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In the heterogeneous fixed fleet open vehicle routing problem (HFFOVRP), several different types of vehicles can be used to service
the customers. The types of vehicles are different in terms of capacity, fixed cost, and variable cost. In this problem, the vehicles
are not required to return to the depot after completing a service and the number of vehicles of each type is fixed and limited.
Since this problem belongs to NP-hard problems, in this paper a compound heuristic algorithm called SISEC which includes sweep
algorithm, insert, swap, and 2-opt moves, modified elite ant system (EAS), and column generation (CG) is applied to solve the
HFFOVRP. We report computational results on 22 problems and solve each problem by using our SISEC. The results which were
compared to the results of exact algorithms and the classic CG confirm that the proposed algorithm produces high quality solutions
within an acceptable computation time.

1. Introduction

The open vehicle routing problem (OVRP) is a variant of
vehicle routing problem (VRP) which has many applica-
tions in industry and service providing businesses [1]. The
description of the OVRP appeared in the literature over 30
years ago but it has attracted the attention of scientists and
researchers in recent years. In the OVRP, the objective is to
minimize the total traveled distance (or time) by the number
of vehicles so that each customer is visited only once by a
single vehicle. In general, the number of vehicles used is
not imposed but it is a decision variable. Furthermore, the
demand of each customer must be completely fulfilled by a
single vehicle and the total demand served by each vehicle
must not exceed vehicle capacity; that is, split deliveries are
not allowed. Moreover, in one variant of the problem, the
travel time of each vehicle should not exceed an upper limit.
It should be noted that the OVRP has a unique character in
that it has an open path form.Thismeans that the vehicles are
not required to return to the depot after completing a service

and each vehicle ends its trip at a customer [2]. This problem
is defined as follows.

Let𝐺 = (𝑉, 𝐸) be a complete undirected connected graph
with 𝑉 = {0, 1, . . . , 𝑛} as the set of vertexes and the set of arcs
𝐸 = {(𝑖, 𝑗): 0 ≤ 𝑖, 𝑗 ≤ 𝑛} (if the graph is not complete, we can
instead replace each arcwith an arcwhich has an infinite size).
Vertex 0 denotes the depot, and each vertex 𝑖 ∈ {1, . . . , 𝑛} is
a customer with a nonnegative demand 0 < 𝑞

𝑖
< 𝑄. The

cost of travel from vertex 𝑖 to vertex 𝑗 is denoted by 𝑐
𝑖𝑗
(if

𝑖 = 𝑗, 𝑐
𝑖𝑖
= 0 for 0 ≤ 𝑖 ≤ 𝑛), and it is assumed that costs

are symmetric (i.e., 𝑐
𝑖𝑗
= 𝑐
𝑗𝑖
). The available fleet consists of

𝐾 vehicles located at the depot. Furthermore, each customer
must be serviced by a single vehicle and no vehicle may serve
a set of customers whose total demand exceeds its capacity.
Each vehicle route must start at the depot and end at the last
customer it serves. The objective is to define a set of vehicle
routes which minimizes the total costs [3].

In the standard version of the VRP and OVRP, a fleet
of homogeneous vehicles is used and exists at a single depot
[4]. A sequence of customers must be visited by each vehicle
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so that all customers are serviced exactly once and the total
traveled distance by all the vehicles is minimized. In contrast
to other customers, some customers may have such large
demands that they can be serviced only by large capacity
vehicles. Therefore, several different vehicle types are applied
in the heterogeneous version of VRP [5]. There are 𝑛

𝑖
vehicles

(unlimited or limited numbers) of type 𝑖 which can be used
to serve the customers. When the number of vehicles of type
𝑡 is unlimited, the best composition of the fleet is determined.
This problem involves two kinds of decisions including

(i) the choice of a mix of vehicles among the available
vehicle types,

(ii) the routing for each selected vehicle.

In the fixed fleet version of the heterogeneous VRP
(HFFVRP), the values of 𝑛

𝑖
are fixed and the number

of vehicles for type 𝑡 is limited. If the fleet composition is
known in advance, we decide how to make the best use of
heterogeneous vehicles. The HFFVRP can be defined on an
undirected complete graph with one depot and 𝑛 customers
indexed from 1 to 𝑛. A fleet of identical heterogeneous
vehicles with limited capacity 𝑄

𝑘
for each 𝑘 is based at the

depot. Furthermore, the vehicles do not necessarily have the
same capacity, vehicle fixed cost, and unit variable cost in the
HFFVRP. In other words, a capacity 𝑄

𝑘
, a fixed cost 𝑓

𝑘
, and

a variable cost 𝛼
𝑘
are associated with each type of vehicle 𝑘

so that 𝛼
𝑘
is cost per unit of distance corresponding to each

vehicle type 𝑘. Hence, 𝑐𝑘
𝑖𝑗
= 𝑐
𝑖𝑗
× 𝛼
𝑘
represents the cost of

the travel from customers 𝑖 to 𝑗 with a vehicle of type 𝑘. The
HFFVRP is a further generalizationwith a limited availability
𝑛
𝑘
for each vehicle type 𝑘. This problem deals with finding

the minimum total transportation cost including the fixed
and variable cost for a fleet of vehicles so that the following
constraints are taken into account:

(i) Each vehicle starts at the depot and returns to the
depot.

(ii) The capacity of a vehicle cannot exceed the capacity
of the corresponding vehicle type.

(iii) The used number of vehicles of type 𝑘 cannot exceed
𝑛
𝑘
.

(iv) The demand of each customer is satisfied by exactly
one vehicle in only one visit.

The aim of this paper is to study the open version of HFFVRP.
In residential and commercial waste collection, there are
several applications of the HFFVRP [6]. In this problem,
vehicles commonly have different capacities and a specific
vehicle is used when the actual service at a location must be
completed such as a side loader with mechanical arms which
picks up the trash cans. As a result, in logistic operations,
decisions relating to routing heterogeneous fleets of vehicles
are frequently taken into consideration [7]. The difference
between the open HFFVRP and the HFFVRP is the fact that
a solution of the former consists of a set of Hamiltonian
paths, rather than Hamiltonian cycles [8, 9]. At first sight,
having open routes instead of closed ones looks like a minor
modification. Indeed, if travel costs are asymmetric, there

is essentially no difference between the open and closed
versions. To transform the open version into the closed one, it
suffices to set the cost to zero for traveling from any customer
to the depot.However, if travel costs are symmetric, things are
more subtle. Indeed, it is proved that, somewhat surprisingly,
the open version turns out to be more general than the closed
one in the sense that any closed HFFVRP on 𝑛 customers can
be transformed into an open HFFVRP on 𝑛 customers, but
there is no transformation in the reverse direction.

