescence-
associated genes, a receiver operating characteristic (ROC)
analysis was performed using the R package pROC [29].
Additionally, based on the Nephroseq v5 online platform
(https://nephroseq.com/), Spearman correlation analysis
was conducted to investigate the relationship between gene
expression levels and the glomerular filtration rate (GFR)
in DN. The expression levels of these hub genes in the glo-
meruli were also measured under different types of kidney
diseases (arterial hypertension, focal segmental glomerulo-
sclerosis, lgA nephropathy, lupus nephritis, membranous
glomerulonephropathy, minimal change disease, thin base-
ment membrane disease, vasculitis, and DN). The sample
information for different types of kidney diseases, includ-
ing sample size, source, and inclusion and exclusion
criteria, can all be accessed in the Nephroseq database.
The Nephroseq database is a specialized database designed
for research related to kidney diseases, which incorporates

gene expression datasets from multiple sources, including
invasive and noninvasive human urine, plasma, and kidney
biopsy samples [30].

3. Results

3.1. DEGs and Senescence-Associated Genes. A differential
gene analysis was performed on an integrated dataset
(GSE96804+GSE30528), resulting in the identification of
894 DEGs based on screening criteria (Figure 2(a)). The
KEGG analysis of these DEGs showed that the PI3K-
Akt signaling pathway, focal adhesion, and AGE-RAGE
signaling pathway in a diabetic complication were relatively
significant pathways (Figure 2(b)). GO analysis also revealed
relevant biological changes involved in diabetic glomerulop-
athy (Attachment 1). By intersecting the DEGs with
senescence-associated genes, a total of 28 common genes
were obtained (Figure 2(c)). Among these genes, 20 genes
(JUN, ANG, ESM1, IGFBP3, C3, MMP14, IL32, CCL2,
TNFRSF11B, SERPIE2, HGF, IL18, EDN1, IGFBP6, MMP2,
FGF7, PTGES, GDF15, CXCR2, and VEGFC) were upregu-
lated and 8 genes (VEGFA, FGF1, IQGAP2, ETS2, PLAT,
IGF1, EGF, and IGFBP2) were downregulated in the diabetic
glomerulopathy group compared to the normal control
group (Figure 2(d)).

3.2. LASSO Analysis and Identification of Hub Genes. The
expression levels of these genes are closely correlated with
each other (Figure 3(a)). The KEGG analysis found that they
primarily involve biological alterations related to cellular
growth, proliferation, apoptosis, differentiation, metabolism,
and energy homeostasis (Figure 3(b)). To further select
variables from the 28 genes, LASSO regression analysis was
performed. The corresponding coefficients of these 28 genes

Diabetic glomerulus
samples

senescence-
associated genesDEGsGO and

KEGG

lasso analysis

hub genes TF regulatory
network

ROC
analysis

Comprehensive
exploration based on
Nephroseq database

senescence–associated
molecular subtype

GSVA immune
infltration

senescence
microenvironment

analysis

cell communication
analysis

validated by single-cell
dataset

Figure 1: Flow diagram of this study.
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in the LASSO regression model are shown in Figure 3(c) for
various penalty parameters. The former λ (λ. 1se, 12 genes)
was selected due to its more accurate model than the later λ
(λ. min, 9 genes). Ultimately, 12 hub senescence-related genes

(VEGFA, IQGAP2, JUN, PLAT, ETS2, ANG, MMP14,
VEGFC, SERPINE2, CXCR2, PTGES, and EGF) were identi-
fied. In additional, TFs that regulate hub genes predicted based
on the JASPAR database are shown in Figure 3(d).
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Figure 2: Senescence-associated genes in diabetic glomerulopathy. (a) Volcanic map of DEGs. (b) Bar plot of KEGG enrichment results for
DEGs. (c) Venn diagrams of overlapping genes. (d) Heat map based on the expression of overlapping genes in diabetic glomerulopathy.
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3.3. Senescence-Associated Molecular Subtypes and Immune
Infiltration. To further elucidate the potential biological
mechanisms of these genes in diabetic glomerulopathy, we
conducted clustering analysis of twelve hub senescence-
associated genes to classify diabetic glomerulopathy samples
into two subtypes (C1 and C2), as depicted in Figure 4(a).
The top 10 upregulated pathways and the top 10 downregu-
lated pathways are displayed in Figure 4(b). The most prom-
inent biological changes observed in subtype C2 mainly
involve cellular immune response, inflammatory response,
and cell cycle regulation. In contrast, subtype C1 is primarily
associated with metabolic processes that also involve cell
proliferation, differentiation, and cell death, such as the ErbB
signaling pathway.

