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In the present paper, thermomechanical vibration characteristics of functionally graded (FG) Reddy beamsmade of porousmaterial
subjected to various thermal loadings are investigated by utilizing a Navier solutionmethod for the first time. Four types of thermal
loadings, namely, uniform, linear, nonlinear, and sinusoidal temperature rises, through the thickness direction are considered.
Thermomechanical material properties of FG beam are assumed to be temperature-dependent and supposed to vary through
thickness direction of the constituents according to power-law distribution (P-FGM) which is modified to approximate the porous
material properties with even and uneven distributions of porosities phases. The governing differential equations of motion are
derived based on higher order shear deformation beam theory. Hamilton’s principle is applied to obtain the governing differential
equations of motion which are solved by employing an analytical technique called the Navier type solution method. Influences of
several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, thermal effects, and
slenderness ratios on natural frequencies of the temperature-dependent FG beams with porosities are investigated and discussed
in detail. It is concluded that these effects play significant role in the thermodynamic behavior of porous FG beams.

1. Introduction

Functionally graded materials (FGMs) are advanced types of
composite materials with inhomogeneous micromechanical
structure, where the concentration, shape, and orientation of
constituent phases vary in one or more directions optimizing
the performance. Typically, FGMs are composed of two
different parts such as ceramics with excellent characteristics
in heat and corrosive resistances and metal with good
toughness. Functional grading of the material properties is
often in one direction. However, grading can be implemented
in several directions. These materials have been developed
for general purpose structural components such as rocket
engine components or turbine blades where the compo-
nents are exposed to extreme temperatures. The FGMs were
introduced by Japanese scientists in mid-1980s as aerospace
application for the first time. FGMs possess various advan-
tages in comparisonwith traditional composites, for example,
multifunctionality, ability to control deformation, corrosion
resistance, dynamic response, minimization or remove stress
concentrations, smoothing the transition of thermal stress,

and resistance to oxidation. Hence, FGMs have received
wide engineering applications in modern industries includ-
ing aerospace, nuclear energy, turbine components, rocket
nozzles, and critical furnace parts [1–4]. The advantages
of using FGM structures in general engineering structures
have been increasingly recognized in recent decades so it is
important to understand behaviors of engineering structures
made of FGM such as vibration, static, and dynamic behavior
of the FGbeams andplates often found in general engineering
structures [5, 6].

A large number of investigations, dealing with static,
buckling, and dynamic characteristics of FGM structures, are
reported in literature. Aydogdu and Taskin [7] discussed free
vibration analysis of simply supported FG beamswith power-
law and exponential material graduation.They used different
higher-order shear deformation and classical beam theory
(CBT) for deriving the differential equations of motion and
solved them by Navier type solution method. Şimşek [8]
investigated the vibration analysis of FGM beams using
classical, the first-order, and different higher-order shear
deformation beam theories. Various boundary conditions
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were considered. Pradhan and Chakraverty [9] have pre-
sented free vibration FG beams characteristics using Euler
and Timoshenko beam theories. Rayleigh-Ritz method was
used to obtain frequencies in their analysis. Thai and Vo [2]
studied bending and free vibration of simply supported FG
beams using various higher-order shear deformation beam
theories. The Navier type solution method was used to solve
equations.

Due to huge application of beams in different fields such
as civil, marine, and aerospace engineering and difference
between the making temperatures and working temperatures
of structures, for more efficient design, it is important to take
into account the thermal effect when designing FGM struc-
tures. Xiang and Yang [10] exploited free and forced vibra-
tions and three-layered laminated FG Timoshenko beams
with variable thickness in thermal environment. The beam
was subjected to one-dimensional steady heat conduction in
the thickness direction. Then, the equations of motion were
then solved by using differential quadrature method. Mahi
et al. [11] investigated temperature-dependent free vibration
analysis of functionally graded beams with general boundary
conditions. The important influence of temperature change
on the vibration response of the FG beams is also taken
into account. Fallah and Aghdam [12] investigated thermo-
mechanical buckling and nonlinear vibration of FG beams
on elastic foundation. They presented analytical closed form
solutions and concluded that dependency of the constituents
plays an important role in the vibration response of the
FGM beams. Zhang [13] studied thermal postbuckling and
nonlinear vibration of FG beams with using high order
shear deformation theory and considering of physical neutral
surface. He also used Ritz method for approximate solution
of FG beams.

With the rapid progression in technology of structure
elements, structures with graded porosity can be introduced
as one of the latest developments in FGMs. The structures
consider pores into microstructures by taking the local
density into account. Moreover, a great opportunity in a
wide range of engineering applications comes into result. One
of the perfect candidates for structures under dynamic or
impact loading is porous FGMs which have excellent energy-
absorbing [14]. Researches have their eyes on development in
preparation methods of FGMs such as powder metallurgy,
vapor deposition, self-propagation, centrifugal casting, and
magnetic separation [15–19]. These methods have their own
disadvantages such as high costs and complexity of the tech-
nique. One of the flexible and suitable ways to manufacture
FGM is sintering process. During this process, due to big
difference in solidification between the material constituents,
however, porosities or micro voids through material can
happen regularly [20]. A thorough research has been done
on porosities occurring inside FGM samples manufactured
by a multistep sequential infiltration technique [3]. Porosity
maybe change the elastic and mechanical properties. Based
on this information about porosities in FGMs, it is important
to consider the porosity effect when designing FGM struc-
tures.

Studies on the vibration response of porous FG structures,
especially for beams, are still limited in number.

For porous plates and shells, the linear and nonlinear
dynamic stability of a circular porous plate have been
investigated to determine the critical loads in two separate
studies by Magnucka-Blandzi [21, 22]. In another study, they
also presented the problem of axisymmetrical deflection and
buckling of circular porous plates [23]. Moreover, the wave
propagation of an infinite FG plate having porosities by using
various simple higher-order shear deformation theories has
been studied by Yahia et al. [24]. Yahia et al. have presented
nonlinear free vibrations analysis of FG porous annular plates
resting on elastic foundations [24]. They concluded that
porosity volume fraction and type of porosity distribution
have a significant influence on the geometrically nonlinear
free vibration response of the FG annular plates at large
amplitudes.Mechab et al. have developed a nonlocal elasticity
model for free vibration of FG porous nanoplates resting
on elastic foundations [25]. They utilized exponential shear
deformation plate theory. On the other hand, the dynamic
stability of a porous cylindrical shell under different loading
has been examined by Belica and Magnucki [26].

Wattanasakulpong and Ungbhakorn [27] investigated
linear and nonlinear vibrations analyses of porous Euler FG
beams with elastically restrained ends. Material properties of
FG beam have been described by a modified rule of mixture.
Ebrahimi and Mokhtari [28] studied transverse vibration
analysis of rotating Timoshenko FG beams with porosities.
DTM was presented to solve the equations of motion. It was
concluded that porosity volume fractions play an important
role in vibrations of porous FG beams. Moreover, Wat-
tanasakulpong and Chaikittiratana [29] predicted flexural
vibration of porous FG beams using Timoshenko beam
theory. Chebyshev collection method was used for solving
equations. They expressed the porosities yield reduction in
the mass and strength of FG beams. Ebrahimi and Zia
[30] investigated the large amplitude nonlinear vibration
of porous FG Timoshenko beams. Galerkin and multiple
scales methods were utilized to solve motion equations.
Atmane et al. [31] used an efficient beam theory to study
bending, free vibration, and buckling analysis of porous FG
beams on elastic foundations. Literature search in the area of
vibration analysis of FG porous beams indicated that there
is no report considering the thermal environment effects
on vibration characteristics of porous FG beams and the
materials properties were assumed to be temperature inde-
pendent. While one of the most important features of FGMs
is thermal insulations, there is scientific need to be familiar
with the thermomechanical behavior of FG porous structures
subjected to thermal loading. Most recently, Ebrahimi et al.
[32] studied the vibration of porous FGEuler beams subjected
to thermal loading.

It should be noted that in, the abovementioned study,
only one specific porosity distribution was considered and
no detailed discussion concerning the effects of different
porosity distributions on the thermomechanical vibration
behavior of porous beams was given. Moreover, the sinu-
soidal temperature change is not considered. Also, they
utilized EBT; it is well known that the EBT ignores the effect
of shear deformation and rotary inertia of the thick beams. In
otherwords, this theory is based on the assumption that plane
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Figure 1: (a) Geometry and coordinates of functionally graded material beam. (b) Cross section area of FGM beam with even and uneven
porosities.

sections of the cross section remain plane and perpendicular
to the beam axis.The EBT is only suitable for vibration of thin
beams; when a beam is moderately deep or made of high-
strength composite materials with a high anisotropy ratio,
the theory needs some modifications to include the effect of
transverse shear.