On the other hand, the OVRP is not very realistic since
most companies have heterogeneous fleets of vehicles. If
using heterogeneous fixed fleet as constraints are assumed
for the OVRP, we call the problem a heterogeneous fixed
fleet open vehicle routing problem (HFFOVRP) which is a
relaxation of the standard OVRP. In the HFFOVRP, the fleet
is composed of several vehicle types. Unlike the VRP, the
number of vehicles of each type is limited [10]. Moreover,
the vehicles have different capacities, fixed costs, and variable
costs per unit distance. The idea of this problem is not
only to consider the routing of the vehicles but also to
take into account the composition of the vehicle fleet. This
problem is more practical in distribution management and
transportation [11]. In more detail, the HFFOVRP appears in
situations where the fleet is purchased: it combines tactical
decisions (selecting the number of vehicles to be acquired)
and operational ones (computing the trips and the vehicles
assigned to them).

For the first time, the HFFOVRP was addressed in [12].
In this paper, each arc(𝑖, 𝑗) is associated with a traveling
distance 𝑑

𝑖𝑗
, a service time 𝛿

𝑖
, and the maximum allowed

traveling distance 𝐿
𝑘
. They proposed a multistart adaptive

memory programming metaheuristic called MAMP with
modified tabu search algorithm for solving this problem.This
algorithm is based on the framework of the adaptive memory
programming procedure constructed by Taillard et al. [13].
Themajormechanism considered is to produce a high quality
HFFOVRP by using the search memory and experience. The
algorithmic efficiency and effectiveness are experimentally
evaluated on a set of generated instances including 4, 15,
and 20 solutions. The maximum number of iterations in all
MAMPs is set to be 2500. Because the HFFOVRP is a new
variant of the classical OVRP in that time, and there has been
no relatedwork done in the literature, the proposed algorithm
is only compared with a tabu search algorithm because it is
similar to the solution improvement procedure in MAMP.

Huachi et al. deal with both versions of the OVRP includ-
ing homogeneous and heterogeneous fleet (HFFOVRP) in
which their goals are to minimize traveled distance and
the total costs [14]. In contrast to the HFFOVRP, the
number of vehicles must be minimized when the fleet is
homogeneous. The objective of this work is to present
a heuristic algorithm based on the iterated local search
(ILS) which uses a variable neighborhood descent (VNS)
procedure in the local search phase. In this phase, the VNS
is combined with random variable neighborhood ordering
(RVND). The developed algorithm was tested in benchmark
instances with up to 480 customers and the results obtained
showed that the algorithm is quite competitive with those
found in the literature. This approach is an extension of
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[15] for the Heterogeneous Fleet Vehicle Routing Problem
(HFVRP).

Yousefikhoshbakht et al. proposed a bone route algorithm
(BRMTS) which uses the tabu search (TS) as an improved
procedure to solve the HFFOVRP [9].This population-based
algorithm was first proposed for solving the classic VRP
by Tarantilis and Kiranoudis [16] which constructs a new
solution using components of routes in the adaptive memory.
In that work, they present a version of this method which
directly produces a new solution from a component of the
other solutions while using new diversification and intensi-
fication mechanisms. The BRMTS employs the generalized
route for constructive algorithm (GEROCA) which was first
presented in [17], for generating initial diversified solutions
and modified TS improvement procedure [15]. They have
made two main modifications to the TS:

(i) To improve the TS further, the amount of tabu
tenure (TT) is considered variable for intensification
and diversification policies. The TT is considered a
minimum value for the intensification policy and a
maximum value for the diversification policy.

(ii) The proposed TS comprises three types of neighbor-
hood moves including 2-opt, 0-1, and 1-1 exchanges.
These moves are distinguished in terms of exchanges
performed to convert one tour into another. These
moves are not equally performed in each iteration and
probability of them is changed gradually during the
run time.

Furthermore, some test problems were derived from the
well-knownTaillard’s benchmark forHFFVRPand the results
of BRMTS algorithm are compared with the results of several
metaheuristic algorithms. The comparison showed that the
proposed algorithm can provide better solutions within a
comparatively shorter period of time.

The HFFOVRP plays an important role in supply chains
specially in the first transportation step such as collecting
agricultural products or in the final distribution phase toward
customers. Besides, this problem is obviously NP-hard since
it includes the OVRP as a special case. For such problems,
the use of heuristics such as column generation (CG) is con-
sidered a reasonable approach in finding solutions. Although
CG has been successfully applied to several combinatorial
optimization problems, it has some shortcomings like its slow
computing speed and local-convergence. Besides, despite the
developments in modern heuristics, this algorithm has its
own strengths and weaknesses. Therefore, many research
studies have tried to develop hybrid algorithms, expecting to
achieve the effectiveness and efficiency. In this paper, we have
proposed an efficient hybrid heuristic called SISEC in order to
improve both the performance of the algorithm and the qual-
ity of the solutions. The proposed algorithm took advantage
of various versions of sweep algorithm with insert, swap, and
2-opt moves for producing a feasible solution. Furthermore,
a tight integer programming model is presented. The linear
programming relaxation is solved by the CG technique and
an elite ant system (EAS) and several local search algorithms
are used for solving generated Hamiltonian paths with some

modifications to generate feasible columns efficiently. The
computational results are provided on a new set of generated
instances derived fromHFFVRP’s problems.The results show
that the hybrid algorithm explores different parts of the
solution space and the search method is not trapped at the
local optimum. Besides, the proposed approach is able to find
high quality solutions in a very short time compared to exact
and heuristic algorithms.

This paper is structured as follows. In Section 2, in
addition to clarifying the intricate history of HFFOVRP
and providing bibliographic references, we review three
algorithms which have been developed to solve this problem
and its extensions. Components for CG which are able to
tackle the HFFOVRP are described in Section 3. In Section 4,
we first generate 22 new test problems which have 10–
100 customers and the results of the proposed algorithm
are reported for these instances. Moreover, the proposed
algorithm is compared to exact and CG algorithms. Finally,
some concluding remarks are given in Section 5.

