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The aim of this study is to analyze the effect of serum metabolites on diabetic nephropathy (DN) and predict the prevalence of DN
through a machine learning approach. The dataset consists of 548 patients from April 2018 to April 2019 in the Second Affiliated
Hospital of Dalian Medical University (SAHDMU). We select the optimal 38 features through a least absolute shrinkage and
selection operator (LASSO) regression model and a 10-fold cross-validation. We compare four machine learning algorithms,
including extreme gradient boosting (XGB), random forest, decision tree, and logistic regression, by AUC-ROC curves,
decision curves, and calibration curves. We quantify feature importance and interaction effects in the optimal predictive model
by Shapley additive explanation (SHAP) method. The XGB model has the best performance to screen for DN with the highest
AUC value of 0.966. The XGB model also gains more clinical net benefits than others, and the fitting degree is better. In
addition, there are significant interactions between serum metabolites and duration of diabetes. We develop a predictive model
by XGB algorithm to screen for DN. C2, C5DC, Tyr, Ser, Met, C24, C4DC, and Cys have great contribution in the model and
can possibly be biomarkers for DN.

1. Introduction

Diabetes mellitus is an extremely common chronic disease.
By 2045, the prevalence of diabetes will rise to 10.9% [1].
Of greater concern to us is that the Western Pacific will have
the highest number of adult diabetics in the world [2]. In
China, about 20-40% of diabetic patients have combined
renal complications, and diabetic nephropathy (DN) has
become the leading cause of end-stage chronic kidney disease
[3]. Meanwhile, the all-cause mortality rate in patients with
DN is nearly 20-40 times higher than that in nondiabetic
nephropathy [4]. New screening and treatment methods
have important implications for the prevention of diabetic
nephropathy in the country.

In recent years, there has been a growing interest in
metabolomic measurements to identify pathophysiological

mechanisms and new diagnostic and prognostic biomarkers
associated with disease development [5]. Among the various
serum metabolites that have been extensively studied, amino
acids and acylcarnitine have received much attention in
recent years. Amino acids are involved in different physiolog-
ical roles of the body, such as cell signaling, gene expression,
nutrient metabolism, and endocrine hormone production
[6]. There is research evidence that dysregulation of acylcar-
nitine homeostasis plays a role in the development and pro-
gression of various diseases, such as insulin resistance and
metabolic syndrome [7, 8].

Since traditional clinical indicators and serum metabolites
have a large number of features and are high-dimensional
datasets containing both correlated and uncorrelated data,
it is not sufficient to analyze such data using traditional statis-
tical methods [9]. In recent years, machine learning methods,
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such as least absolute shrinkage and selection operator
(LASSO) regression, support vector machine (SVM), deci-
sion tree (DT), random forest (RF), and artificial neural net-
works (NNs), have been widely used in healthcare [10], such
as cancer, medicinal chemistry, and medical imaging [11].
Investigations have shown that machine learning can help
improve the reliability, performance, predictability, and
accuracy of diagnostic systems for diseases that require it
and can be used to examine important clinical parameters,
biological indicators, and serum metabolites [12, 13].

The purpose of this paper is to develop and test a predic-
tion model for DN by using machine learning methods and
the dataset of Dalian Second People’s Hospital and explain

the prediction model to quantify the influence of serum
metabolites to DN.

2. Material and Methods

2.1. Data

2.1.1. Data Source. Data for this paper including 1024 partic-
ipants are obtained from April 2018 to April 2019 in the Sec-
ond Affiliated Hospital of Dalian Medical University
(SAHDMU). Demographic parameters; anthropometric,
clinical, and laboratory parameters; medications; and disease
conditions are extracted from the subjects through an
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Figure 1: DN statistical analysis workflow diagram. DN statistical analysis workflow diagram contains four machine learning classifiers,
preprocessing steps, optimization of hyperparameters of classifiers by grid search, and model evaluation methods. Feature filtering was
performed using R V4.2.2. Data preprocessing and modeling, evaluation, and interpretation of machine learning models were performed
with Python V3.10.
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electronic medical system. Demographics include age, sex,
duration of diabetes mellitus, smoking, and alcohol con-
sumption. Anthropometric measurements include body
mass index (BMI), abdominal circumference (AC), systolic
blood pressure (SBP), and diastolic blood pressure (DBP).
Clinical parameters included high-density lipoprotein cho-
lesterol (HDL-C), fasting blood glucose (FBG), serum creat-
inine (SCR), and glycated hemoglobin (HbA1c). Disease
conditions include hypertension, diabetic complications,
and stroke. Medication use includes antidiabetic drugs,
lipid-lowering drugs, laboratory parameters, and antihyper-
tensive drugs.