By analyzing the proportion of immune cells in each sam-
ple, we compared the changes in the relative proportions of
22 immune cells between the C1 and C2 subgroups
(Figure 4(c)). Our results showed that four types of immune
cells (M2macrophages, gamma-delta T cells, restingMast cells,
and memory B cells) infiltrated more in the C2 subtype, while
activatedNK cells, monocytes, neutrophil T cells, and activated
Mast cells infiltrated less in the C2 subtype when compared
with theC1 subtype.However, therewere no statistically signif-
icant differences in the abundance of other types of immune
cells between the C1 and C2 subtypes (Figure 4(d)). These
above findings might suggest that the C2 subtype may repre-
sent an advanced senescence stage of diabetic glomerulopathy.

3.4. Single-Cell Analysis. Several cell types were identified
based on the expression of lineage-specific markers, includ-
ing podocytes (POD), endothelial cells (EC), mesangial cells

(Mes), interstitial cells (Int), proximal tubule (PT), descend-
ing limb of the loop of Henle (dLOH), ascending limb of the
loop of Henle (aLOH), distal convoluted tubule (DCT),
connecting tubule (CNT), collecting duct principal cells
(PC), A-type collecting duct intercalated cells (IC-A), B-
type collecting duct intercalated cells (IC-B), transition cells
(Trans), immune cells (Imm), and mitotic cells (Mitotic)
(Figures 5(a) and 5(b)). VEGFA and IQGAP2 exhibited high
expression levels in POD, while JUN, PLAT, and ETS2
showed expression in EC. ANG, MMP14, VEGFC, and SER-
PINE2 were found to be expressed in Mes. Specifically,
CXCR2 was uniquely expressed in Imm, PTGES was specif-
ically expressed in CNT and PC, and EGF was observed to
be specifically expressed in aLOH (Figure 5(c)). Additionally,
the differential trends observed in the comparison between
control and DN groups at both 06 and 12 weeks were largely
consistent with the differential results obtained from our anal-
ysis based on integrated bulk RNA (Figure 5(d)).

Based on the common expression patterns of these
twelve genes, we generated a senescence score for all kidney
cells. As depicted in Figures 6(a) and 6(b), glomerular cells
(POD, EC, and Mes) exhibited a significantly higher senes-
cence score than other kidney cell clusters. Furthermore,
glomerular cells under diabetic conditions had a significantly
higher senescence score than those under normal condi-
tions, both at 06 and 12 weeks (Figure 6(c)). The KEGG
analysis of DEGs between high and low senescence score
groups in POD, EC, and Mes also revealed several biological
changes related to senescence (Figures 6(d)–6(f)). Notably,
these three cell types demonstrated a shared biological
change in oxidative phosphorylation.
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Furthermore, we employed CellChat to examine alter-
ations in intercellular communication in glomerular cells,
including secreted signaling, cell-to-cell contact, and ECM-
receptor interactions. As we can see, the magnitude of
change in POD was most significant in the cellular senes-
cence environment (Figure 7(a)). In this state of senescence,
the most notable altered cell communication signaling path-
ways include COLLAGEN, PTN, LAMININ, SPP1, and
VEGF. These pathways play a role in regulating biological
processes such as cell proliferation, differentiation, and
migration and have been demonstrated to exert different
levels of effects during the pathogenesis of chronic kidney

disease (CKD) [31–35] (Figure 7(b)). The alterations in
receptor-ligand pairs related to POD in the glomerulus were
further identified, as shown in Figure 7(c).