2. Related Works

The heterogeneous open vehicle routing problem (HOVRP)
can be studied in two different versions. Some researchers
consider an assumption that there is an unlimited number
of vehicles of each type and try to find the optimal set of
vehicles to be scheduled in the problem. This is called the
fleet size and mix OVRP (FSMOVRP). However, to the best
of our knowledge, no work has addressed this version of
VRPwhich ismore practical in distributionmanagement and
transportation. Other researchers study the case where there
is a fixed vehicle fleet and try to schedule this fleet of vehicles
to the customers in an optimal way. This problem is called
heterogeneous fixed fleet OVRP (HFFOVRP) as mentioned
before. This HFFOVRP is more realistic than FSMOVRP
and has attracted more attention in literature. In the fixed
fleet version of the OVRP, the values of 𝑛

𝑘
are fixed. More

specifically, the number of vehicles of type 𝑘 is limited and the
fleet composition is known in advance. We must decide how
tomake the best use of a fixed fleet of heterogeneous vehicles.

The overarching idea is that many linear programs like
HFFOVRP are too large to consider all the variables explicitly
[18]. Sincemost of the variables will be nonbasic and assume a
value of zero in the optimal solution, only a subset of variables
need to be considered in theory when solving the problem.
Column generation leverages this idea to generate only the
variables which have the potential to improve the objective
function—that is, to find variables with negative reduced
cost (assuming without loss of generality that the problem
is a minimization problem). So, the column generation is
one of the effective algorithms in order to solve an NP-hard
problems.

The HFFOVRP is defined on an undirected connected
graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {0, 1, . . . , 𝑛} is a vertex set
and 𝐸 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉} is an edge set. Vertex 0 represents
the depot and each other vertex 𝑖 ∈ 𝑉 \ {0} is a customer
with a demand 𝑞

𝑖
. A distance 𝑐

𝑖𝑗
is associated with each edge

(𝑖, 𝑗) ∈ 𝐸. There is a fixed fleet of𝐾 different types of vehicles
located at the depot and the number of vehicles of each type
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is 𝑛
𝑘
(𝑘 ∈ {1, 2, . . . , 𝐾}). It should be noted that there is no

guarantee that a feasible solution can be found because the
number of vehicles of each type is fixed. It means that if this
happens in real-life problems, other vehicles have to be hired
in order to serve the customers. A capacity𝑄

𝑘
, a fixed cost𝑓

𝑘
,

and a variable cost 𝛼
𝑘
are associated with each type of vehicle

𝑘. In this problem, a sequence of deliveries is generated for
a heterogeneous fleet of vehicles, in order to fulfill a known
client requirement such that

(1) each route starts at the depot and ends at an arbitrary
customer,

(2) each client is serviced by exactly one visit of a single
vehicle,

(3) the total demand of each route does not exceed
vehicle’s fixed capacity,

(4) the total routing cost is minimized.

Furthermore, 𝑅
𝑘
is the set of feasible routes for vehicle

type 𝑘, 𝑅 is the set of all of feasible routes (𝑟 ∈ 𝑅, 𝑅 =
⋃
𝑘∈𝐾
𝑅
𝑘
), 𝑐𝑘
𝑟
is the cost of route 𝑟 for vehicle type 𝑘((𝑟, 𝑘) ∈ 𝑅

𝑘
.

𝑐
𝑘

𝑟
= ∑
(𝑖,𝑗)∈𝑟

𝑐
𝑖𝑗
), and 𝑦

𝑖𝑗
is the flow variables specifying the

quantity of goods which vehicle 𝑘 is carrying when it leaves
customer 𝑖 to service customer 𝑗. The traveling cost of each
edge (𝑖, 𝑗) ∈ 𝐸 by a vehicle of type 𝑘 is 𝑐𝑘

𝑖𝑗
= 𝑓
𝑘
+ 𝑎
𝑘
⋅ 𝑐
𝑖𝑗
. The

HFFOVRP consists of defining a set of routes and vehicles as
assigned to each route so that no more vehicles than those
available are used; customers’ demands are satisfied; each
customer is visited exactly once; each vehicle route starts at
the depot and does not finish at the depot; and the capacity
of each kind of vehicle is not exceeded. The objective of the
HFFOVRP is tominimize the sumof the costs of all the routes
subject to the mentioned constraints. The formulation of the
HFFOVRP requires the following additional notation:

𝑎
𝑘

𝑖𝑟

=
{

{

{

1 if the customer 𝑖 is serviced by route 𝑟 ∈ 𝑅
𝑘

0 otherwise

𝑥
𝑘

𝑟
=
{

{

{

1 if route 𝑟 ∈ 𝑅
𝑘
is used in the solution

0 otherwise.

(1)

Now, HFFOVRP can be formulated as follows:

min ∑

𝑘∈𝐾

∑

𝑟∈𝑅𝑘

𝑐
𝑘

𝑟
𝑥
𝑘

𝑟 (2)

Subject to ∑

𝑘∈𝐾

∑

𝑟∈𝑅𝑘

𝑎
𝑘

𝑖𝑟
𝑥
𝑘

𝑟
= 1 ∀𝑖 = 1, . . . , 𝑛 (3)

∑

𝑟∈𝑅𝑘

𝑥
𝑘

𝑟
≤ 𝑛
𝑘
∀𝑘 ∈ 𝐾 (4)

𝑥
𝑘

𝑟
∈ {0, 1} ∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅

𝑘
. (5)

In this formulation, the objective function (2) minimizes
the total costs. Constraints (3) indicate that each customer

is assigned only once to a feasible route-vehicle pair. Con-
straints (4) ensure that a maximum number of used vehicles
of each type does not exceed the number of available vehicles
of the same type. Finally, constraints (5) describe that each
arc in the network has the value 1 if it is used and 0 otherwise.
In this type of formulation, each column corresponds to one
route-vehicle pair. As number of columns is extremely large,
this problem cannot be solved directly and consequently aCG
approach is used to solve this problem.

3. The Proposed Algorithm

Now the proposed algorithm which uses the EAS as an
improved procedure is presented in this section. In our
approach, we have made three mainmodifications to the CG:

(1) To produce a high quality initial solution, the mod-
ified sweep algorithm, swap, insert, and 2-opt move
are used.