2.1.2. Study Variables. BMI is calculated by dividing body
weight (kg) by the square of height (m). The World Health
Organization (WHO) classification criteria for BMI in Asia
are as follows: BMI < 18 5 kg/m2 is considered underweight,
normal weight is 18.5-24.0 kg/m2, overweight is 24.0-28.0 kg/
m2, and obesity is >29.0 kg/m2 [14]. According to the recom-
mendations of the American Diabetes Association [15],
HbA1c ≥ 7% is defined as hyperglycemia, and HDL − C ≤ 1
mmol/L in men and HDL − C ≤ 1 3mmol/L in women were
defined as dyslipidemia, all of which indicated that treat-
ment goals were not met. The formula for calculating glo-
merular filtration rate (eGFR) is as follows: [16]

Female GFR =
144 × SCR

0 7
−0 329

× 0 993age, SCR ≤ 0 7mg/dL,

144 × SCR
0 7

−1 209
× 0 993age, SCR > 0 7mg/dL,

Male GFR =
141 × SCR

0 9
−0 411

× 0 993age, SCR ≤ 0 9mg/dL,

141 × SCR
0 9

−1 209
× 0 993age, SCR > 0 9mg/dL

1

The overall statistical analysis process of this paper is
shown in Figure 1. A preprocessing method is mainly
included and investigated. The preprocessing process
includes the elimination of missing values as well as feature
selection, the optimization of hyperparameters using grid
search, and the evaluation and analysis of classifiers. In addi-
tion, a 10-fold cross-validation is used to avoid the effect of
dividing the training set and the test set differently.

2.2. Statistical Analysis

2.2.1. Data Preprocessing. The dataset used in this paper is
the balanced dataset. In the prediction model, whether DN
occurs or not is defined as a binary variable. Illness is
denoted as 1; absence of illness is denoted as 0. The features
with more than 50% missing values were excluded, and then,
the samples with missing values were removed from the
analysis (see Figure 2). In addition, in this paper, the features
are divided into continuous and categorical variables for
data preprocessing. They are normalized, if the features are
continuous. The fetched values of the discrete features are

extended to the Euclidean space using the unique hot coding
(one-hot), if they are categorical, and there is no size signif-
icance between the fetched values.

2.2.2. Feature Selection. Feature selection was performed by
using least absolute shrinkage and selection operator
(LASSO) regression. The LASSO regression model improves
the prediction performance by adjusting the hyperparameter
λ to compress the regression coefficients to zero and select-
ing the feature set that performs best in DN prediction. To
determine the best λ value, λ was selected by minimum
mean error using 10-fold cross-validation.

2.2.3. Model Training and Validation. In this paper, the 10-
fold cross-validation method is used to divide the training
and testing sets; i.e., in each cycle, 9 subsets are used as the
training set and 1 subset is used as the testing set. The model
is optimized by using grid search. DN prediction models
were using 10-fold cross-validation as a model evaluation
strategy and four classification algorithms, extreme gradient
boosting (XGB), random forest (RF), decision tree (DT), and
logistic regression, respectively, mainly for predicting the
risk of diabetic nephropathy in individuals.

The above models are evaluated based on their generali-
zation ability and practicality. The generalization ability of
the model is examined by the receiver operating characteris-
tic (ROC) curve and the area under the curve (AUC) values
of the model, and the clinical utility of the model was exam-
ined by using the decision curve and calibration curve.

3. Analysis of Results

3.1. Preprocessing Results. Through the above missing value
processing (see Section 2.2.1), the final size of the dataset
was obtained as 562 × 119 (number of samples × number
of features), which is a sufficient sample size to meet the sta-
tistical requirements and ensure the reliability of the study
results [17, 18].

