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Aiming at the nonstationary characteristic of a gear fault vibration signal, a recognition method based on permutation entropy of
ensemble local characteristic-scale decomposition (ELCD) and relevance vector machine (RVM) is proposed. First, the vibration
signal was decomposed by ELCD; then a series of intrinsic scale components (ISCs)were obtained. Second, according to the kurtosis
of ISCs, principal ISCs were selected and then the permutation entropy of principal ISCs was calculated and they were combined
into a feature vector. Finally, the feature vectors were input in RVM classifier to train and test and identify the type of rolling bearing
faults. Experimental results show that this method can effectively diagnose four kinds of working condition, and the effect is better
than local characteristic-scale decomposition (LCD) method.

1. Introduction

Rolling bearing is one of the most important elements of
mechanical equipment. Its vibration signal gathered in case
of default tends to be nonstationary [1–3]. Therefore, its fault
diagnosis with appropriate signal processing is of signifi-
cance.

As a new nonstationary signal processing method, local
characteristic-scale decomposition (LCD) method can self-
adaptively decompose a complex signal into several intrinsic
scale components (ISCs).The decomposed ISC has its instan-
taneous frequency of physical significance. Any two ISCs are
mutually independent [4, 5]. Compared with empirical mode
decomposition (EMD), LCD is widely used in mechanical
fault diagnosis due to shorter decomposition time, lower
end effect, and less iterations. However, as with the EMD
method, LCD method takes cubic spline interpolation for
signal processing, so it causes a mode mixing effect, failing to
obtain accurate ISCs [6, 7]. Characterized by even frequency
distribution and zero-mean value, themethod throughwhich
the white noise is added into LCD method to process

vibration signal, namely, ensemble local characteristic-scale
decomposition (ELCD), can help eliminate mode mixing.
Relevance vectormachine (RVM) is a new classifier proposed
on the basis support vector machine (SVM) and Bayesian
theory.This classifier can create core functionswithout undue
parameters. Characterized by shorter test time, high preci-
sion, and small sample classification availability, it is widely
used in gear fault diagnosis, fault diagnosis of hydropower
units, and medical diagnostics [8–10]. Therefore, aiming at
coping with various working conditions, RVM classifier is
adopted to realize the pattern recognition of rolling bearing
faults.

Firstly, ELCD is used to decompose the vibration signal
into ISCs; secondly, based on their kurtosis feature, the prin-
cipal ISC components are selected; the permutation entropy
of principal ISC is extracted.Thirdly, the permutation entropy
obtained is taken as the inputs to RVM for fault diagnosis.
Finally, the proposedmethod is applied to experimental data,
and the analysis results show that the proposed method
performs effectively for the rolling bearing fault diagnosis.
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2. LCD and ELCD Principles

2.1. LCD Fundamentals. As a new self-adaptive signal de-
composition method, LCD can decompose a nonstationary
signal into several ISCs. Any two ISCs are mutually inde-
pendent. With its instantaneous frequency of physical signif-
icance [5], ISC needs to meet the following two conditions
[6].

(1) Signal 𝑋(𝑡) has its maxima as positive and minima
as negative, and any adjacent maxima and minima witness
monotonic relationship.

(2) Among the data, let all themaximal points be denoted
as (𝜏𝑘, 𝑋𝑘). The line formed by any two adjacent extreme
points, 𝑙𝑘, at 𝜏𝑘 as 𝐴𝑘+1, is specified as follows: 𝑙𝑘 = (𝑋𝑘+2 −
𝑋𝑘)(𝑡−𝜏𝑘)/(𝜏𝑘+2−𝜏𝑘)+𝑋𝑘.Then, the relation𝐴𝑘+1+𝑋𝑘+1 = 0
should be true, where 𝐴𝑘+1 = (𝜏𝑘+1 − 𝜏𝑘)(𝑋𝑘+2 − 𝑋𝑘)/(𝜏𝑘+2 −
𝜏𝑘) + 𝑋𝑘,

𝐴𝑘+1 + 𝑋𝑘+1 = 0,

𝐴𝑘+1 = 𝑋𝑘 +
𝜏𝑘+1 − 𝜏𝑘

𝜏𝑘+2 − 𝜏𝑘

(𝑋𝑘+2 − 𝑋𝑘) ,

𝑘 = 1, 2, . . . ,𝑀 − 2.

(1)

Any complex signal𝑋(𝑡)may have its LCD results written
as follows:

𝑋 (𝑡) =

𝑛

∑

𝑝=1

ISC𝑝 (𝑡) + 𝑟𝑛 (𝑡) , (2)

where 𝑟𝑛(𝑡) is the residual component.