Literature search in the area of vibration analyses of FG
porous beams indicates that there is no report considering the
thermal environment effects on vibration characteristics of
porous FG beams based on higher-order shear deformation
beam theory. Since thermal-barrier system is one of the appli-
cations to metallic-ceramic FGMs with porosities due to the
gradual and smooth transition of material properties, there
is scientific need to understand the thermomechanical vibra-
tion behavior of FGporous Reddy beams structures subjected
to various thermal loadings. Reddy’s higher-order shear
deformation beam theory (RBT) can be used based on the
assumption of the higher-order variation of axial displace-
ment through the beam thickness. By confirming zero trans-
verse shear stress conditions on the top and bottom surfaces
of the beam, this theory considers both the microstructural
and shear deformation effects without the need for any shear
correction factors. In fact, to avoid the use of a shear correc-
tion factor and to have a better prediction of response of FG
beams, higher-order shear deformation theories have been
proposed, so that higher-order theories are quite attractive
in the analysis of FG beams and plates [33]. Notable among
higher-order theories is the third-order theory of Reddy
[2, 8, 34, 35].

This paper focuses on the thermomechanical perfor-
mance of porous FG beams subjected to various thermal
loading with two different porosity distributions. These
types of porosity distributions, namely, even and uneven,
through the thickness directions are considered. Higher-
order shear deformation beam theory is employed to account
for the effect of transverse shear deformation and rotatory
inertia. Four types of thermal loading, namely, uniform,
linear, nonlinear, and sinusoidal temperature rises, trough
the thickness direction are considered. An analytical solution
is obtained for porous FG beams with simple support at
both ends based on the Navier type solution. The material
properties are assumed temperature-dependent and vary

continuously through the thickness direction according to
modified power-law form. Equations of motion and bound-
ary condition have been derived by Hamilton’s principle.
These equations are solved by using Navier type method. A
detailed parametric study is carried out to highlight the influ-
ence of thermal effects, gradient indexes, porosity volume
fractions, types of porosity distribution, and aspect ratios
on vibration behavior of FG Reddy beams with porosities.
Comparisons between analytical solutions and the results
from existing literature are provided for two-constituent
metal-ceramic beams and good agreement between the
results of this paper and those available in literature validated
the presented approach. New numerical results can also be
useful as valuable sources for validating other approaches and
approximate methods.

Some novelties of the present study are stated as follows:

(i) Twodifferent porosity distributions, namely, even and
uneven, through the thickness directions are consid-
ered and the effects of different porosity parameters
on the thermomechanical vibration of porous beams
are given.

(ii) Higher-order shear deformation beam theory is
employed to account for the effect of transverse shear
deformation and rotatory inertia.

(iii) Various types of thermal loading including uniform,
linear, nonlinear, and sinusoidal temperature rises are
considered where this is the first time that sinusoidal
temperature change is applied in the analysis of FG
porous structures.

2. Theory and Formulation

2.1. Power-Low Functionally Graded Beams with Porosities.
A uniform FG beam with porosities of length 𝐿, width 𝑏,
and thickness ℎ is considered in this paper. As shown in
Figure 1(a) 𝑥-axis is matched with neutral axis of the beam,
the 𝑦-axis in the width direction, and the 𝑧-axis in the depth
direction. The FG beam is made of porous materials with
properties varying smoothly in the 𝑧 thickness direction.
Top surface of FG beam (𝑧 = ℎ/2) is assumed to be pure
ceramics (materials with good resistance to heat), whereas
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the bottom surface (𝑧 = −ℎ/2) is metal-rich (materials
with good toughness property). Material properties of FG
beams are supposed to vary through thickness direction of
constitutes according to modified power-law distribution.
Effective material properties such as Young’s modulus (𝐸),
mass density (𝜌), and thermal expansions (𝛾) are assumed
to vary continuously in the depth direction according to
power-law. Poisson’s ratio is assumed to be constant in the
𝑧-axis direction. The effective material properties of FG
beams with two kinds of porosity distributions which are
distributed identically in two phases of ceramic andmetal can
be expressed by using the modified rule of mixture as [27]

𝑝 = 𝑃
𝑐
(V
𝑐
−
𝑎

2
) + 𝑃
𝑚
(V
𝑚
−
𝑎

2
) , (1)

where 𝑎 is the volume fraction of porosities (𝑎71), for perfect
FGM, 𝑎 is set to zero, 𝑃

𝑐
and 𝑃

𝑚
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of ceramic and metal, and V
𝑐
and V
𝑚
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of ceramic and metal, respectively; the compositions are
represented in relation to
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= 1. (2)

Then, the volume fraction of ceramic (V
𝑐
) can be written as

follows:
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. (3)

Here, 𝑧 is the distance from the mid-plane of the FGM beam
and 𝑛 is the nonnegative variable parameter (0 ≤ 𝑛, power-
law exponent) which determines the material distribution
through the thickness of the beams. According to this
distribution, we have a fully metal beam for large values of
𝑛 and fully ceramic beam remains when 𝑛 equals zero. In
this paper, imperfect FGM has been studied with two types
of porosity distributions (even and uneven) across the beam
thickness due to defect during fabrication.

For the even distribution of porosities (FGM-I), the
effective material properties are obtained as follows:
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where the subscripts of 𝑚, 𝑐 denote the metal and ceramic
constituents. For the second type, uneven distribution of

porosities (defined as FGM-II), the effective material prop-
erties are replaced by the following form:
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Here, it should be noted that the FGM-I has porosity phases
with even distribution of volume fraction over the cross
section, while the FGM-II has porosity phases spreading
frequently nearby the middle zone of the cross section and
the amount of porosity seems to be linearly decreased to zero
at the top and bottom of the cross section. Figure 1(b) shows
examples of cross section areas of FGM-I and FGM-II with
porosity phases.

To predict the behavior of FGMs under high temperature
more accurately, it is necessary to consider the temperature
dependency on material properties. The nonlinear equation
of thermoelastic material properties in function of tempera-
ture 𝑇 (K) can be expressed as [36]:

𝑃 = 𝑃
0
(𝑃
−1
𝑇
−1

+ 1 + 𝑃
1
𝑇 + 𝑃
2
𝑇
2

+ 𝑃
3
𝑇
3

) , (6)

where 𝑃
0
, 𝑃
−1
, 𝑃
1
, 𝑃
2
, and 𝑃

3
are the temperature-dependent

coefficients which can be seen in Table 1 materials properties
for Si
3
N
4
and SUS304. The bottom surface (𝑧 = −ℎ/2) of FG

porous beam is pure metal (SUS304), whereas the top surface
(𝑧 = ℎ/2) is pure ceramics (Si

3
N
4
).

2.2. Kinematic Relations. The equations of motion are
derived based on third-order shear deformation (Reddy)
beam theory; the displacement field Reddy beam theory at
any point of the beam can be written as
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Table 1: Temperature-dependent coefficients of Young’s modulus, thermal expansion coefficient, mass density, and Poisson’s ratio for Si
3
N
4

and SUS304.

Material Properties 𝑃
0

𝑃
−1

𝑃
1

𝑃
2

𝑃
3

Si
3
N
4

𝐸 (Pa) 348.43𝑒 + 9 0 −3.070𝑒 − 4 2.160𝑒 − 7 −8.946𝑒 − 11

𝛾 (K−1) 5.8723𝑒 − 6 0 9.095𝑒 − 4 0 0

𝜌 (Kg/m3) 2370 0 0 0 0

] 0.24 0 0 0 0

SUS304

𝐸 (Pa) 201.04𝑒 + 9 0 3.079𝑒 − 4 −6.534𝑒 − 7 0

𝛾 (K−1) 12.330𝑒 − 6 0 8.086𝑒 − 4 0 0

𝜌 (Kg/m3) 8166 0 0 0 0

] 0.3262 0 −2.002𝑒 − 4 3.797𝑒 − 7 0

𝑢
𝑥
(𝑥, 𝑧, 𝑡) = 𝑢 (𝑥, 𝑡) + 𝑧𝜑 (𝑥, 𝑡) − 𝛼𝑧

3

(𝜑 +
𝜕𝑤

𝜕𝑥
)

𝑢
𝑦
(𝑥, 𝑧, 𝑡) = 0

𝑢
𝑧
(𝑥, 𝑧, 𝑡) = 𝑤 (𝑥, 𝑡) ,

(7)

where

𝛼 =
4

3ℎ2
, (8)