(2) A route-vehicle pair in open vehicle routing (𝑟, 𝑘) is
feasible when route 𝑟 starts at the depot and the sum
of demand of customers on route 𝑟 is not larger than
the capacity of the vehicle type 𝑘. In the proposed
algorithm, each (𝑟, 𝑘) is solved by the modified elite
ant system (MEAS) proposed by Yousefikhoshbakht
et al. [19].

(3) To improve the initial solution, the CG and several
local search algorithms are applied.

In this section, first, the sweep, insert, swap, and 2-
opt algorithms are explained and then the MEAS and the
proposed CG are described in more detail.

3.1. The Proposed Modified Sweep Algorithm. In order to
be applied, the proposed algorithm requires a high quality
initial solution. Here, a modified sweep algorithm combined
with insert, swap, and 2-opt moves is used to obtain initial
solutions. The classic powerful sweep algorithm is relatively
simple and was introduced by Gillett and Miller in 1974
[20]. It perhaps is one of the most greedy construction
algorithms for the traveling salesman problem (TSP) and
VRP. The sweeping clockwise or counterclockwise of this
algorithm starts from customer 𝑖 which has not been visited,
from the unvisited customer with the smallest angle to the
unvisited customer with the largest angle until all customers
are included. In other words, this algorithm has the simple
idea of inserting the unvisited customer with the nearest
angle of the last inserted customer in the route. This method
can produce a set of initial feasible open routes solution for
HFFOVRP in order to use as an initial solution for other
algorithms.This algorithm ranks and links demand points by
their polar coordinate angle. To apply the proposed modified
sweep algorithm (PMSA), we assume that the depot is node
0 and each customer has an (𝑥, 𝑦) coordinate as its location.
Therefore, polar coordinate angle for each customer 𝑖 is
calculated by formula (6). It should be noted that if 𝑦(𝑖) −
𝑦(0) < 0 and 𝑦(𝑖) − 𝑦(0) ≥ 0 then −𝜋 < 𝐴𝑛(𝑖) < 0
and 0 ≤ 𝐴𝑛(𝑖) ≤ 𝜋, respectively. Besides, if customer 𝑖 and
customer 𝑗 have the same polar angle, we put a customer
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(a) (b) (c)

Figure 1: Insert (a), swap (b), and 2-opt moves (c).

which has a shorter distance with respect to the depot earlier
in the list:

𝐴𝑛 (𝑖) = arctan{
(𝑦 (𝑖) − 𝑦 (0))

(𝑥 (𝑖) − 𝑥 (0))
} . (6)

In the proposed algorithm, first, the polar coordinates
of all 𝑛 customers are calculated and ordered as 𝐴𝑛(1) ≤
𝐴𝑛(2) ≤ ⋅ ⋅ ⋅ ≤ 𝐴𝑛(𝑛). Then, the route assigned to the
chosen vehicle 𝑘 starts with the unrouted customer farthest
from the depot such as 𝑖. The next customer 𝑗 to be inserted
in the route will be the one who has not been served yet
and who is the nearest polar coordinates to the customers
of the route. If 𝑢𝑘

𝑖
is load carrying capacity of vehicle 𝑘 in

customer 𝑖, that customer 𝑗 also has to be admissible in
𝑢
𝑘

𝑖
+ 𝑝
𝑗
≤ 𝑄
𝑘. This process is repeated until no customer is

admissible in the current route. When this happens, a new
vehicle is selected and the whole process is repeated until
all the customers are routed. In the proposed algorithm we
assume a vehicle with infinite capacity and fixed cost. If the
modified sweep algorithm cannot produce a feasible solution,
all the remaining customers are allocated to this artificial
vehicle.

After producing a feasible or unfeasible solution, the
insert and sweep algorithm is used to obtain a feasible
solution with high quality. These neighborhood structures
are an important key feature in the performance of most
of effective algorithms because it determines the extent and
the quality of the solution space explored. These moves are
distinguished in terms of exchanges performed to convert one
tour into another and they can be described as follows.

In insert exchange, a node from its position in one
route is moved to another position in either the same or
a different route. Consequently, while the initial tour is
(0, . . . , 𝑖, 𝑖 +1, . . . , 𝑗−2, 𝑗−1, 𝑗, 𝑗+1, . . . , 0), the improved one
is constructed as (0, . . . , 𝑖, 𝑗, 𝑖 + 1, . . . , 𝑗 − 2, 𝑗 − 1, 𝑗 + 1, . . . , 0).
The move is allowed when it is considered favorable for the
performance of the entire algorithm in terms of objective and
constraints. This move is demonstrated in Figure 1(a).

Besides, in the swap algorithm two nodes from different
routes are exchanged [4]. Consequently, if it is supposed that
the initial tour consists of the set of nodes (0, . . . , 𝑖 − 1, 𝑖, 𝑖 +
1, . . . , 𝑗 − 1, 𝑗, 𝑗 + 1, . . . , 0), the improved one is constructed
as (0, . . . , 𝑖 − 1, 𝑗, 𝑖 + 1, . . . , 𝑗 − 1, 𝑖, 𝑗 + 1, . . . , 0). The same
procedure is conducted in the case of multiple routes. The
move is allowed when it is considered favorable for the
performance of the entire algorithm in terms of objective and
constraints. This move is demonstrated in Figure 1(b). The
most commonly encountered move is the 2-opt. In multiple
routes, edges (𝑖, 𝑖 + 1) and (𝑗, 𝑗 + 1) belong to different routes
but they form a criss-cross again. The 2-opt move is applied
exactly in the same way as is the case in multiple routes.
The move is allowed when it is considered favorable for the
performance of the entire algorithm in terms of objectives
and constraints. This move is demonstrated in Figure 1(c).

3.2. Column Generation Approach. Two problems are in
CG algorithm including the Master Problem (MP) and the
Pricing Subproblem (PSP). The MP is linear programming
problemwhose aim is to find theminimal cost and to produce
the shadow prices of the temporary optimal solution to be
used in the Pricing Subproblem. Since the number of columns
of MP might be large, a Restricted MP is used to initiate
the computations. The goal of the Pricing Subproblem is
to generate additional columns for MP. In this section, the
formulations of the Master Problem and Pricing Subproblem
are presented.