3.5. Clinical Value Evaluation and External Database
Analysis. ROC analysis indicated a good predictive value of
the expression levels of these twelve senescence-associated
genes for diabetic glomerulopathy, as shown in Figure 8(a).
The areas under the curve (AUC) in the ROC analysis were
86.4% (ANG), 82.0% (CXCR2), 86.2% (EGF), 77.8% (ETS2),
87.3% (IQGAP2), 87.3% (JUN), 76.4% (MMP14), 80.6%
(PLAT), 85.7% (PTGES), 85.9% (SERPINE2), 83.7%
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(VEGFA), and 76.7% (VEGFC). According to the analysis of
the Nephroseq database, a positive correlation has been
observed between the expression levels of PLAT, ETS2,
IQGAP2, VEGFA, and EGF and GFR in diabetic glomeru-
lopathy. In contrast, the expression levels of SERPINE2
and PTGES are found to be negatively associated with
GFR. No significant correlation has been identified between
the expression levels of ANG, CXCR2, JUN, VEGFC, and
MMP14 and GFR (Figure 8(b)). Additionally, most of these
genes exhibit differential expression in glomerular diseases
caused by various kidney conditions (Figure 8(c)).

4. Discussion

Cellular senescence has been recognized as a critical
determinant of aging and age-related diseases, including
diabetes and its complications. Among the possible conse-
quences of cellular senescence, DN is believed to be a
condition driven largely by cellular senescence and
dysfunction. The strong correlation between cellular senes-
cence and the onset and progression of DN highlights the
importance of investigating cellular senescence mechanisms
in the context of DN [36–39].

In this study, we identified several potential senescence-
associated biomarkers (VEGFA, IQGAP2, JUN, PLAT,
ETS2, ANG, MMP14, VEGFC, SERPINE2, CXCR2, PTGES,
and EGF) that may be involved in diabetic glomerulopathy
from the perspective of transcriptomics. VEGFA, VEGFC,
and ANG play crucial roles in regulating angiogenesis. The
renal system is a complex vascular network composed of
glomeruli and peritubular capillaries surrounding the
tubules, which is fundamental for normal renal cell function.
The maintenance of renal vascular integrity relies on a deli-
cate balance between proangiogenic factors and antiangio-
genic factors, and disruption of this balance is implicated

in various kidney diseases, including DN [40]. EGF, JUN,
and ETS2 are involved in cell proliferation and growth.
EGF is a growth factor involved in various biological pro-
cesses. It has been shown that EGF protects the kidney by
promoting cell proliferation and reducing apoptosis and
fibrosis [41]. Studies have shown that inhibition of the
JUN expression or activity can attenuate the progression of
DN, ameliorate pathological damage to the kidneys, and
enhance renal function [42]. According to current knowl-
edge, ETS2, a gene encoding a transcription factor located
on human chromosome 2, has not been extensively studied
in DN. The ETS2 protein plays an important role in a variety
of biological processes, including embryonic development,
cell proliferation and differentiation, apoptosis, angiogenesis,
and immune response. ETS2 deficiency may lead to endo-
thelial dysfunction and injury, which accelerates the progres-
sion of atherosclerosis and promotes cardiovascular disease
[43]. CXCR2 and PTGES are closely tied to inflammation
and immune responses. It has been shown that in DN, the
expression level of CXCR2 increases, and it participates in
the occurrence and progression of the disease by regulating
inflammatory and fibrotic processes [44]. PTGES contrib-
utes to the pathological processes of DN through various
mechanisms, such as increasing GFR, promoting the prolif-
eration of renal tubule cells, and inducing inflammatory
responses [45]. IQGAP2 and MMP14 have a connection to
cell adhesion and migration. IQGAP2 is expressed in multi-
ple organs and has been linked to the development of meta-
bolic diseases and tumors [46–48]. However, its role in DN
and the specific mechanisms need to be investigated further.
In DN, MMP14 expression levels are elevated, and it partic-
ipates in pathological processes such as glomerulosclerosis
and accumulation of the extracellular matrix [49, 50]. In
patients with DN, platelet aggregation, elevated plasma
fibrinogen levels, and vascular endothelial cell injury are
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factors that lead to abnormal activation of the coagulation
and fibrinolysis systems [51]. PLAT and SERPINE2 are
mainly coagulation- and fibrinolysis-related genes. The
abnormal activation of the coagulation and fibrinolysis sys-
tems can lead to thrombosis and microcirculation disorders,
which can affect renal function [51]. ROC analysis of the
expression levels of these genes also suggests that they may
be of good clinical value for DN.