The clinical characteristics of the participants according
to DN as a column stratified variable are shown in Table 1.
The presence or absence of DN is statistically significant
with HDL, Apo AI, C4DC, C5DC, HbA1c, and hyperten-
sion (p < 0 05). Compared with nondiabetic renal disease

Original data
(n = 1024 variables = 469)

Eliminate features with more
than 50% missing values

(delete 350 variables)

Delete samples with missing
values

(delete 462 samples)

New data set
(n = 562 variables = 119)

Figure 2: Data preprocessing process.
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Table 1: Baseline characteristics of the study population.

NDRD DN p value

Duration of T2D 8 99 ± 54 68 14 26 ± 84 77 0.10

AC 91 98 ± 93 95 94 97 ± 99 70 0.96

SBP 144 31 ± 392 02 153 09 ± 482 23 0.51

Hb 143 08 ± 217 92 135 98 ± 405 09 0.24

PCV 42 46 ± 29 35 40 16 ± 37 49 0.26

GLB 27 35 ± 17 11 28 93 ± 19 20 0.42

ALP 74 01 ± 778 13 72 67 ± 490 06 0.56

UA 327 36 ± 7740 74 363 47 ± 11384 12 0 26
MAU 31 65 ± 8476 00 245 03 ± 245357 87 0.33

CHOL 5 01 ± 1 24 5 09 ± 2 48 0.33

HDL 2 57 ± 0 63 2 48 ± 0 76 0.02

Apo AI 1 41 ± 0 05 1 38 ± 0 05 <0.01
Apo B 1 00 ± 0 18 1 01 ± 0 12 0.29

INS 14 52 ± 174 52 21 75 ± 446 94 0.36

FBG 8 61 ± 8 90 9 98 ± 14 94 0.77

GADA 6 51 ± 174 38 7 46 ± 251 27 0.32

IGF-1 162 61 ± 3073 97 151 01 ± 3473 32 0.50

FT3 4 84 ± 0 82 4 59 ± 0 95 <0.01
TSH 2 15 ± 4 69 3 29 ± 93 22 0.77

Cys 1 42 ± 0 70 1 46 ± 0 82 0.88

Met 15 10 ± 17 93 14 15 ± 14 84 0.39

Ser 45 14 ± 135 16 44 89 ± 118 29 0.85

Tyr 51 36 ± 255 07 46 92 ± 252 05 0.27

C2 11 60 ± 17 59 12 45 ± 19 78 0.93

C4DC 0 38 ± 0 04 0 37 ± 0 03 <0.01
C5DC 0 06 ± 0 001 0 07 ± 0 001 <0.01
C24 0 04 ± 0 0003 0 04 ± 0 0004 <0.01
eGFR 95 81 ± 504 53 84 97 ± 976 44 0.48

HbA1c (%)

0-7 88 (31.10) 44 (15.77) <0.01
≥7 195 (68.9) 235 (84.23)

AGI (%)

Yes 188 (66.43) 147 (52.69) <0.01
No 95 (33.57) 132 (47.31)

TZDs (%)

Yes 272 (96.11) 263 (94.27) 0.41

No 11 (3.89) 16 (5.73)

Glinides (%)

Yes 260 (91.87) 271 (97.13) 0.01

No 23 (8.13) 8 (2.87)

Dpp-4 (%)

Yes 266 (93.99) 257 (92.11) 0.48

No 17 (6.01) 22 (7.89)

GLP-1 (%)

Yes 279 (98.59) 269 (96.42) 0.17

No 4 (1.41) 10 (3.58)
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(NDRD), patients with DN tend to be without hyperten-
sion, with hyperglycemia, as well as have higher levels of
HDL, Apo AI, and C5DC and lower levels of C4DC.