3.2.1. Master Problem. The MP can be formulated as a set
covering formulation. This formulation is a linear program-
ming problem to which each customer is assigned at least
one feasible route-vehicle pair since the arc costs satisfy the
triangle inequality and each customer is visited exactly once
to minimize the costs. In addition, in constraint (5), the
integrality of variable 𝑥𝑘

𝑟
is eliminated:

(MP) min ∑

𝑘∈𝐾

∑

𝑟∈𝑅𝑘

𝑐
𝑘

𝑟
𝑥
𝑘

𝑟 (7)
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Subject to ∑

𝑘∈𝐾

∑

𝑟∈𝑅𝑘

𝑎
𝑘

𝑖𝑟
𝑥
𝑘

𝑟
≥ 1 ∀𝑖 = 1, . . . , 𝑛 (8)

∑

𝑟∈𝑅𝑘

𝑥
𝑘

𝑟
≤ 𝑛
𝑘
∀𝑘 ∈ 𝐾 (9)

0 ≤ 𝑥
𝑘

𝑟
≤ 1 ∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅

𝑘
. (10)

Creating all feasible routes is considered as an NP-hard
problem.The main idea of column generation approach is to
use only a small number of feasible routes in order to find the
optimal solution out of a large set of possible feasible routes
and additional routes are added onlywhenneeded.Therefore,
at first, we considered the Restricted Master Problem (RMP)
containing only the routes which have been generated by the
proposed modified sweep algorithm. If the generated routes
for vehicle type 𝑘 are indicated by 𝑅

𝑘
⊂ 𝑅
𝑘
, then the RMP is

created by replacing 𝑅
𝑘
with 𝑅

𝑘
in theMP.The RMP is solved

from this solution and we are able to obtain shadow prices for
each of the constraints in the RMP. This information is then
utilized in the objective function of the Pricing Subproblem.
Each time the Pricing Subproblem is being solved, new routes
are being generated as needed and inserted in the set 𝑅 =
⋃
𝑘∈𝐾
𝑅


𝑘
. We solve the RMP by solver by modified elite

ant system and vector 𝜋∗ = (𝜋∗
𝑖1
, . . . , 𝜋

∗

𝑖𝑛
, 𝜋
∗

1
, . . . , 𝜋

∗

𝑚
) is the

values of the dual variables (shadow price) corresponding to
constraints (8) and (9).

3.2.2. Pricing Subproblem. The Pricing Subproblem (PSP) is
a new problem created to identify a new route-vehicle pair
with the minimum reduced cost. The PSP uses the shadow
price information from RMP to generate promising a route-
vehicle pair that is also feasible. We formulated a Pricing
Subproblem for vehicle type 𝑘 (PSP(𝑘)) and consequently
have 𝑚 problems. We consider vehicle type 𝑘 and 𝑟 ∈ 𝑅

𝑘
.

This open route is as follows:

𝑟 = (𝑖
0
, 𝑖
1
, . . . , 𝑖

𝐻
, 𝑖
𝐻+1
) ; 𝑖
0
= 0, 𝑖

𝐻+1
̸= 0. (11)

The reduced cost 𝑐𝑘
𝑟
of 𝑟 ∈ 𝑅

𝑘
is defined as

𝑐
𝑘

𝑟
= 𝑐
𝑘

𝑟
−∑

𝑖∈𝐼

𝜋
∗

𝑖
𝑎
𝑘

𝑖𝑟
− 𝜋
∗

𝑘

= (

𝐻

∑

ℎ=1

𝑐
𝑘

𝑖ℎ−1 ,𝑖ℎ
+ 𝑓
𝑘
) −

𝐻

∑

ℎ=1

𝜋
∗

𝑖ℎ
− 𝜋
∗

𝑘

=

𝐻+1

∑

ℎ=1

(𝑐
𝑘

𝑖ℎ−1 ,𝑖ℎ
− 𝜋
∗

𝑖ℎ
) + 𝑓
𝑘
,

(12)

where 𝜋∗
𝑖0
= 𝜋
∗

𝑘
. Therefore, the reduced cost 𝑐𝑘

𝑟
is equal to the

sum of the fixed cost and the cost of route 𝑟 on the directed
subgraph 𝐺

𝑘
= (𝑉, 𝐴

𝑘
) for vehicle type 𝑘 with arc modified

cost defined as follows:

𝑐
𝑘

𝑖𝑗
=
{

{

{

𝑐
𝑘

𝑖𝑗
− 𝜋
∗

𝑗
− 𝜋
∗

𝑘
𝑖 = 0

𝑐
𝑘

𝑖𝑗
− 𝜋
∗

𝑗
𝑖 ̸= 0.

(13)

Now, the PSP formulation can be solved bymodifying the
elite ant system which is one of the most important versions
of the ant colony optimization (ACO). The ACO is used to
solve the traveling salesman problem (TSP) in 1991 [19]. This
algorithm simulates the natural ant behavior for food finding
and applies it for solving the NP-hard problems for which no
effective algorithm has been found yet. Studies on real ants
show that, despite the fact that they do not enjoy a complete
sense of vision, they can find the shortest path from the
food sources to the nest by some evaporated material called
pheromone [4]. This material is secreted by the ants when
they move from one place to another to find the shortest
path. The first version of ACO family was the ant system
(AS) used for solving small scale TSP instances. Although it
gained good solutions for small scale problems of TSP type,
the AS algorithm failed to reach an acceptable efficiency in
large scale problems of TSP in comparison with the famous
algorithms of that time. Therefore, much effort was made
to solve the problem efficiently [4]. The first modification
applied on the AS algorithm was the usage of elitist strategy
called EAS published in 1996. In EAS algorithm like the AS,
the probability of movement from node 𝑖 to node 𝑗 which is
not visited yet by ant “𝑘” is presented as follows:

𝑃
𝑘

𝑖𝑗
(𝑡) =

{{{

{{{

{

𝜏
𝛼

𝑖𝑗
(𝑡) 𝜂
𝛽

𝑖𝑗
(𝑡)

∑
𝑟∈𝐽
𝑘

𝑖

𝜏
𝛼

𝑖𝑗
(𝑡) 𝜂
𝛽

𝑖𝑗
(𝑡)

𝑗 ∈ 𝑗
𝑘

𝑖

0 𝑗 ∉ 𝑗
𝑘

𝑖
,

(14)

where 𝑗𝑘
𝑖
is the collection of nodes which have not been

visited by ant “𝑘” yet, 𝜏
𝑖𝑗
(𝑡) is the value of pheromone on the

arc joining 𝑖 to 𝑗, 𝜂
𝑖𝑗
(𝑡) is the heuristic information for the

ant visibility measure (e.g., defined as the reciprocal of the
distance between node 𝑖 and node 𝑗 for the TSP), and 𝛼, 𝛽
are the controlling parameters by user which determine the
ratio of importance of ant’s visibility measure compared to
the value of pheromone released on arc(𝑖, 𝑗) [4].