(𝛽 = 3𝛼) (9)

in which 𝑥-, 𝑦-, and 𝑧-coordinates are taken along the length,
width, and height of the beam, respectively. And 𝑢 is the axial
displacement of mid-plane along 𝑥-axis, 𝑤 is the transverse
displacement along 𝑧-axis, 𝜑 is the angle of rotational of cross
section due to bending, and 𝑡 is the time. Then, the strains
displacement relation of Reddy beam theory can be expressed
as

𝜀
𝑥𝑥

=
𝜕𝑢

𝜕𝑥
+ 𝑧

𝜕𝜑

𝜕𝑥
− 𝛼𝑧
3

(
𝜕𝜑

𝜕𝑥
+
𝜕
2

𝑤

𝜕𝑥2
) (10)

𝛾
𝑥𝑧

=
𝜕𝑤

𝜕𝑥
+ 𝜑 − 𝛽𝑧

2

(𝜑 +
𝜕𝑤

𝜕𝑥
) . (11)

𝜀
𝑥𝑥

and 𝛾
𝑥𝑧

are normal and shear strain. The Euler-Lagrange
equation is used to derive the equation of motion by using a
Hamilton’s principle, which can be stated as

∫

𝑡
2

𝑡
1

𝛿 (𝑈 − 𝑇 + 𝑉) 𝑑𝑡 = 0, (12)

where 𝑡
1
and 𝑡
2
are the initial and end time 𝛿𝑈 is the virtual

variation of strain energy, 𝛿𝑉 is the virtual variation of
work done by external loads, and 𝛿𝑇 is the virtual variation
of kinetic energy. Here, strain energy, kinetic energy, and
potential energy (external loading) can be calculated step by
step and the equations of motion are obtained by using rules
of calculus of variations and Hamilton’s principle. The first
variation of the virtual strain energy can be written in the
form:

𝛿𝑈 = ∫
V
𝜎
𝑖𝑗
𝛿𝜀
𝑖𝑗
𝑑𝑉

= ∫
𝐴

∫

𝐿

0

(𝜎
𝑥𝑥
𝛿𝜀
𝑥𝑥

+ 𝜎
𝑥𝑧
𝛿𝛾
𝑥𝑧
) 𝑑𝑥 𝑑𝐴,

(13)

where 𝛿 is the variation symbol, 𝐴 is the cross section area of
the uniform beam, 𝜎

𝑥𝑥
is the axial stress, and 𝜎

𝑥𝑧
is the shear

stress, by substituting the expressions for 𝜀
𝑥𝑥

and 𝛾
𝑥𝑧
into (13)

as

𝛿𝑈 = ∫

𝐿

0

∫
𝐴

𝜎
𝑥𝑥
𝛿 [

𝜕𝑢

𝜕𝑥
+ 𝑧

𝜕𝜑

𝜕𝑥

− 𝛼𝑧
3
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𝜕𝜑

𝜕𝑥
+
𝜕
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𝑤

𝜕𝑥2
)]𝑑𝐴𝑑𝑥

+ ∫

𝐿

0

∫
𝐴

𝜎
𝑥𝑧
𝛿 [(

𝜕𝑤

𝜕𝑥
+ 𝜑)

− 𝛽𝑧
2

(
𝜕𝑤

𝜕𝑥
+ 𝜑)]𝑑𝐴𝑑𝑥.

(14)

Then, the usual bending moment 𝑀, axial force 𝑁, shear
force𝑄, and higher-order stress resultants𝑃 and𝑅 are defined
as in the following and by replacing these resultants into (14)
as following:

(𝑁,𝑀, 𝑃) = ∫
𝐴

𝜎
𝑥𝑥

(1, 𝑧, 𝑧
3

) 𝑑𝐴,

(𝑄, 𝑅) = ∫
𝐴

𝜎
𝑥𝑧
(1, 𝑧
2

) 𝑑𝐴

𝛿𝑈 = ∫

𝐿

0

[−
𝜕𝑁

𝜕𝑥
𝛿𝑢 +

𝜕𝑀

𝜕𝑥
𝛿𝜑 − 𝛼

𝜕𝑃

𝜕𝑥
𝛿𝜑 + 𝛼

𝜕
2

𝑃

𝜕𝑥2

+
𝜕𝑄

𝜕𝑥
𝛿𝑤 − 𝑄𝛿𝜑 + 𝛽𝑅𝛿𝜑 − 𝛽

𝜕𝑅

𝜕𝑥
𝛿𝑤]𝑑𝑥.

(15)

The kinetic energy expression for Timoshenko beam theory
can be expressed as

𝑇 =
1

2
∫

𝐿

0

∫
𝐴

𝜌 (𝑧, 𝑇)((
𝜕𝑢
𝑥

𝜕𝑡
)

2

+ (

𝜕𝑢
𝑦

𝜕𝑡
)

2

+ (
𝜕𝑢
𝑧

𝜕𝑡
)

2

)𝑑𝐴𝑑𝑥

𝑇 =
1

2
∫

𝐿

0

∫
𝐴

𝜌 (𝑍, 𝑇) [(
𝜕𝑢

𝜕𝑡
)

2

+ 𝑧
2

(
𝜕𝜑

𝜕𝑡
)

2
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+ 𝛼
2

𝑧
6

[(
𝜕𝜑

𝜕𝑡
)

2

+ (
𝜕
2

𝑤

𝜕𝑥𝜕𝑡
)

2

+ 2
𝜕𝜑

𝜕𝑡

𝜕
2

𝑤

𝜕𝑥𝜕𝑡
]

+ 2𝑧
𝜕𝜑

𝜕𝑡

𝜕𝑢

𝜕𝑡
− 2

𝜕𝑢

𝜕𝑡
𝛼𝑧
3

(
𝜕𝜑

𝜕𝑡
+

𝜕
2

𝑤

𝜕𝑥𝜕𝑡
)

− 2
𝜕𝜑

𝜕𝑡
𝛼𝑧
4

(
𝜕𝜑

𝜕𝑡
+

𝜕
2

𝑤

𝜕𝑥𝜕𝑡
) + (

𝜕𝑤

𝜕𝑡
)

2

] .

(16)

The first variation of the virtual kinetic energy can be written
in the form:

𝛿𝑇 =
1

2
∫

𝐿

0

[𝐼
0
(
𝜕
2

𝑢

𝜕𝑡2
)𝛿𝑢 + 𝐼

2
(
𝜕
2

𝜑

𝜕𝑡2
)𝛿𝜑

+ 𝛼
2

𝐼
6
[(

𝜕
2

𝜑

𝜕𝑡2
)𝛿𝜑 + (

𝜕
4

𝑤

𝜕𝑥2𝜕𝑡2
)𝛿𝑤 +

𝜕
3

𝑤

𝜕𝑥𝜕𝑡2
𝛿𝜑

+
𝜕
3

𝜑

𝜕𝑥𝜕𝑡2
𝛿𝑤] + 𝐼

1

𝜕
2

𝑢

𝜕𝑡2
𝛿𝜑 + 𝐼

1

𝜕
2

𝜑

𝜕𝑡2
𝛿𝑢

− 𝛼𝐼
3
[(

𝜕
2

𝜑

𝜕𝑡2
+

𝜕
3

𝑤

𝜕𝑥𝜕𝑡2
)𝛿𝑢 +

𝜕
2

𝑢

𝜕𝑡2
𝛿𝜑 +

𝜕
3

𝑢

𝜕𝑥𝜕𝑡2
𝛿𝑤]

− 𝛼𝐼
4
[
𝜕
2

𝜑

𝜕𝑡2
𝛿𝜑 +

𝜕
3

𝑤

𝜕𝑥𝜕𝑡2
𝛿𝜑 +

𝜕
3

𝜑

𝜕𝑥𝜕𝑡2
𝛿𝑤] + 𝐼

0

𝜕
2

𝑤

𝜕𝑡2

⋅ 𝛿𝑤] 𝑑𝑥,

(17)

where (𝐼
0
, 𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
, 𝐼
5
, 𝐼
6
) are the mass moments of inertias

that can be written as follows:

(𝐼
0
, 𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
, 𝐼
5
, 𝐼
6
)

= ∫
𝐴

𝜌 (𝑧, 𝑇) (1, 𝑧, 𝑧
2

, 𝑧
3

, 𝑧
4

, 𝑧
5

, 𝑧
6

) 𝑑𝐴.