Furthermore, we have delineated discrete molecular sub-
types of senescence within DN by analyzing the shared
expression patterns of the aforementioned genes. Aging
leads to immune system decline, known as immunosenes-
cence [52]. With increasing age, the numbers and functions
of various immune cells including T cells, B cells, natural
killer cells, and monocytes in the human body decrease to

varying degrees. Moreover, the cytokines and chemokines
in the elderly that regulate immune cell activity also undergo
changes, further affecting the functionality of the immune
system. There are biological differences in the cellular
immune response, inflammatory response, cell cycle, and
metabolic regulation between the two senescence molecular
subtypes (C1 and C2) that we have identified in our study.
At the same time, subtypeC2 is associatedwith decreased acti-
vation of various immune cells, such as activated NK cells,
monocytes, neutrophils, and activated mast cells. The above
findings may provide new ideas for revealing the senescence
heterogeneity of DN, as well as individualized treatment.

We also investigated the cellular cluster localization of
these genes in the kidney from a single-cell perspective and
validated their expression in DN. The senescence
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Figure 8: ROC analysis and external database exploration. (a) ROC analysis of hub genes in predicting diabetic glomerulopathy.
(b) Correlation analysis between hub gene expression and GFR. (c) Boxplot display of expression of hub genes in various kidney diseases
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microenvironment was also further evaluated. In DN,
glomerular damage and aging are more obvious [53]. The
KEGG analysis indicated that oxidative phosphorylation
was involved in both high and low senescence score glomer-
ular cell clusters. Oxidative phosphorylation is a process by
which ATP is produced within cells and has been associated
with aging and DN [54]. Research has shown that oxidative
phosphorylation is related to mitochondrial dysfunction and
apoptosis during the aging process, making it an important
mechanism of aging [55]. In DN, hyperglycemia leads to
an increase in mitochondrial oxidative phosphorylation
and leads to mitochondrial dysfunction and excessive pro-
duction of free radicals, thereby inducing oxidative damage
and inflammation in kidney tissue [56].

DN is a chronic complication of diabetes that is charac-
terized by increased levels of albuminuria [57]. This occurs
due to damage to the glomerular filtration barrier caused
by diabetes. POD, which are essential components of this
barrier, play a critical role in maintaining its structural and
functional integrity. The loss or injury of POD is strongly
associated with the progression of DN and the severity of
albuminuria [58]. In diabetes, POD can become dysfunc-
tional or injured due to various pathogenic cues such as
hyperglycemia, oxidative stress, vasoactive mediators, cyto-
kines, and growth factors, which activate the signaling of cel-
lular senescence [4]. Our results also indicated that POD
exhibit the most significant magnitude of changes under
senescence, as assessed jointly by the hub genes we identi-
fied. In addition, we further identified potential communica-
tion pathways and ligand-receptor interactions that have
been largely mentioned previously in relation to the patho-
genesis of DN. These demonstrated the true reliability of
these senescence-associated genes to reflect DN.

Our study has several limitations. Firstly, the lack of
clinical information for each kidney biopsy sample limits
our ability to evaluate the degree of association between
gene expression levels and clinical features. Additionally,
further research is needed to explore the methods for asso-
ciating subgroups with important clinical and laboratory
indicators. Secondly, additional molecular biology experi-
ments are necessary to investigate the specific mechanisms
of senescence-associated genes in DN. Thirdly, we did not
investigate further the mechanism of these genes in other
kidney diseases.

5. Conclusion

In this study, we ultimately identified twelve representative
senescence-associated genes and molecular subtypes that
might provide new insights into the assessment, manage-
ment, and personalized treatment of DN.
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