This process further highlights the arcs belonging to the
best route in any iteration and causes them to be updated
according to the value of the best route 𝐿𝑔𝑏. Note that the
above operator indicates that the less the value of 𝐿𝑔𝑏 is, the
more pheromone is released on the arcs.

Updating the pheromone simulates the changes in values
of pheromone in any iteration and mainly it is one of the rea-
sons that algorithms are different. Generally, two operations
motivate this updating procedure in EAS algorithm [4]:

(i) 1st, releasing new pheromone on the arcs, locally
and globally. This operation leads to an increase in
pheromone secretion on the arcs. Based on this algo-
rithm, in addition to the local releasing of pheromone
on the arcs through which the ants have passed,
pheromone is released on the arcs belonging to the
best route 𝑇∗ and they are encouraged with the
constant coefficient 𝑒 in the following way [4]:

Δ𝜏
𝑔𝑏

𝑖𝑗
(𝑡) =

{

{

{

𝑒

𝐿𝑔𝑏 (𝑡)
(𝑖, 𝑗) ∈ 𝑇

∗

0 (𝑖, 𝑗) ∉ 𝑇
∗
.

(15)
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(ii) 2nd, the evaporation of pheromone. At the end
of each iteration of the algorithm, the value of
pheromone left on the arcs is decreased by the con-
stant coefficient 0 ≤ 𝜌 ≤ 1. Thus, the new footprint of
pheromone has an average weight between the value
of the pheromone left on the arcs, and the value of new
pheromone released in the arcs. Thus the formula of
updating pheromone in the EAS algorithm is

𝜏
𝑖𝑗 (𝑡 + 1) = (1 − 𝜌) ⋅ 𝜏𝑖𝑗 (𝑡) +

𝑚

∑

𝑘=1

Δ𝜏
𝑘

𝑖𝑗
(𝑡) + Δ𝜏

𝑔𝑏

𝑖𝑗
(𝑡) , (16)

where Δ𝜏𝑘
𝑖𝑗
(𝑡) is the formula of locally updating

the pheromone [4]. Thus ants passing over the arc
between nodes 𝑖 and 𝑗 release pheromone on the
respective edge which is equal to the inverse of the
cost of the tour (𝐿𝑘(𝑡)) taken by ants by formula (17).
In this formula,𝑇𝑘 is the collection of arcs passed over
by the ant “𝑘”:

Δ𝜏
𝑖𝑗

𝑘
(𝑡) =

{

{

{

1

𝐿𝑘 (𝑡)
(𝑖, 𝑗) ∈ 𝑇

𝑘

0 (𝑖, 𝑗) ∉ 𝑇
𝑘
.

(17)

Therefore, the result of PSP(𝑘)will be one route for vehicle
type 𝑘. If the best objective value of PSP(𝑘) is negative, the
route-vehicle pair having the minimum reduced cost 𝑐𝑘

𝑟
will

be added to the set 𝑅
𝑘
in RMP. After this step, the primal

model shown in Section 3 is solved by an exact algorithm
and the best solution is considered 𝑠. For this solution, the
insert and swap algorithms are used to further improve the
best solutions and then the new produced route-vehicle pairs
are added to the set 𝑅

𝑘
in RMP. In this level, the RMP will be

solved again and shadow prices are obtained for each of the
constraints in RMP. For vehicle type 𝑘, arc modified cost 𝑐𝑘

𝑖𝑗

is obtained and the process is repeated until no routes with
negative reduced cost are identified. The proposed algorithm
will be described as follows:

Pseudo Code of the Proposed Approach

(1) Find initial sets 𝑅 of routes by sweep, insert, swap,
and 2-opt algorithms for the MP.

(2) Solve the MP by using Solver CPLEX 12.3 and obtain
the shadow prices of the optimal solution.

(3) For vehicle type 𝑘, produce the modified costs 𝑐𝑘
𝑖𝑗
, as

(13).
(4) For vehicle type 𝑘, solve 𝑃𝑆𝑃(𝑘) by using the MEAS

and find feasible route-vehicle pairs with negative
reduced costs and add them to the sets 𝑅

𝑘
.

(5) Solve the primal model in Section 3 by exact algo-
rithm and produce 𝑠. Then, the insert and swap
algorithms are used to further improve 𝑠.

(6) Add route-vehicle pairs to the sets 𝑅
𝑘
.

(7) If the solution obtained from the last RMP is integer,
the approach terminates; otherwise replace 𝑅

𝑘
in

HFFOVRP formulation by 𝑅
𝑘
; then solve it and the

approach terminates.

4. Computational Results

To evaluate the validity of our proposed SISEC algo-
rithm compared to other algorithms including exact algo-
rithm (EA), EAS, genetic algorithm (GA), and CG for the
HFFOVRP, the performance of our algorithms was tested on
a set of 22 benchmark instances derived from well-known
Taillard’s benchmarks in this section.These algorithms can be
downloaded from the website [21]. The proposed algorithm
was coded in AIMMS with solver GUROBI 4.5. One of
the most advanced development environments for build-
ing optimization-based operations research applications and
advanced planning systems is AIMMS. This commercial
linear programming software could find optimal solutions for
the small scale of the problems, like theHFFOVRP, and hence
can be used to evaluate the accuracy of the proposed model.
Based on this information, AIMMS obtained the optimal
solution only for a few instances and in the other instance
automatically terminated before reaching to optimal solution.
Also in the large problems, this algorithm failed to obtain a
feasible solution.