(18)

Also, the first variation of potential energy can be written in
the form:

𝛿𝑉 = ∫

𝐿

0

𝑁
𝑇
𝜕𝑤

𝜕𝑥

𝜕 (𝛿𝑤)

𝜕𝑥
𝑑𝑥, (19)

where𝑁𝑇 is defined as in the following:

𝑁
𝑇

= ∫𝐸 (𝑧, 𝑇) 𝛾 (𝑧, 𝑇) Δ𝑇𝑑𝑧 (20)

in which 𝛾(𝑧, 𝑇) is the coefficient of thermal dilatation that is
typically positive and very small.

The equation of motion derived from Hamilton’s princi-
ple can be expressed as follows:

𝜕𝑁

𝜕𝑥
= 𝐼
0

𝜕
2

𝑢

𝜕𝑡2
+ 𝐼
1

𝜕
2

𝜑

𝜕𝑡2
− 𝛼𝐼
3

𝜕
3

𝑤

𝜕𝑥𝜕𝑡2
= 0, (𝛿𝑢 : 0)

𝜕𝑀

𝜕𝑥
− 𝑄 = 𝐼

1

𝜕
2

𝑢

𝜕𝑡2
+ 𝐼
2

𝜕
2

𝜑

𝜕𝑡2
− 𝛼𝐼
4
(
𝜕
2

𝜑

𝜕𝑡2
+

𝜕
3

𝑤

𝜕𝑥𝜕𝑡2
)

= 0, (𝛿𝜑 : 0)

𝜕𝑄

𝜕𝑥
− 𝑁
𝑇
𝜕
2

𝑤

𝜕𝑥2
+ 𝛼

𝜕
2

𝑝

𝜕𝑥2

= 𝐼
0

𝜕
2

𝑤

𝜕𝑡2
+ 𝛼𝐼
3

𝜕
3

𝑢

𝜕𝑥𝜕𝑡2
+ 𝛼𝐼
4

𝜕
3

𝜑

𝜕𝑥𝜕𝑡2

− 𝛼
2

𝐼
6
(

𝜕
4

𝑤

𝜕𝑥2𝜕𝑡2
+

𝜕
3

𝜑

𝜕𝑥𝜕𝑡2
) = 0, (𝛿𝑤 : 0) ,

(21)

where

𝐼
1
= 𝐼
1
− 𝛼𝐼
3
,

𝐼
2
= 𝐼
2
− 𝛼𝐼
4
,

𝐼
4
= 𝐼
4
− 𝛼𝐼
6
,

𝑄 = 𝑄 − 𝛽𝑅,

𝑀 = 𝑀 − 𝛼𝑃.

(22)

The formulation is limited to linear elastic material behavior.
For a material that is linearly elastic and obeys the 1DHooke’s
law, the relation between stress and strain is defined as

𝜎
𝑥𝑥

= 𝐸 (𝑧, 𝑇) 𝜀
𝑥𝑥

(23)

𝜎
𝑥𝑧

= 𝐺 (𝑧, 𝑇) 𝛾
𝑥𝑧
, (24)

where 𝐺(𝑧) is the shear modulus (𝐺(𝑧, 𝑇) = 𝐸(𝑧, 𝑇)/2(1 +

])) and 𝐸(𝑧, 𝑇) is Young’s modulus. By substituting (9) and
(10) into (14) and integrating over the beam’s cross section,
bending moment, axial force, shear force, and higher-order
stress resultants can be derived as in the following:

𝑁 = 𝐴
𝑥𝑥

𝜕𝑢

𝜕𝑥
+ [𝐵
𝑥𝑥

− 𝛼𝐷
𝑥𝑥
]
𝜕𝜑

𝜕𝑥
− 𝛼𝐷
𝑥𝑥

𝜕
2

𝑤

𝜕𝑥2
, (25a)

𝑀 = 𝐵
𝑥𝑥

𝜕𝑢

𝜕𝑥
+ [𝐶
𝑥𝑥

− 𝛼𝐸
𝑥𝑥
]
𝜕𝜑

𝜕𝑥
− 𝛼𝐸
𝑥𝑥

𝜕
2

𝑤

𝜕𝑥2
(25b)

𝑃 = 𝐷
𝑥𝑥

𝜕𝑢

𝜕𝑥
+ [𝐸
𝑥𝑥

− 𝛼𝐺
𝑥𝑥
]
𝜕𝜑

𝜕𝑥
− 𝛼𝐺
𝑥𝑥

𝜕
2

𝑤

𝜕𝑥2
, (25c)

𝑄 = [𝐴
𝑥𝑧

− 𝛽𝐶
𝑥𝑧
] (𝜑 +

𝜕𝑤

𝜕𝑥
) (25d)

𝑅 = [𝐶
𝑥𝑧

− 𝛽𝐸
𝑥𝑧
] (𝜑 +

𝜕𝑤

𝜕𝑥
) (25e)
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in which the cross section stiffness is defined as

(𝐴
𝑥𝑥
, 𝐵
𝑥𝑥
, 𝐶
𝑥𝑥
, 𝐷
𝑥𝑥
, 𝐸
𝑥𝑥
, 𝐺
𝑥𝑥
)

= ∫
𝐴

(1, 𝑧, 𝑧
2

, 𝑧
3

, 𝑧
4

, 𝑧
6

) 𝐸 (𝑧) 𝑑𝐴

𝐴
𝑥𝑧
, 𝐶
𝑥𝑧
, 𝐸
𝑥𝑧

= ∫
𝐴

𝐺 (𝑧) (1, 𝑧
2

, 𝑧
4

) 𝑑𝐴.

(26)

And the last form of Euler-Lagrange equations for FG Reddy
beam theory with porosities subjected to various types of
thermal loading in terms of displacements 𝑢, 𝜑, and 𝑤 can
be derived as

𝐴
𝑥𝑥

𝜕
2

𝑢

𝜕𝑥2
+ 𝐵
𝑥𝑥

𝜕
2

𝜑

𝜕𝑥2
− 𝛼𝐷
𝑥𝑥

𝜕
3

𝑤

𝜕𝑥3
= 𝐼
0

𝜕
2

𝑢

𝜕𝑡2
+ 𝐼
1

𝜕
2

𝜑

𝜕𝑡2

− 𝛼𝐼
3
(
𝜕
2

𝜑

𝜕𝑡2
+

𝜕
3

𝑤

𝜕𝑥𝜕𝑡2
)

(27)

𝐵
𝑥𝑥

𝜕
2

𝑢

𝜕𝑥2
+ 𝐶
𝑥𝑥

𝜕
2

𝜑

𝜕𝑥2
− 𝛼𝐸
𝑥𝑥

(
𝜕
3

𝑤

𝜕𝑥3
+
𝜕
2

𝜑

𝜕𝑥2
)

− 𝑗
1
(𝜑 +

𝜕𝑤

𝜕𝑥
) = 𝐼
1

𝜕
2

𝑢

𝜕𝑡2
+ 𝐼
2

𝜕
2

𝜑

𝜕𝑡2

− 𝛼𝐼
4
(
𝜕
2

𝜑

𝜕𝑡2
+

𝜕
3

𝑤

𝜕𝑥𝜕𝑡2
)

(28)

𝑗
1
(
𝜕
2

𝑤

𝜕𝑥2
+
𝜕𝜑

𝜕𝑥
) − 𝑁

𝑇
𝜕
2

𝑤

𝜕𝑥2
+ 𝛼𝐷
𝑥𝑥

𝜕
3

𝑢

𝜕𝑥3
+ 𝛼𝐸
𝑥𝑥

𝜕
3

𝜑

𝜕𝑥3

− 𝛼
2

𝐺
𝑥𝑥

𝜕
4

𝑤

𝜕𝑥4
= 𝐼
0

𝜕
2

𝑤

𝜕𝑡2
+ 𝛼𝐼
3

𝜕
3

𝑢

𝜕𝑥𝜕𝑡2
+ 𝛼𝐼
4

𝜕
3

𝜑

𝜕𝑥𝜕𝑡2

− 𝛼
2

𝐼
6
(

𝜕
4

𝑤

𝜕𝑥2𝜕𝑡2
+

𝜕
3

𝜑

𝜕𝑥𝜕𝑡2
) ,

(29)

where

𝐵
𝑥𝑥

= 𝐵
𝑥𝑥

− 𝛼𝐷
𝑥𝑥
,

𝐶
𝑥𝑥

= 𝐶
𝑥𝑥

− 𝛼𝐸
𝑥𝑥
,

𝐸
𝑥𝑥

= 𝐸
𝑥𝑥

− 𝛼𝐺
𝑥𝑥

𝐴
𝑥𝑧

= 𝐴
𝑥𝑧

− 𝛽𝐶
𝑥𝑧
,

𝐶
𝑥𝑧

= 𝐶
𝑥𝑧

− 𝛽𝐸
𝑥𝑧
,

𝑗
1
= 𝐴
𝑥𝑧

− 𝛽𝐶
𝑥𝑧
.