3.2. Feature Screening. Based on the “glmnet” package
implementation in R language, the best performing features
were screened from 70 clinical information and 49 metabolic
indicators to reduce the dimensionality; therefore, the pre-
dictive performance of the classifier was significantly
improved. After LASSO regression screening (see Figure 3),
the best feature set was obtained including clinical informa-
tion: diabetes duration, AC, SBP, hemoglobin concentration
(HB), erythrocyte pressure volume (PCV), globulin (GLB),
alkaline phosphatase (ALP), blood uric acid (UA), urinary
microalbumin (MAU), cholesterol (CHOL), HDL, apolipo-
protein AI (Apo AI), and Apo B (AI0B); insulin (INS),
FBG, glutamic acid decarboxylase antibody (GADA), insulin
sample growth factor-1 (IGF-1), free triiodothyronine (FT3),
thyroid-stimulating hormone (TSH), eGFR, HbA1c, hyper-
tension (high blood pressure was recorded as 1 and vice versa
as 0), thiazolidinediones (TZDs), and Glinides (Glinides);
lipid-lowering drugs, dipeptidyl peptidase-4 (DPP-4),
glucagon-like polypeptide (GLP_1), and sodium-glucose co-
transport protein 2 inhibitor (SGLT-2); amino acids includ-
ing cysteine (Cys), methionine (Met), serine (Ser), and tyro-
sine (Tyr); and acylcarnitine including acetylcarnitine (C2),
succinylcarnitine (C4DC), glutarylcarnitine (C5DC), and tet-
racosanoic carnitine (C24).

3.3. Hyperparameter Optimization Results. In this study,
based on GridSearchCV in sklearn, for each combination
in the hyperparameter combination list, four different
machine learning models are instantiated, 10-fold cross-
validation is done, and the parameter combination with

the highest average score is returned using “roc_auc” as
the scoring criterion, as shown in Table 2.

3.4. Classifier Results. Based on the preprocessed Dalian
dataset, the four classifiers of XGB, RF, DT, and logistic
regression were used to classify diabetic nephropathy, which
showed that the XGB model (accuracy = 0 875, recall =
0 875) was significantly better than the RF, logistic regres-
sion, and DT models. The AUC value of the DT model
was greater than 0.8, but the false-positive rate was higher
than the other three models, so it was not recommended
(as shown in Figure 4).

The decision curve provides an adequate representation
of the clinical utility of a model; i.e., at a certain threshold
probability, the net benefit of the model is higher than the
two special cases of no intervention for anyone and interven-
tion for everyone at the same time, indicating that the model
has practical value. As shown in Figure 5, all models were
valid between the thresholds of 28% and 81%, and between
the thresholds of 11% and 86%, the net benefit of the XGB
model outperformed the other three models.

A new sample dataset was obtained by bootstrap method
using Python 3.10 by sampling 10,000 times independently
to plot the calibration curve of XGB model. As shown in
Figure 6, after the XGB model was calibrated, the curve
gradually approached the diagonal line, indicating that the
screening is close to the real situation and has practical
value.

3.5. Model Interpretation. The effect of features on screening
scores is measured by SHAP, which evaluates the impor-
tance of each feature using a game-theoretic approach based
on the test set [19]. When the Shapley value of each feature
is positive, it indicates an increased risk of DN; conversely, it

Table 1: Continued.

NDRD DN p value

SGLT-2 (%)

Yes 282 (99.65) 275 (98.57) 0.36

No 1 (0.35) 4 (1.43)

Hypertension (%)

Yes 155 (54.77) 102 (36.56) <0.01
No 128 (45.23) 177 (63.44)

Lipid-lowering drug (%)

Yes 169 (92.35) 133 (74.30) <0.01
No 14 (7.65) 46 (25.7)

Drink (%)

Yes 275 (97.17) 268 (96.06) 0.62

No 8 (2.83) 11 (3.94)