2.2. ELCD Principles. Like EMD, LCD takes cubic spline
interpolation for signal processing and witnesses mode mix-
ing [7]. Characterized by even frequency distribution, the
white noise is used to eliminate mode mixing [11]. This study
proposes ELCD for signal processing. ELCD repeatedly adds
different white noises to the vibration signal for multiple
cases of LCD. Based on white noise zero-mean value, this
study conducted ensemble mean of multiple sets of ISCs and
ultimately obtained a set of ISCs, eliminating mode mixing.
ELCD specific algorithm flow is shown in Figure 1.

2.3. Algorithm Simulation and Analysis. To contrast the
advantages and disadvantages of LCD and ELCD, this study
counted up the impact signal and sine signal and formed
simulation signal, shown in Figure 2.

This study conducted simulation signal LCD and ELCD.
In LCD, this study added the noise signal amplitude 0.01 times
the signal standard deviation and had the total mean as 120
times. The results are shown in Figures 3 and 4.

Simulation comparison showed that, after LCD, ISC1 and
ISC2 had partials and ISC had mode mixing. After ELCD,
it was possible to obtain the real signal component and
properly decompose the simulation signal. Therefore, ELCD
can effectively remove mode mixing.

Local characteristic-
scale decomposition

Intrinsic scale 
components

Calculate ensemble
mean of ISCs

Obtain ISCs

Add different 
white noise N(t)

Signal X(t)

Repeat n 
times

Figure 1: ELCD flow chart.
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Figure 2: The simulation signal and its constituents.

3. Permutation Entropy

Permutation entropy is a nonlinear dynamics indicator to
measure signal complexity. Compared with the Lyapunov
exponent, permutation entropy is characterized by simple
calculation and strong noise immunity [12]. This study took
permutation entropy to present different vibration signal
characteristics. The calculation of a time series {𝑥(𝑖), 𝑖 =
1, 2, . . . , 𝑁} is as follows.
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Figure 3: Simulation signal LCD results.
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Figure 4: Simulation signal ELCD results.

(1) Time series phase-space reconstruction is as follows:

𝑋(1) = {𝑥 (1) , 𝑥 (1 + 𝜏) , . . . , 𝑥 (1 + (𝑚 − 1) 𝜏)}

.

.

.

𝑋 (𝑖) = {𝑥 (𝑖) , 𝑥 (𝑖 + 𝜏) , . . . , 𝑥 (𝑖 + (𝑚 − 1) 𝜏)}

.

.

.

𝑋 (𝑁 − (𝑚 − 1) 𝜏)

= {𝑥 (𝑁 − (𝑚 − 1) 𝜏) , 𝑥 (𝑁 − (𝑚 − 2) 𝜏) , . . . , 𝑥 (𝑁)} ,

(3)

where𝑚 is embedding dimension and 𝜏 is time delay.
(2) Sort the series. This study rearranged 𝑋(𝑖) = {𝑥(𝑖),

𝑥(𝑖 + 𝜏), . . . , 𝑥(𝑖 + (𝑚− 1)𝜏)} in ascending order and obtained
a new series. If 𝑥(𝑖 + (𝑗𝑖1 − 1)𝜏) = 𝑥(𝑖 + (𝑗𝑖2 − 1)𝜏) appeared in

{𝑥(𝑖 + (𝑗1 − 1)𝜏) ≤ 𝑥(𝑖 + (𝑗2 − 1)𝜏) ≤ ⋅ ⋅ ⋅ ≤ 𝑥(𝑖 + (𝑗𝑚 − 1)𝜏)},
this study would sort according to the value of 𝑗.

(3) It is obvious that, based on the sorting theory, any
vector𝑋(𝑖) can obtain a set of symbol series:

𝑆 (𝑙) = [𝑗1, 𝑗2, . . . , 𝑗𝑚] , (4)

where 𝑙 = 1, 2, . . . , 𝑘, 𝑘 ≤ 𝑚!; 𝑚 different symbols [𝑗1, 𝑗2,
. . . , 𝑗𝑚] have𝑚! different arrangements, corresponding to𝑚!
different symbols.

(4) To calculate the probability of different symbol series,
𝑝1, 𝑝2, . . . , 𝑝𝑘, ∑

𝑘

𝑙=1
𝑝𝑙 = 1; the time series permutation

entropy is defined as follows:

𝐻𝑝 (𝑚) = −

𝑘

∑

𝑙=1

𝑝𝑙 ln𝑝𝑙. (5)

In formula (5), in case 𝑝𝑙 = 1/𝑚!, the maximum of
𝐻𝑝(𝑚) is ln(𝑚!)which is standardized with themathematical
expression as the following formula:

𝐻𝑝 =

𝐻𝑝 (𝑚)

ln (𝑚!)
. (6)

Entropy value range is 0 ≤ 𝐻𝑝 ≤ 1.
Entropy indicates the complexity of the time series. The

more complex the time series is, the greater the entropy will
be and vice versa.