Besides, all the experiments were implemented on a PC
with Pentium 4 at 3.5 GHZ and 8GB RAM running Win-
dows 7 Home Basic Operating system. First, the benchmark
problems are described and then some numerical results
of comparison between the proposed algorithm and some
algorithms are presented on a set of HFFOVRP benchmark
problems. Table 1 shows these problems are built of 10–100
nodes including the depot which all randomly located over
a square with no service time. Euclidean distances are used
in all the problems. Besides, they have a fixed fleet with
capacity restrictions and with no route length restrictions.
The proposed compound heuristic algorithm is compared
to mentioned algorithms in the Table 2. The information of
this table includes the number of customers (𝑛), the best
solution costs of EA, EAS, GA, CG, and SISEC, and their
CPU time, respectively, the best known solutions (BKSs),
and gap between the best known solution (BKS) and our
hybrid algorithm. The gap is a simple criterion to measure
the efficiency of an algorithm and to compute the relative
percentage deviation of its solution from the BKSs on specific
benchmark. These values are calculated by the following
formula. A zero gap indicates that best known solutions
should be obtained:

Gap = 100

×
(value of the SISEC − Value of the BKS)

Value of the BKS
.

(18)

It should be noted that while EA, CG, and SISEC have
been run until the software stops automatically, the stop
condition of EAS and GA is the best know solution iterated
ten times. The results of Table 2 show that the EA fails to
find optimal solutions for most of the problems especially
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Table 1: Data for problems.

Instance Number of
customers

Number of
different type

vehicles
Capacity Fixed cost Variable

cost

Available number
of vehicles of kind

𝑘th

1 10

1 20 20 1 1
2 30 40 1.1 1
3 40 70 1.3 2
4 70 200 1.7 1

2 15

1 30 60 1 1
2 60 100 1.1 1
3 80 250 1.5 1
4 150 300 2 1

3 20

1 20 70 1 1
2 35 120 1.1 2
3 50 200 1.2 2
4 120 250 2 3

4 25

1 25 50 1 2
2 35 80 1.1 2
3 50 200 1.2 3
4 120 250 1.7 3

5 30

1 25 35 1 3
2 35 50 1.1 2
3 50 75 1.2 4
4 120 150 1.7 4

6 35
1 50 60 0.7 1
2 120 75 1 2
3 160 200 1.1 3

7 40
1 60 20 1 3
2 140 50 1.7 2
3 200 120 2 1

8 45

1 50 20 1 2
2 150 35 1.4 1
3 200 50 1.4 1
4 300 120 1.7 1

9 50

1 20 20 1 4
2 30 35 1.1 2
3 40 50 1.2 4
4 70 120 1.7 4
5 120 225 2.5 2
6 200 400 3.2 1

10 50
1 120 100 1 4
2 160 1500 1.1 2
3 300 3500 1.4 1

11 50
1 50 100 1 4
2 100 250 1.6 3
3 160 450 2 2

12 50
1 40 100 1 2
2 80 200 1.6 4
3 140 400 2.1 3

13 55

1 20 10 1 2
2 50 35 1.3 2
3 100 100 1.9 2
4 150 180 2.4 1
5 250 400 2.9 1
6 400 800 3.2 1
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Table 1: Continued.

Instance Number of
customers

Number of
different type

vehicles
Capacity Fixed cost Variable

cost

Available number
of vehicles of kind

𝑘th

14 60

1 20 10 1 2
2 50 35 1.3 2
3 100 100 1.9 2
4 150 180 2.4 1
5 250 400 2.9 1
6 400 800 3.2 1

15 65

1 20 10 1 1
2 50 35 1.3 2
3 100 100 1.9 2
4 150 180 2.4 2
5 250 400 2.9 1
6 400 800 3.2 1

16 70

1 20 10 1 3
2 50 35 1.1 3
3 100 100 1.2 2
4 150 180 1.4 2
5 250 400 1.9 1
6 400 800 2.2 1

17 75

1 20 10 1 4
2 50 35 1.3 4
3 100 100 1.9 2
4 150 180 2.4 2
5 250 400 2.9 1
6 400 800 3.2 1

18 80

1 20 10 1 5
2 50 35 1.3 6
3 100 100 1.9 2
4 150 180 2.4 2
5 250 400 2.9 1
6 400 800 3.2 1

19 85

1 20 10 1 5
2 50 35 1.3 6
3 100 100 1.9 3
4 150 180 2.4 2
5 250 400 2.9 1
6 400 800 3.2 1

20 90

1 20 10 1 5
2 40 25 1.2 5
3 80 45 1.5 2
4 100 80 2.0 2

21 95

1 20 10 1 5
2 30 35 1.3 5
3 70 55 1.7 3
4 100 85 1.9 2
5 150 135 2.3 2

22 100
1 100 500 1 4
2 150 1200 1.4 4
3 300 1900 1.7 5



10 Journal of Engineering

Table 2: Comparison results of the SISEC with some heuristic and metaheuristic algorithms.

Instance 𝑛 EA Time (Sec) EAS Time (Sec) GA Time (Sec) CG Time (Sec) SISEC Time (Sec) BKS Gap
1 10 191.10 1.09 191.10 0.55 191.10 1.55 191.10 0.36 191.10 0.21 191.10 0
2 15 282 171.02 282 3.61 282 3.69 282 4.28 282 2.34 282 0
3 20 379.63 16.55 379.63 3.12 379.63 4.62 379.63 5.44 379.63 3.51 379.63 0
4 25 437.79 22.78 439.12 15.53 441.56 16.73 437.79 9.78 437.79 7.54 437.79 0
5 30 472.76 61.78 473.31 39.65 475.61 45.87 473.31 16.46 471.81 10.26 472.76 −0.20
6 35 346.26 55567.75 349.95 56.31 351.73 63.81 349.95 370.08 345.81 165.45 346.26 −0.13
7 40 NA — 607.99 61.68 611.67 72.39 600.99 767.42 589.41 457.94 600.99 −1.93
8 45 NA — 676.04 62.64 687.46 77.67 676.04 2408.40 671.91 1157.81 676.04 −0.61
9 50 NA — 915.63 67.27 924.73 76.72 907.3 256.72 899.51 98.64 907.3 −0.86
10 50 NA — 537.18 69.76 537.18 85.62 507.58 2253.26 451.21 1784.54 507.58 −11.11
11 50 NA — 829.24 64.31 829.24 86.11 826.19 840.18 798.61 621.39 826.19 −3.34
12 50 NA — 952.41 64.51 963.61 89.12 947.81 698.96 924.18 584.74 947.81 −2.50
13 55 NA — 1086.65 65.98 1084.16 88.52 1074.91 1940.82 998.81 1254.93 1074.91 −7.08
14 60 NA — 1984.09 73.71 1984.09 98.62 1937.03 8807.25 1842.81 5694.87 1937.03 −4.86
15 65 NA — 1598.23 78.61 1599.18 106.67 1563.33 4203.14 1498.28 3549.14 1563.33 −4.16
16 70 NA — 974.27 76.73 983.52 156.27 962.57 6357.70 925.48 3614.87 962.57 −3.85
17 75 NA — 1399.17 87.72 1421.60 154.72 1356.67 6021.97 1326.36 4987.31 1356.67 −2.23
18 80 NA — 1321.44 94.93 1387.29 167.13 1285.74 8331.64 1248.21 5927.98 1285.74 −2.92
19 85 NA — 1295.58 92.72 1341.52 189.32 1295.58 13731.35 1254.33 8642.29 1295.58 −3.18
20 90 NA — 1685.51 98.83 1783.29 223.69 1645.21 62748.94 1512.84 14621.62 1645.21 −8.05
21 95 NA — 1998.62 107.72 2210.27 289.73 1951.45 124548.98 1789.34 36124.87 1951.45 −8.31
22 100 NA — 2198.56 112.82 2287.39 332.27 2154.36 195648.84 2054.11 32548.18 2154.36 −4.65