(30)

3. Solution Method

3.1. Analytical Solution. In this section, an analytical solution
of the Euler-Lagrange equations for free vibration of simply
supported porous FG beam based on Navier type method
is presented. The displacement functions are expressed
as combinations of nonsignificant coefficients and known
trigonometric functions to satisfy Lagrange equations and

boundary conditions at 𝑥 = 0, 𝑥 = 𝐿. The following
displacements functions are assumed to be formed:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑚=1

𝑢
𝑚
cos(𝑚𝜋

𝐿
𝑥) 𝑒
𝑖𝑤
𝑚
𝑡 (31)

𝑤 (𝑥, 𝑡) =

∞

∑

𝑚=1

𝑤
𝑚
sin(𝑚𝜋

𝐿
𝑥) 𝑒
𝑖𝑤
𝑚
𝑡 (32)

𝜑 (𝑥, 𝑡) =

∞

∑

𝑚=1

𝜑
𝑚
cos(𝑚𝜋

𝐿
𝑥) 𝑒
𝑖𝑤
𝑚
𝑡 (33)

in which (𝑢
𝑚
, 𝑤
𝑚
, 𝜑
𝑚
) are the unknown Fourier coefficients

that will be calculated for each value of 𝑚. Boundary
conditions for a simply supported beam are as follows [37]:

𝑢 (0) = 0,

𝜕𝑢

𝜕𝑥
(𝐿) = 0

𝑤 (0) = 𝑤 (𝐿) = 0,

𝜕𝜑

𝜕𝑥
(0) =

𝜕𝜑

𝜕𝑥
(𝐿) = 0.

(34)

Substituting ((31)–(33)) into ((27)–(29)), respectively, leads to
((35)–(37)):

(−𝐴
𝑥𝑥

(
𝑚𝜋

𝐿
)

2

+ 𝐼
0
𝜔
𝑚

2

)𝑢
𝑚
+ (−𝐵

𝑥𝑥
(
𝑚𝜋

𝐿
)

2

+ 𝐼
1
𝜔
𝑚

2

)𝜑
𝑚
+ (𝛼𝐷

𝑥𝑥
(
𝑚𝜋

𝐿
)

3

− 𝛼𝐼
3
𝜔
𝑚

2

(
𝑚𝜋

𝐿
))

⋅ 𝑤
𝑚
= 0

(35)

(−𝐵
𝑥𝑥

(
𝑚𝜋

𝐿
)

2

+ 𝐼
1
𝜔
2

)𝑢
𝑚
+ (−𝐶

𝑥𝑥
(
𝑚𝜋

𝐿
)

2

+ 𝛼𝐸
𝑥𝑥

(
𝑚𝜋

𝐿
)

2

− 𝑗
1
+ (𝐼
2
− 𝛼𝐼
4
) 𝜔
𝑚

2

)𝜑
𝑚

+ (𝛼𝐸
𝑥𝑥

(
𝑚𝜋

𝐿
)

3

− 𝑗
1
(
𝑚𝜋

𝐿
) − 𝛼𝐼

4
(
𝑚𝜋

𝐿
)𝜔
𝑚

2

)

⋅ 𝑤
𝑚
= 0

(36)

(𝛼𝐷
𝑥𝑥

(
𝑚𝜋

𝐿
)

3

− 𝛼𝐼
3
𝜔
𝑚

2

(
𝑚𝜋

𝐿
))𝑢
𝑚

+ (𝛼𝐸
𝑥𝑥

(
𝑚𝜋

𝐿
)

3

− 𝑗
1
(
𝑚𝜋

𝐿
) − 𝛼𝐼

4
(
𝑚𝜋

𝐿
)𝜔
𝑚

2

)

⋅ 𝜑
𝑚
+ (−𝑗

1
(
𝑚𝜋

𝐿
)

2

+ 𝑁𝑡 (
𝑚𝜋

𝐿
)

2

+ 𝛼
2

𝐺
𝑥𝑥

(
𝑚𝜋

𝐿
)

4

+ 𝐼
0
𝜔
𝑚

2

+ 𝛼
2

𝐼
6
(
𝑚𝜋

𝐿
)

2

𝜔
𝑚

2

)

⋅ 𝑊
𝑚
= 0.

(37)
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By finding determinant of the coefficient matrix of the above
equations and setting this multinomial to zero, we can find
natural frequencies 𝜔

𝑛
:

det(
𝑎
11

𝑎
12

𝑎
13

𝑎
21

𝑎
22

𝑎
23

𝑎
31

𝑎
32

𝑎
33

) = 0, (38)

where

𝑎
11

= (−𝐴
𝑥𝑥

(
𝑚𝜋

𝐿
)

2

+ 𝐼
0
𝜔
𝑚

2

) ,

𝑎
12

= (−𝐵
𝑥𝑥

(
𝑚𝜋

𝐿
)

2

+ 𝐼
1
𝜔
𝑚

2

) ,

𝑎
13

= (𝛼𝐷
𝑥𝑥

(
𝑚𝜋

𝐿
)

3

− 𝛼𝐼
3
𝜔
𝑚

2

(
𝑚𝜋

𝐿
))

𝑎
21

= (−𝐵
𝑥𝑥

(
𝑚𝜋

𝐿
)

2

+ 𝐼
1
𝜔
2

) ,

𝑎
22

= (−𝐶
𝑥𝑥

(
𝑚𝜋

𝐿
)

2

+ 𝛼𝐸
𝑥𝑥

(
𝑚𝜋

𝐿
)

2

− 𝑗
1

+ (𝐼
2
− 𝛼𝐼
4
) 𝜔
𝑚

2

) ,

𝑎
23
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4. Thermal Environment and
Temperature Distributions

For a porous FG beam in thermal environment, temperature
is assumed to vary along the thickness directions at four ways
as follows.

4.1. Uniform Temperature Rise (UTR). Consider a porous FG
that is at initial temperature equal to 𝑇

0
= 300 and beam is

free of stresses at initial temperature and temperature of beam
changes to final temperature with the difference of Δ𝑇 as

Δ𝑇 = 𝑇 − 𝑇
0
. (40)

4.2. Linear Temperature Rise (LTR). Consider that the tem-
perature of the top surface (ceramic-rich) of the porous FG
beam is 𝑇

𝑐
and varies linearly from 𝑇

𝑐
to the bottom surface

(metal-rich) temperature 𝑇
𝑚
. Finally, the temperature rise as

a function of thickness is given as [38]

𝑇 = 𝑇
𝑚
+ Δ𝑇(

1

2
+
𝑧

ℎ
) . (41)

And Δ𝑇 should be defined as

Δ𝑇 = 𝑇
𝑐
− 𝑇
𝑚
. (42)

4.3. Nonlinear Temperature Rise (NLTR). In this case, non-
linear temperature rise across the thickness is assumed. The
steady-state one-dimensional heat conduction equation with
the known temperature boundary conditions on bottom and
top surfaces of the FG nanobeam can be obtained by solving
the following equation [13]:

−
𝑑

𝑑𝑧
(𝜅 (𝑧, 𝑇)

𝑑𝑇

𝑑𝑧
) = 0 (43)

𝑇(
ℎ

2
) = 𝑇

𝑐
,

𝑇 (−
ℎ

2
) = 𝑇

𝑚
.

(44)

The solution of (43) subjected to the boundary conditions can
be solved by the following equation:

𝑇 = 𝑇
𝑚
+ (Δ𝑇)

∫
𝑧

−ℎ/2

(1/𝜅 (𝑧, 𝑇)) 𝑑𝑧

∫
ℎ/2

−ℎ/2

(1/𝜅 (𝑧, 𝑇)) 𝑑𝑧

, (45)

where Δ𝑇 = 𝑇
𝑐
− 𝑇
𝑚
.

4.4. Sinusoidal Temperature Rise (STR). The temperature
field when FG beam is exposed to sinusoidal temperature rise
across the thickness can be defined as [39]

𝑇 = 𝑇
𝑚
+ Δ𝑇(1 − cos 𝜋

2
(
1

2
+
𝑧

ℎ
)) , (46)

where Δ𝑇 = 𝑇
𝑐
− 𝑇
𝑚
is temperature change.