4. Relevance Vector Machine

4.1. Fundamentals. RVM (relevance vector machine) is a
learning machine based on Bayesian framework. Character-
ized by fewer parameters, it can conduct small sample data
training and testing [8, 9]. With any training sample set
{𝑥𝑖, 𝑡𝑖}

𝑁

𝑖=1
, RVM algorithm steps are as follows.

(1) Calculate the output function:

𝑦 (𝑥) =

𝑁

∑

𝑖=1

𝑤𝑖𝜙𝑖 (𝑥) , (7)

where𝑤 is weight vector and 𝜙(𝑥) is nonlinear basis function.
(2) In second classification, RVM uses logistic sigmoid

function to map 𝑦(𝑥) [0, 1] interval to obtain the decision
probability distribution function:

𝑃 {𝑡 = 1 | 𝑥} = 1 +
1

𝑒
−𝑦(𝑥)
. (8)

In case of 𝑃{𝑡 = 1 | 𝑥} < 0.5, the results obtained are of
Class I, and in case of 𝑃{𝑡 = 1 | 𝑥} ≥ 0.5, the results obtained
are of Class II.

(3) In case 𝑃{𝑡 = 1 | 𝑥} complies with Bernoulli distri-
bution and independent distribution, the likelihood function
of the sample set is calculated:

𝑃 {𝑡 | 𝑤} =

𝑁

∏

𝑖=1

𝑝 (𝑡𝑖 | 𝑥𝑖)
𝑡𝑖
(1 − 𝑝 (𝑡𝑖 | 𝑥𝑖))

1−𝑡𝑖
. (9)
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Figure 5: RVM classification graph.

(4) Maximize treatment according to the above formula
and define the weight Gaussian prior probability distribution,
thus reducing the sample size and improving learning and
generalization:

𝑃 {𝑤 | 𝛼} =

𝑁

∏

𝑖=0

𝑁(𝑤𝑖 | 0, 𝛼𝑖
−1
)

=

𝑁

∏

𝑖=1

√
𝛼𝑖

2𝜋
exp(−

𝛼𝑖𝑤
2

𝑖

2
) .

(10)

(5) RVM model can self-adaptively obtain its 𝛼𝑖 through
training. In order to ensure RVM model optimal perfor-
mance, a fast PSO intelligent optimization algorithm is
adopted to optimize the parameters. Fitness function is as the
following formula:

fitness =
𝑦𝑡

𝑦
× 100%, (11)

where 𝑦 are total samples and 𝑦𝑡 are correctly classified sam-
ples.

4.2. RVM Classification Principles. Against rolling bearing
different working conditions, multiple classifiers are com-
bined for classification in accordance with Directed Acyclic
Graph (DAG). DAG classification is efficient and free from
rejecting or misclassification areas. It starts from the root
node, left or right classification based on the root node results
[9, 10]. Assume that three classifiers classify three samples;
DAG classification principles are shown in Figure 5.

5. Experimental Analysis

5.1. Experiments. This study adopted rolling bearing data
of US Case Western Reserve University for processing. The
experiment adopted 6205-2RS JEM SKF deep groove ball
bearings, with rotating motor load power off 735.5W, rolling
bearing speed of 1797 r/min, adopting EDM technology
to process the bearing into one with fault diameter of
0.3556mm, and fault depth of 0.2794mm.This study adopted
the sensor sampling frequency of 12 KHZ, collecting four
working state vibration signals, respectively, referring to the
normal state, the rolling element fault, the inner ring fault,
and outer ring fault, with each data sample’s length𝑁 as 2500
points. The four signals gathered are shown in Figure 6.

The ISCs of the decomposition by ELCD of an Inner race
fault signal are shown for illustration in Figure 7.
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Figure 6: Vibration signal. (a) Normal. (b) Rolling element fault. (c)
Outer race fault. (d) Inner race fault.

It can be obtained from Figure 7 that, after ELCD, the
inner race fault signal obtained a residual component and
6 ISCs, some of which contain fault information and others
contain fake components. Kurtosis can be used to measure
signal impact. The more impact components the signal has,
the greater the kurtosis will be [13]. So, this study took
kurtosis for ISC processing and principal ISC extracting. ISC
kurtosis after decomposition of different vibration signals was
calculated, with the results shown in Figure 8.