Mean ± SD for continuous variables: the p value was calculated by a t test. % for categorical variables: the p value was calculated by a weighted chi-square test.
MAU: urinary microalbumin; Duration of T2D: duration of type 2 diabetes mellitus; PCV: erythrocyte pressure volume; SBP: systolic blood pressure; FBG:
fasting blood glucose; eGFR: glomerular filtration rate; IGF-1: insulin sample growth factor-1; INS: insulin; FT3: free triiodothyronine; GLB: globulin; Hb:
hemoglobin concentration; CHOL: cholesterol; ALP: alkaline phosphatase; UA: blood uric acid; HbA1c: glycosylated hemoglobin; HDL: high-density
lipoprotein; Tyr: chitosan; Ser: serine; AC: abdominal circumference; Met: methionine; Apo AI: apolipoprotein A1; Apo B, apolipoprotein B; TSH:
thyroid-stimulating hormone; AGI: alpha-glucosidase inhibitor; GADA: glutamic acid decarboxylase antibody; Cys: cysteine; drink: alcohol consumption
or not; Dpp-4: dipeptidyl peptidase-4; TZDs: thiazolidinediones; GLP-1: glucagon-like peptide; SGLT-2: sodium-glucose cotransporter protein 2 inhibitor;
C2: acetylcarnitine; C4DC: succinylcarnitine; C5DC: glutarylcarnitine; C24: tetracosanoic carnitine.
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indicates a decreased risk of DN. The scattering colors in the
figure indicate the magnitude of the feature values, with red
being larger and blue being smaller. As shown in Figure 7,
MAU, diabetes duration, PVC, FPG, and eGFR contributed
more to the model; in the metabolite group, C2, C5DC,
Tyr, Ser, and Met contributed more to the model.

When the duration of diabetes is greater than or equal to
15, the threshold value of Tyr that best describes the differ-
ence in outcomes is 45, at which point the higher the Tyr
value, the lower the risk of DN (as shown in Figure 8(c)).
In addition, patients with longer diabetes duration and lower
C5DC values had a lower risk of disease compared to those
with higher C5DC values; patients with longer diabetes
duration and lower Tyr values had a higher risk of disease
compared to those with higher Tyr values, or patients with

lower C24 values and compared to those with higher Tyr
values and longer diabetes duration; C24 vs. C5DC reason-
ing was the same (as shown in Figures 8(a) and 8(b)).

When most features are normal and for new-onset dia-
betes teenager patients, the risk of developing DN is low
(Figure 9(a)). When the duration of T2D is shorter but most
features (PCV, ALP, UA, FT3, and HDL) are abnormal, the
risk of DN increases (Figure 9(b)).

4. Discussion

This study focuses on the metabolites, where C2, C5DC, Tyr,
Ser, Met, C24, C4DC, and Cys have a strong effect on DN
and can be used as new biomarkers for DN.
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Figure 3: (a) LASSO coefficient profiles of 119 features; (b) the value of λ with the smallest mean error is selected by 10-fold cross-
validation. (a) Each line represents a feature, and each estimated parameter decreases as λ increases until it compresses to 0. (b) The
relationship between the mean square error and log λ is plotted. Vertical dashed lines are plotted at the best value using the minimum
criterion and the 1SE principle. Based on 10-fold cross-validation, the λ value of 0.017 was selected and the optimal number of features
was obtained as 38.

Table 2: Highest AUC scores achieved by hyperparameter tuning of four machine learning models.

Classifiers Adjusted hyperparameters Accuracy Recall AUC p value

XGB
learning rate = 0 001, n estimators = 1500, max depth = 3, subsample = 0 6,

colsample bytree = 0 6, gamma = 0 3, objective = ‘binary logistic’,
scale pos weight = 1, reg lambda = 0 1

0.875 0.875 0.966 ≤0.001

RF max depth = 9, min samples split = 5, min_samples_leaf = 2, n estimators = 170 0.875 0.874 0.937 ≤0.001

DT max depth = 3, min samples split = 3, in samples leaf = 1 0.893 0.893 0.812 ≤0.001