5. Numerical Result and Discussions

Through this section, after validation of the proposedmethod
of solution, the influence of different beam parameters such
as porosity distribution, porosity volume fraction, power-
law exponent, temperature changes, and slenderness on the
natural frequencies of the porous FG beam under uniform,
linear, nonlinear, and sinusoidal temperature rise across the
thickness direction will be perceived.

The functionally graded porous beam is a combination of
steel (SUS304) and silicon nitride (Si

3
N
4
) where its properties

are given in Table 1. It is assumed that the temperature
increase in metal surface to reference temperature 𝑇

0
of the

FG beam is 𝑇
𝑚
− 𝑇
0
= 5K [38].

The nondimensional natural frequencies (𝜔) can be
calculated by relations in the following:

𝜔 = 𝜔
𝐿
2

ℎ
√
𝜌
𝑚

𝑒
𝑚

. (47)
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Table 2: Comparison of the nondimensional fundamental frequency for S-S FG beam with various gradient indexes.

Power-law exponent 𝐿/ℎ
Present Şimşek [8] Thai and Vo [2]

Analytical Lagrange’s equations Analytical

𝑛 = 0
5 5.1527478 5.15274 5.1527
20 5.4603201 5.46030 5.4603

𝑛 = 0.2
5 4.8080746 4.80924 —
20 5.0815249 5.08286 —

𝑛 = 0.5
5 4.4106620 4.41108 4.4111
20 4.6511086 4.65159 4.6516

𝑛 = 1
5 3.9904189 3.99042 3.9904
20 4.2050549 4.20503 4.2050

𝑛 = 2
5 3.6264396 3.62643 3.6264
20 3.8361340 3.83611 3.8361

𝑛 = 5
5 3.4012044 3.40120 3.4012
20 3.6484863 3.64850 3.6485

𝑛 = 10
5 3.2816047 3.28160 3.2816
20 3.5389891 3.53896 3.5390

Full metal 5 2.66086 2.67732 —
20 2.83602 2.83716 —

To verify the accuracy of the present method, the numer-
ical results obtained will be compared with those available
in the literature to demonstrate the performance of the
present study. For this purpose, fundamental dimensionless
frequencies of simply FG beams are compared with those of
Şimşek [8] andThai and Vo [2] for different volume fraction
index and slenderness. The FG beam made of alumina and
aluminum is compared with results of Simsek and Thai
which have been obtained by using Lagrange’s equations
and Navier type solution. Computations have been carried
out for the following material and beam properties: (𝐸Al =

70GPa, 𝜌Al = 2702 kg/m3, ]Al = 0.3, 𝐸Al
2
O
3

= 380GPa,
𝜌Al
2
O
3

= 3960 kg/m3, VAl
2
O
3

= 0.3) for 𝐿/ℎ = (5, 20).

By studying Table 2, it is observed that the fundamental
frequency parameters obtained in the present investigation
are in good agreement with the results provided in these
literatures and thus validate the proposedmethod of solution.

In the present section, results are extracted for various
temperature changes, power-law indexes, porosity parame-
ters with four temperature rises (UTR, LTR,NLTR, and STR),
and two porosity distributions (even, uneven) to present an
adequate sensitivity analysis.

As a first verification and investigation example, effects
of porosity parameter, thermal loading, porosity distribution,
and power-law exponents on the first nondimensional nat-
ural frequency of the porous FG simply supported beams
are assessed. In Table 3, the first dimensionless natural fre-
quencies of the simply supported porous FG beams subjected
to UTR, LTR, NLTR, and STR are presented for various
values of the gradient index (𝑛 = 0.1, 0.2, 0.5, and 1), volume
fraction of porosity (𝑎 = 0, 0.1, and 0.2), and three different
values of temperature changes (Δ𝑡 = 20, 40, and 80K) for
𝐿/ℎ = 20 based on analytical solution method. Two types of
porosity distributions are considered (even and uneven), and
temperature risings are inclusive uniform, linear, nonlinear

and sinusoidal distributions. Present results are derived using
Navier type solution method.

Results given in Table 3 show that increasing the power-
law exponents leads to a decrease in the nondimensional
frequencies. In fact, when 𝑛 = 0, beam is made fully
from ceramics and has the greatest frequency. Increasing the
power-law exponents from 0 to 5 changes the composition
of the FG beam from a fully ceramic beam to a beam with
a combination of ceramic and metal. So by increasing the
metal percentage and having the smaller value of Young’s
modulus in metal with respect to ceramic, the stiffness of
the system decreases. Thus, as also known from mechanical
vibrations, natural frequencies decrease as the stiffness of
a structure decreases. In addition, it is obvious from this
table that increasing temperature change (UTR, LTR, NLTR,
and STR) yields decreasing of natural frequencies, indicating
that increasing of temperature changes yields decreasing of
Young’s modulus E and a rise in temperature increases this
effect. It is concluded that four temperature rises have a
significant effect on the fundamental FG porous beam. It is
deduced that the nondimensional frequency of FG porous
beams under sinusoidal temperature rise is higher than that
under nonlinear temperature rise, and the frequency of the
FG porous beam subjected to NLTR is higher than that of
FG porous beam subjected to LTR, in which the frequency
of the FG porous beam subjected to LTR is higher than
that subjected to UTR. Also, the difference between nondi-
mensional frequencies of different temperature rises (UTR,
LTR, NLTR, and STR) becomes larger by increasing the
temperature changes.The reason is that the rigidity of the FG
beam for sinusoidal temperature rise is the greatest among the
other cases of temperature rises. It is evident from the results
of the table that when the power-law indexes are in the range
of [0-1], the natural frequencies grow with the increase in the
porosity parameters for every temperature rising andporosity
distribution, because of internal pores growth rigidity of the
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Table 3: Temperature and material graduation effect on first dimensionless natural frequency of S-S FG porous beam with different FG type
and porosity parameter and thermal loading (𝐿/ℎ = 20).

FGM type 𝑎 Load type 𝑛 = 0 𝑛 = 0.1 𝑛 = 0.2 𝑛 = 0.5 𝑛 = 1 𝑛 = 2 𝑛 = 5

(Δ𝑇 = 20 [K])

FGM (I)

0

UTR 6.30389 5.55814 5.07272 4.27875 3.72764 3.33104 3.01417
LTR 6.35804 5.61591 5.13240 4.3404 3.78911 3.39085 3.07191
NLTR 6.35804 5.61697 5.13418 4.34337 3.79269 3.39432 3.07434
STR 6.39220 5.64920 5.16525 4.37267 3.82089 3.42192 3.10216

0.1

UTR 6.88939 5.91101 5.3085 4.36908 3.74463 3.30844 2.96886
LTR 6.93701 5.96243 5.36189 4.4244 3.79971 3.3618 3.02011
NLTR 6.93701 5.96350 5.36368 4.42737 3.80327 3.36525 3.02251
STR 6.96838 5.99263 5.39152 4.45338 3.82818 3.38953 3.04698

0.2

UTR 7.82479 6.41844 5.62782 4.47876 3.75865 3.27411 2.90872
LTR 7.86594 6.46361 5.67541 4.52784 3.80743 3.32111 2.95356
NLTR 7.86594 6.46470 5.67681 4.53081 3.81097 3.32451 2.95592
STR 7.89494 6.49085 5.70149 4.55354 3.83259 3.34551 2.97705

FGM (II)

0

UTR 6.30389 5.55814 5.07272 4.27875 3.72764 3.33104 3.01417
LTR 6.35804 5.61591 5.1324 4.3404 3.78911 3.39085 3.07191
NLTR 6.35804 5.61697 5.13418 4.34337 3.79269 3.39432 3.07434
STR 6.39220 5.64920 5.16525 4.37267 3.82089 3.42192 3.10216

0.1

UTR 6.64111 5.78821 5.24673 4.38047 3.79112 3.37261 3.04242
LTR 6.69138 5.84218 5.30264 4.43828 3.84865 3.42818 3.09605
NLTR 6.69138 5.84326 5.30446 4.44130 3.85227 3.43189 3.09850
STR 6.72276 5.97465 5.33263 4.46770 3.87758 3.45659 3.12341

0.2

UTR 7.04845 6.05522 5.44397 4.49154 3.85843 3.41549 3.0708
LTR 7.09505 6.10561 5.49630 4.5457 3.91222 3.46742 3.12050
NLTR 7.09505 6.10673 5.49818 4.54880 3.91590 3.47098 3.12300
STR 7.12377 6.34578 5.52354 4.57237 3.93839 3.49287 3.14509

(Δ𝑇 = 40 [K])

FGM (I)