Figure 8 shows that after ELCD different vibration signals
had ISC kurtosis focusing on the first two components. The
first two ISCs contained more fault information. Therefore,
the first two ISCs were selected as the principal ISC, which
were reconstructed. The mean square error and energy
of the original signal and the reconstructed signal were,
respectively, calculated, with the results shown in Table 1.



Journal of Engineering 5

Table 1: The mean square error and energy of the original signal and the reconstructed signal.

Signal type Original signal Reconstructed signal
Mean square error Energy Mean square error Energy

Normal signal 0.0723 11.0282 0.0688 10.6203
Rolling element signal 0.1406 50.8750 0.1410 51.0342
Outer ring signal 0.6963 994.3297 0.6965 993.6019
Inner ring signal 0.2937 177.1054 0.2926 175.3812

−1
1

IS
C1

−0.2
0.2

IS
C2

−0.1
0.1

IS
C3

−0.05
0.05

IS
C4

−0.05

0.05

IS
C5

−0.01

0.01

IS
C6

−0.01

0.01

R

1000 1500 2000 2500500

1000 1500 2000 2500500

1000 1500 2000 2500500

1000 1500 2000 2500500

0 1000 1500 2000 2500500

500 1000 1500 2000 25000

0 1000 1500 2000 2500500
Sample dots

Figure 7: Inner ring fault signal ELCD results.
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Figure 9: (a) Permutation entropy of LCD. (b) Permutation entropy
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Figure 10: (a) Recognition rate of normal state. (b) Recognition rate of rolling element. (c) Recognition rate of inner ring fault. (d) Recognition
rate of outer ring fault.

It can be obtained fromTable 1 that characteristic statistics
before and after the reconstruction are similar, indicating that
kurtosis can effectively select the principal ISCs.

5.2. Calculation of Principal ISC Permutation Entropy. This
study collected multiple sets of vibration signals, extracting
principal ISCs against rolling bearing different working
conditions and calculating permutation entropy, conducting
multiple tests, and obtaining the permutation entropy. In case
parameter 𝑚 = 6 and parameter 𝑡 = 1, entropy distinction
was obvious. The mean of multiple sets of permutation
entropy was calculated, with the results shown in Table 2.

Table 2: Permutation entropy of the first two ISCs of the three sig-
nals.

Principal
ISC

Normal
state

Rolling
element
fault

Outer
ring fault

Inner
ring fault

ISC1 0.8724 1.0125 1.2734 1.6346
ISC2 0.4356 0.6025 1.1804 1.3152

Table 2 shows that the rolling bearing different working
conditions correspond to different permutation entropies.
The normal working state signal is stable and less complex,
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and the permutation entropy is the minimum and the signal
gathered by the inner ring fault is far and noisy, and the
permutation entropy is themaximum. In order to distinguish
the advantages and disadvantages of ELCD and LCD, taking
ISC1, for example, rolling bearing permutation entropies in
different working conditions were calculated, with the results
shown in Figure 9.

Figure 9 shows that ELCD is added with white noise of
different amplitudes and compared with LCD; ISC1 is charac-
terized by even permutation entropy distribution andobvious
differences between different working conditions, overcom-
ing mode mixing. Against different working conditions, in
order to achieve accurate identification, it is necessary to
adopt classifier for further processing. Therefore, RVM clas-
sifier is used to identify different working conditions.

5.3. Fault Recognition. As indicated in the above, permuta-
tion entropy of different vibration signals was calculated and
feature vectors were composed. The feature vectors in dif-
ferent working conditions were input into RVM for training
and testing. At the same time, BP and SVM classifiers were
adopted to have feature training and testing. The recognition
results of the three classifiers are shown in Figure 10.

Figure 10 shows that RVM classifier can effectively iden-
tify different states of rolling bearing, with a recognition rate
higher than that of SVM classifier or BP classifier.

6. Summary

The rolling bearing is widely used in mechanical equipment;
in order to keep the rolling bearings working in good state,
condition monitoring and fault diagnosis are required. A
rolling bearing fault diagnosis method based on permutation
entropy of ELCD and RVM is proposed in this study.

(1) Targeting the disadvantage of mode mixing of LCD,
the proposed ELCD in this study can have accurate ISC of
the vibration signal, eliminating mode mixing.

(2) This study adopted RVM classifier to identify rolling
bearing under different working conditions, with the results
showing that this method can effectively identify rolling
bearing fault, and the recognition rate is higher than that of
SVM or BP.
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