Logistic penalty = ′l1′, C = 0 8, tol = 0 0001 0.755 0.75 0.845 ≤0.001

C indicates the inverse of the regularization factor; tol indicates that the calculation stops when the solution reaches 0.0001 and the optimal solution is
considered to have been found; p values are the Delong’s test for the area under the receiver operating characteristic curve, and <0.05 indicates that the
analysis method is statistically significant. Abbreviations: AC: abdominal circumference; ALP: alkaline phosphatase; AGI: alpha-glucosidase inhibitor; Apo
AI: apolipoprotein A1; Apo B: apolipoprotein B; AUC: area under the curve; BMI: body mass index; C2: acetylcarnitine; C4DC: succinylcarnitine; C5DC:
glutarylcarnitine; C24: tetracosanoic carnitine; CHOL: cholesterol; Cys: cysteine; DN: diabetic nephropathy; DT: decision tree; DBP: diastolic blood
pressure; DCA: decision curve; Duration of T2D: duration of type 2 diabetes mellitus; drink: alcohol consumption or not; Dpp-4: dipeptidyl peptidase-4;
eGFR: glomerular filtration rate; FT3: free triiodothyronine; FBG: fasting blood glucose; FBG: fasting blood glucose; GLB: globulin; GADA: glutamic acid
decarboxylase antibody; GLP-1: glucagon-like peptide; HDL-C: high-density lipoprotein cholesterol; HbA1c: glycated hemoglobin; HB: hemoglobin
concentration; HbA1c: glycosylated hemoglobin; IGF-1: insulin sample growth factor-1; INS: insulin; LASSO: least absolute shrinkage and selection
operator; Met: methionine; MAU: urinary microalbumin; NNs: artificial neural networks; PCV: erythrocyte pressure volume; ROC:, receiver operating
characteristic; RF: random forest; SBP: systolic blood pressure; SCR: serum creatinine; SGLT-2: sodium-glucose cotransporter protein 2 inhibitor; Ser:
serine; SVM: support vector machine; Tyr: chitosan; TSH: thyroid-stimulating hormone; TZDs: thiazolidinediones; UA: blood uric acid; XGB: extreme
gradient boosting.
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Aromatic amino acids are a group of α-amino acids that
contain an aromatic ring, including phenylalanine, tyrosine,
and tryptophan. Phenylalanine is oxidized to tyrosine by
phenylalanine hydroxylase and then involved in glucose
metabolism [20]. In a prospective study, lower plasma tyro-
sine levels in diabetic patients were associated with an
increased risk of microvascular disease [21]. A previous
study confirmed the association between low tyrosine con-
centrations and diabetic nephropathy [22].

Methionine is an essential sulfur-containing amino acid
that is required for normal growth and development of the
body and is also associated with %FM. It is a precursor of
succinyl CoA, homocysteine, creatine, and carnitine, which
the organism generally obtains from food or gastrointestinal
microorganisms. Methionine plays a crucial role in the
immune system because its catabolism leads to increased
production of glutathione, taurine, and other serum metab-
olites [23]. Methionine and other methyl donors improve
glucose tolerance and insulin sensitivity in the offspring of
high-fat diet mice [24]. Experiments in rats have demon-
strated that methionine ameliorates alterations in key one-
carbon serum metabolites and T2D-induced disturbances
in glucose and lipid metabolism in T2D rats [25]. And there
is growing evidence that methionine activates AMPK and
SIPT1 by a mechanism similar to that of metformin [26].
Given that diabetic nephropathy is one of the microvascular

complications of type 2 diabetes, it is reasonable to speculate
that methionine disorders are negatively associated with
type 2 diabetes complicated by diabetic nephropathy.

Diabetes mellitus as a metabolic dysfunctional disease
damages several organs and systems, including the liver, kid-
neys, and peripheral nerves. Although essential amino acids
are important for maintaining normal physiological activities
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of the body, abnormal metabolism of nonessential amino
acids is also associated with the pathogenesis of diabetes
[27, 28]. Serine, a nonessential amino acid, levels have been
found to be consistently reduced in patients with metabolic
syndrome [29]. In a prospective study, elevated serum gly-
cine levels were found to be associated with a reduced risk
of developing type 2 diabetes [30]. Glycine being a precursor
substance of serine [31], there is even more reason to specu-
late about the importance of serine in the microvascular
complications of type 2 diabetes.

Numerous studies have found that homocysteine, a pre-
cursor substance of cysteine, is considered a biomarker for
microvascular diseases including diabetic neuropathy, reti-
nopathy, and nephropathy-like diseases [32]. Epidemiologi-
cal studies have shown a U-shaped relationship between
cardiovascular disease and cysteine after adjusting for other

risk factors and homocysteine [33]. In this study, screening
metabolic indicators associated with diabetic nephropathy
by the LASSO model revealed a positive association between
cysteine and diabetic nephropathy; the fact that no risk trend
relationship was observed in the first half of the U-shaped
curve may be due to the fact that this study was conducted
based on type 2 diabetic patients, who have much higher
levels of oxidative stress and reactive oxygen species than
normal subjects.