0

UTR 6.03310 5.29292 4.81092 4.02257 3.47629 3.08492 2.77209
LTR 6.21394 5.48065 5.00243 4.21813 3.67152 3.27641 2.95925
NLTR 6.21396 5.48282 5.00610 4.22427 3.67893 3.28361 2.96429
STR 6.28428 5.54918 5.07003 4.28455 3.73697 3.34046 3.02173

0.1

UTR 6.64113 5.67142 5.07315 4.14065 3.52152 3.09079 2.75553
LTR 6.80158 5.83808 5.24377 4.31487 3.69508 3.26037 2.92054
NLTR 6.80158 5.84028 5.24746 4.32099 3.70243 3.26747 2.92549
STR 6.86614 5.90014 5.30464 4.37434 3.75352 3.31734 2.97583

0.2

UTR 7.59524 6.20206 5.41874 4.27759 3.56334 3.08445 2.72346
LTR 7.73650 6.34921 5.5683 4.43094 3.71572 3.23261 2.86700
NLTR 7.7365 6.35146 5.57203 4.43704 3.72299 3.23960 2.87185
STR 7.79615 6.40512 5.6226 4.48355 3.76723 3.28260 2.91519

FGM (II)

0

UTR 6.0331 5.29292 4.81092 4.02257 3.47629 3.08492 2.77209
LTR 6.21394 5.48065 5.00243 4.21813 3.67152 3.27641 2.95925
NLTR 6.21396 5.48282 5.00610 4.22427 3.67893 3.28361 2.96429
STR 6.28428 5.54918 5.07003 4.28455 3.73697 3.34046 3.02173

0.1

UTR 6.38455 5.53844 5.00104 4.14128 3.55732 3.14447 2.81874
LTR 6.55307 5.71372 5.17992 4.32377 3.73904 3.32205 2.99163
NLTR 6.55307 5.71595 5.18367 4.32999 3.74651 3.32929 2.99671
STR 6.61767 5.81476 5.24155 4.38419 3.79848 3.38007 3.04801

0.2

UTR 6.80459 5.81974 5.21333 4.26838 3.64126 3.20441 2.8646
LTR 6.96171 5.98338 5.38036 4.43855 3.81022 3.36884 3.02398
NLTR 6.96171 5.98569 5.38423 4.44491 3.81781 3.37617 3.02913
STR 7.02082 6.12458 5.43628 4.49324 3.86390 3.42107 3.07452
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Table 3: Continued.

FGM type 𝑎 Load type 𝑛 = 0 𝑛 = 0.1 𝑛 = 0.2 𝑛 = 0.5 𝑛 = 1 𝑛 = 2 𝑛 = 5

(Δ𝑇 = 80 [K])

FGM (I)

0

UTR 5.43496 4.70068 4.2211 3.43413 2.88836 2.49999 2.18730
LTR 5.90834 5.193784 4.72667 3.95840 3.42142 3.03282 2.71915
NLTR 5.90834 5.19842 4.73454 3.97159 3.43739 3.04839 2.73012
STR 6.0582 5.33956 4.87041 4.09972 3.56096 3.16977 2.85332

0.1

UTR 6.10107 5.14332 4.55118 3.62453 3.00865 2.58294 2.25038
LTR 6.51530 5.19378 4.99411 4.08325 3.47372 3.04569 2.70968
NLTR 6.51530 5.57993 5.00197 4.09628 3.48941 3.06092 2.72034
STR 6.65232 5.70667 5.12286 4.20898 3059742 3.16660 2.82749

0.2

UTR 7.10358 5.73356 4.95971 3.83009 3.12151 2.64928 2.29333
LTR 7.46336 6.10799 5.34342 4.22684 3.52258 3.04631 2.68480
NLTR 7.46336 6.11276 5.35131 4.23973 3.53799 3.06119 2.69516
STR 7.58973 6.22605 5.45779 4.33741 3.63088 3.15163 2.78670

FGM (II)

0

UTR 5.43496 4.70068 4.2211 3.43413 2.88836 2.49999 2.18730
LTR 5.90834 5.193784 4.72667 3.95840 3.42142 3.03282 2.71915
NLTR 5.90834 5.19842 4.73454 3.97159 3.43739 3.04839 2.73012
STR 6.0582 5.33956 4.87041 4.09972 3.56096 3.16977 2.85332

0.1

UTR 5.82315 4.98619 4.45317 3.59813 3.01746 2.61003 2.28715
LTR 6.26055 5.44199 4.92030 4.08135 3.50684 3.09673 2.77022
NLTR 6.26055 5.44675 4.92831 4.09464 3.52284 3.11228 2.78118
STR 6.39781 5.59874 5.05092 4.20937 3.63293 3.22008 2.89057

0.2

UTR 6.27567 5.30382 4.70389 3.76693 3.14561 2.71632 2.38167
LTR 6.68027 5.72544 5.13573 4.21244 3.59493 3.16080 2.82025
NLTR 6.68027 5.73036 4.14395 4.22595 3.61109 3.17644 2.83130
STR 6.80568 5.64570 5.25388 4.32784 3.70829 3.27130 2.92754

FG beams, and this situation is more eminent for smaller
power index parameter. Also, it is concluded that, for constant
values of temperature changes, when the percentage of the
metal is higher than ceramic (1 ≺ 𝑛), increasing volume
fraction of porosity yields decrease in the nondimensional
frequencies. However, this trend is opposite to increasing
the temperature changes. Comparing the frequency values
for FGM beams with even and uneven porosity distribution
show that when the power index is in the range of [0–
0.5], natural frequencies of the even porosity are higher than
uneven ones. However, this behavior is opposite in the range
of power-law index beyond 0.5. In addition, for a certain value
of temperature change and gradient index, changes in the
porosity parameter (𝑎) lead to more variations in frequencies
of even distribution in comparison with uneven one. In other
words, in FGM-I, the porosity hasmore significant impact on
natural frequency of beam than that of FGM-II.

Table 4 presents the effect of various temperature changes,
porosity parameters, material graduations on the natural
frequencies of the simply porous FG beams under uniform
temperature rise with both porosity distributions. Here,
again, it is seen that, by increasing the material power-
law index, the nondimensional frequencies decrease. This
is due to the increment in flexibility of the FG beams,
since the percentage of metal phase increases when power
index rises. Also, increasing the temperature changes yields
decrease in the frequency parameters and it can be stated

that these parameter have a notable effect on the fundamental
frequency. By studying the result of Table 4, it can be seen that
the variations of frequencies depend on both temperature
change and volume fraction index. For example, when 0 ≺

𝑛 ≺ 1 (beams with more percentage of ceramic), increasing
of volume fraction of porosity leads to increment of funda-
mental frequency for all of temperature changes and porosity
distributions, while, at even distribution, the trend of funda-
mental frequency changes is different for 1 ≺ 𝑛 (beams with
more percentage of metal). For example, increasing volume
fraction of porosity yields decrease in the nondimensional
frequencies. However, this trend is opposite to increasing
the temperature changes. When the temperature changes
increase, the fundamental frequency changes. It is evident
that, at uneven distribution of porosity, increasing of porosity
parameters yields increasing nondimensional frequencies for
all of temperature changes and power-law indexes.

Variations of the first nondimensional natural frequencies
of the simply supported FG porous beams subjected to
uniform temperature rising for different values of porosity
and gradient index parameters are plotted in Figure 2. It is
seen that the dimensionless frequencies of FG beam decrease
with the increase of temperature change until they reach near
zero (at the critical temperature point). This is due to the
reduction in total stiffness of the beam, since geometrical
stiffness decreases when temperature rises. One important
observation within the range of temperature before the
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Table 4: Temperature and material graduation effect on first dimensionless natural frequency of S-S FG porous beam with different
temperature changes and porosity parameter under uniform temperature rise (𝐿/ℎ = 20).