instances with more than 35 customers and it cannot be
used as an efficient and practical algorithm. Furthermore,
the proposed algorithm has shown to be competitive with
the EA and CG in terms of solution quality and CPU time.
Moreover, the proposed algorithm can obtain better solution
than EAS and GA in 19 out of 22 instances. During this
experiment, some solutions are as close as possible to the BKS
so far. Generally, the hybrid algorithm performs better, with
solutions averaging −3.18% better than BKSs until now. In
comparison to the BKSs, SISEC can not only produce BKSs
for the four instances including instances 1, 2, 3, and 4 but
obtain new BKS for 18 instances as well.

In more detail, the results indicate that SISEC is a
competitive approach compared to the EA. For instances 1, 2,
3, and 4, the gap between SISEC and BKS is zero. However, in
other instances, the proposed algorithm finds better solution
than the EA.Moreover, computational results of the proposed
algorithm and CG show that these algorithms have a close
competition for three instances including 1, 2, and 3. In
addition, the proposed algorithmproduces better 19 solutions
than CG. In more detail, the SISEC has better solutions with
more than 5% of gap in 10, 13, 20, and 21. Moreover, the
proposed algorithm obtains nearly the solutions of CG for 4
instances including 5, 6, 8, and 9; that is, the gap is below 1%
and for other instances the gap is between 1% and 5%. For
overall, the performance of the proposed algorithm is better
in reaching the suboptimal solution than the CG.

Figure 2 presents the comparison of CPU time between
SISEC and CG algorithms for the 22 instances. In this figure,
the horizontal axis shows the name of instances and the
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Figure 2: The ratio of SISEC CPU time to CG CPU time.

vertical axis indicates the SISEC CPU time divided by CG
CPU time.

In Table 3, columns 1 and 2 show the names of instances
and the number of customers (𝑛), respectively. Furthermore,
columns 3, 4, and 5 contain the EA, CG, and SISEC on the
sameCPU timewhich is shown in column6. Finally, the BKSs
for all instances are shown in column 7. From the compar-
ison between exact algorithm and SISEC on five instances
including 1, 2, 3, 4, and 5, it can be seen that the proposed
algorithm in 4 instances has been able to find better solutions
than the exact algorithm. In more detail, the exact algorithm
has produced equal solutions only in instance 1. Furthermore,
the CG has had a weak performance in general and has
not been able to produce better solutions in all instances
compared to SISEC. In other words, the CG has obtained
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Table 3: Comparison results between algorithms in the same run time.

Instance 𝑛 CPLEX 12.3 CG SISEC CPU time BKS
1 10 191.10 191.10 191.10 0.21 191.10
2 15 525.56 282 282 2.34 282
3 20 390.25 394.21 379.63 3.51 379.63
4 25 532.18 498.57 437.79 7.54 437.79
5 30 497.48 497.81 471.81 10.26 472.76
6 35 NA 389.61 345.81 165.45 346.26
7 40 NA 654.18 589.41 457.94 600.99
8 45 NA 671.91 671.91 1157.81 676.04
9 50 NA 958.61 899.51 98.64 907.3
10 50 NA 689.64 451.21 1784.54 507.58
11 50 NA 998.17 798.61 621.39 826.19
12 50 NA 1054.98 924.18 584.74 947.81
13 55 NA 1254.82 998.81 1254.93 1074.91
14 60 NA 2651.84 1642.81 5694.87 1937.03
15 65 NA 2695.39 1498.28 3549.14 1563.33
16 70 NA 1251.84 925.48 3614.87 962.57
17 75 NA 1692.84 1326.36 4987.31 1356.67
18 80 NA 1781.28 1248.21 5927.98 1285.74
19 85 NA 1423.99 1254.33 8642.29 1295.58
20 90 NA 2259.68 1512.84 14621.62 1645.21
21 95 NA 2533.11 1789.34 36124.87 1951.45
22 100 NA 3295.74 2054.11 32548.18 2154.36

equal solutions only on instances 1, 2, and 8. Therefore, the
SISEC has been able to escape local optimum points and has
caused a satisfactory improvement in the performance of the
algorithm.

Figure 3 shows the comparison of our algorithm and
CPLEX 12.3 (EA) and CG for five instances including 1,
2, 3, 4, and 5. In this figure, the horizontal axis shows
the name of instances and the vertical axis indicates the
results of three mentioned algorithms.This figure shows that
proposed SISEC clearly yields better solutions than the other
algorithms.

5. Conclusions

This paper investigates the HFFOVRP in the transportation
system and presents a new combined heuristic algorithm
based on CG called SISEC which has allowed us to improve
the quality of several of the solutions obtained by EA, EAS,
GA, and classical CG. Computational results generally have
shown that the proposed algorithm yields better results
compared to the exact and CG algorithms in terms of both
the solution quality and the CPU time. It seems that using
metaheuristic algorithms like ant colony optimization can
lead to gaining better initial solutions. Furthermore, pow-
erful metaheuristic algorithms can be used for solving this
problem and other versions of HFFOVRP. Future projects
will focus on working on such ideas and making them
operational.

CPLEX12.3
CG
SISEC
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Figure 3: Comparison between exact, CG, and SISEC algorithms
for 5 instances.
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