Acylcarnitine is known to play a key role in the β-oxida-
tion of long-chain fatty acids through the inner mitochon-
drial membrane. Comparing cases of obesity, insulin
resistance, metabolic syndrome, and diabetes with relevant
controls revealed that acylcarnitine was characterized differ-
ently between groups. A 6-year prospective study of 2103
community-dwelling individuals aged 50-70 years in Beijing
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and Shanghai, China, with type 2 diabetes as the observed
outcome found higher plasma concentrations of short-,
medium-, and long-chain acylcarnitines at baseline, but only
long-chain acylcarnitines were significantly associated with
the risk of type 2 diabetes [34]. A previous study found that
elevated levels of short- and medium-chain acylcarnitines in
blood were associated with the risk of developing cardiovas-
cular disease in T2DM [35]. A study on diabetic peripheral
neuropathy (DPN) claimed that C4DC and C24 concentra-
tions in non-DPN plasma were significantly higher than in
DPN patients and that factors containing C2, C3, C4, and

C5 short-chain acylcarnitines were positively associated with
the risk of DPN in T2DM [36]. C2 is derived from carbohy-
drate catabolism and acetyl-CoA, the end product of β-oxi-
dation [37]. It was also found that C2 may be a biomarker of
combined sugar and lipid toxicity. And animal experiments
also showed that plasma C2 levels were elevated in T2DM
rats [38].

Proteinuria and eGFR loss are both nonspecific markers
of DN but have limitations as prognostic tools [39]. This is
because a high percentage of T2DM patients in renal biopsy
studies do not have DN and suffer from other renal diseases
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Figure 8: SHAP plot showing the nonlinear interaction. It shows the nonlinear interaction between diabetes duration and serum
metabolites, including C5DC (a), C24 (b), and Tyr (c). x-axis indicates the value of the feature, and y-axis indicates the Shapley value of
the feature. Red indicates a larger right-hand feature, and blue indicates a smaller right-hand feature. The Shapley value indicates the
effect of the feature on the model.
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[40]. Therefore, it is important to identify new prognostic
markers for DN based on serum metabolites in this paper.
However, due to the limitation of data, this paper is limited
to the dichotomous problem, and the multiclassification
model for DN grade can be further investigated in the future.

5. Conclusion

This paper constructs a XGB model to screen for DN, whose
predictive performance is better than those in previous stud-
ies [37, 41, 42] with 0.93, 0.79, and 0.90. LASSO plays a key
role in ensuring the accuracy and stability of the predictive
model, which improves the quality of the dataset. C2,
C5DC, Tyr, Ser, Met, C24, C4DC, and Cys are shown to
be highly correlated with DN risk.

This paper introduces serum metabolites as new DN
markers, constructs several machine learning models to
screen for DN, compares their screening abilities, and ana-
lyzes the impact of each important feature on DN. The
results show that the XGB model has the best screening
effect, and LASSO model plays a key role in ensuring the
accuracy and stability of the screening model, which
improves the quality of the dataset. In addition, compared
with previous studies [37, 41, 42], our model has better
result.

Data Availability

The datasets generated during and analyzed during the cur-
rent study are available from the corresponding authors on
reasonable request.

Additional Points

Key Summary Points. Why carry out this study? (1) The
prevalence of diabetic nephropathy has been increasing in
recent years, but there are few screening methods for it.
What was learned from the study? (i) The prediction model
based on XGB algorithm shows that C2, C5DC, Tyr, Ser,
Met, C24, C4DC, and Cys have high correlation with DN.
(ii) Patients with longer diabetes duration and lower C5DC
values had a lower risk of disease compared to those with
higher C5DC values. (iii) Patients with longer diabetes dura-
tion and lower Tyr values had a higher risk of disease com-
pared to those with higher Tyr values.
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