FGM type 𝑎 Δ𝑇 = 0 Δ𝑇 = 20 Δ𝑇 = 40 Δ𝑇 = 80 Δ𝑇 = 100 Δ𝑇 = 120 Δ𝑇 = 140

𝑛 = 0

FGM-I
0 6.55957 6.30389 6.03310 5.43496 5.09981 4.73303 4.32582
0.1 7.12576 6.88939 6.64113 6.10107 5.80417 5.48474 5.13790
0.2 8.04528 7.82479 7.59524 7.10358 6.83815 6.55684 6.25690

FGM-II
0 6.55957 6.30389 6.03310 5.43496 5.09981 4.73303 4.32582
0.1 6.88457 6.64111 6.38455 5.82315 5.51229 5.17575 4.80744
0.2 7.28099 7.04845 6.80459 6.27567 5.98594 5.67521 5.39915

𝑛 = 0.5

FGM-I
0 4.51585 4.27875 4.02257 3.43413 3.08651 2.68466 2.19832
0.1 4.58213 4.36908 4.14065 3.62453 3.32690 2.99204 2.60510
0.2 4.66783 4.47876 4.27759 3.83009 3.57746 3.29930 2.98806

FGM-II
0 4.51585 4.27875 4.02257 3.43413 3.08651 2.68466 2.19832
0.1 4.60304 4.38047 4.14128 3.59813 3.28268 2.92503 2.50660
0.2 4.70024 4.49154 4.26838 3.76693 3.47998 3.15974 2.79427

𝑛 = 1

FGM-I
0 3.95829 3.72764 3.47629 2.88836 2.53136 2.10424 1.54940
0.1 3.95091 3.74463 3.52152 3.00865 2.70569 2.35577 1.93306
0.2 3.94056 3.75865 3.56334 3.12151 2.86664 2.58004 2.24928

FGM-II
0 3.95829 3.72764 3.47629 2.88836 2.53136 2.10424 1.54940
0.1 4.00686 3.79112 3.55732 3.01746 2.69634 2.32229 1.86318
0.2 4.05989 3.85843 3.64126 3.14561 2.85597 2.52554 2.13508

𝑛 = 2

FGM-I
0 3.55529 3.33104 3.08492 2.49999 2.13545 1.68262 1.03051
0.1 3.50825 3.30844 3.09073 2.58294 2.27626 1.91230 1.44817
0.2 3.44947 3.27411 3.08445 2.64928 2.39337 2.09961 1.74880

FGM-II
0 3.55529 3.33104 3.08492 2.49999 2.13545 1.68262 1.03051
0.1 3.58170 3.37261 3.14447 2.61003 2.28511 1.89595 1.38920
0.2 3.61002 3.41549 3.20441 2.71632 2.42572 2.08703 1.67099

𝑛 = 5

FGM-I
0 3.23323 3.01417 2.77209 2.18730 1.81215 1.32261 0.42425
0.1 3.16336 2.96886 2.75553 2.25038 1.93806 1.55511 1.02507
0.2 3.07867 2.90872 2.72367 2.29333 2.03530 1.73218 1.35400

FGM-II
0 3.23323 3.01417 2.77209 2.18730 1.81215 1.32261 0.42425
0.1 3.24609 3.04242 2.81874 2.28715 1.95630 1.54641 0.96094
0.2 3.25967 3.07080 2.86460 2.38167 2.08853 1.73843 1.28550

critical temperature is that the porous FG beams with higher
value of porosity volume fraction usually provide larger
values of the frequency results. However, this behavior is
opposite in the range of temperature beyond the critical
temperature. Also, it is seen that temperature change has a
softening effect on FG beam at prebuckling region and a
rise in temperature increases this effect. It is also observable
that the branching point of the FG beam is postponed by
consideration of the lower porosity parameter due to the
fact that the lower porosity indexes result in the decrease of
stiffness of the structure. In addition, it can be emphasizing
that the buckling temperatures decrease depending on an
increment in material property gradient index and porosity
parameter.

In order to clearly understand the difference between
different temperature risings, Figure 3 displays the variations
of the first nondimensional natural frequencies of S-S FG
porous beams subjected to four cases of thermal loading
(UTR, LTR, NLTR, and STR) for different porosity volume
fraction and constant power exponent and slenderness ratio
(𝐿/ℎ = 50, 𝑛 = 1). A comparison between these figures
show that the difference of variant porosity volume fractions
is more considerable under sinusoidal temperature rise. It
can be found that critical temperature point of FG beams
with respect to sinusoidal temperature rises is higher than the
other temperature risings.

Comparisons of the first dimensionless natural frequen-
cies of S-S FG (I) beam subjected to NLTR with change of
porosity volume fraction and power exponent are presented
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Figure 2: Comparison of the nondimensional natural frequency of the S-S porous FG beamwith respect to UTR for different values of power
exponents and porosity parameter (𝐿/ℎ = 50, 𝑛 = 1).

in Figure 4 at constant slenderness ratio (𝐿/ℎ = 20). Four
types of temperature change are considered as 0, 20, 40,
and 80. It is observed from the results of Figure 4 that
the dimensionless natural frequencies of porous FG beam
decrease with the increase of power indexes.When the power
exponent is in the range of 0 to 2, the nondimensional

frequencies reduce with high rate compared to those when
the power exponent is in the range between 2 and 10. Also,
the effect of temperature change is obvious, the nondimen-
sional natural frequencies will be decreased by increasing of
temperature change for all gradient indexes, and thus various
temperature rises have a significant effect on the fundamental
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Figure 3: Comparison of the nondimensional natural frequency of the S-S porous FG beam with respect to various temperature risings for
different values porosity (𝐿/ℎ = 50, 𝑛 = 1).

frequency of the porous FG beam. Also, it is concluded
that porosity effect in even distributions depends on power
indexes and temperature changes. For example, at constant
value of temperature changes, by increasing the porosity
parameters, the natural frequencies first increase; however,

this behavior is opposite to a certain value of the power
indexes. In other words, at a constant value of temperature
changes from a certain value of power indexes, increasing of
porosity leads to decreasing of nondimensional frequencies.
By comparing Figures 4(a)–4(d), it is concluded that this
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Figure 4: The variation of the first dimensionless frequency of S-S FGM (I) beam with material graduation and porosity for nonlinear
temperature rises (𝐿/ℎ = 20).

behavior is dependent on temperature changes. By increasing
of temperature changes, the certain value of the 𝑛has gone up.

Comparisons of the first dimensionless natural frequen-
cies of S-S FG (II) beam subjected to STR with change of
porosity volume fraction and power exponent are presented

in Figure 5 at constant slenderness ratio (𝐿/ℎ = 20). From the
results of Figure 5, it is observed that increasing the porosity
volume fraction yields increasing nondimensional frequency
of FG beams with uneven porosity distribution for every
power-law exponent and temperature change.
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Figure 5: The variation of the first dimensionless frequency of S-S FGM (II) beam with material graduation and porosity for different
sinusoidal temperature rises (𝐿/ℎ = 20).

The natural frequency parameter as a function of power
law indexes for sinusoidal temperature rises and different
porosity parameters are presented in Figure 6 (for FGM (I)
subjected to STR with S-S boundary condition). Different
porosity parameter has been considered as 𝑎 = 0, 𝑎 = 0.1,
𝑎 = 0.2. It is easily deduced that an increase in temperature

change gives rise to decrease in the first dimensionless natural
frequency for all gradient indexes.

Comparisons of the first nondimensional natural fre-
quencies of S-S FG (I) beam subjected to both cases of
thermal loading (UTR and STR) with change of porosity vol-
ume fractions and power exponents at constant slenderness
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Figure 6: The variation of the first dimensionless frequency of S-S FGM (I) beam with material graduation and sinusoidal temperature rises
for different porosities (𝐿/ℎ = 20).

ratio and temperature changes Δ𝑇 = 40, 𝐿/ℎ = 20 are
presented in Figure 7. It is concluded that frequency of the
beam subjected to uniform temperature rise is less than
that of the beam subjected to sinusoidal temperature rise,

and the their differences will become larger when increasing
the power exponents. By comparing diagrams with different
porosity parameters, it can be found that increasing porosity
parameter yields increasing of fundamental frequency.
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Figure 7: Comparison of the first dimensionless frequency of S-S FG (I) beam with material graduation and uniform and sinusoidal
temperature rises for different porosities (Δ𝑇 = 40, 𝐿/ℎ = 20).

6. Conclusions

In this research, thermomechanical vibrational characteristic
of the temperature-dependent FG porous beams subjected
to various thermal loading with two porosity distributions
is presented. The equations of motion are derived based
on third-order shear deformation beam theory and sim-
ply boundary condition is considered. Material’s properties
are temperature-dependent and also vary in the thickness

direction based on modified rule of mixture. The governing
differential equations are derived within the framework of
higher-order shear deformation beam theory and by using
Hamilton’s principle. The Navier-based analytical model is
used to solve governing partial differential equations.Accord-
ing to the numerical results, it is revealed that the proposed
modeling can provide accurate frequency results of the FG
beams as compared to the other solution results and some
cases in the literature. As a result, the characteristics of
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vibration for FGM porous beams are significantly influenced
by temperature field, volume fraction of porosity, power-
law indexes, and porosity distributions. The effects of the
induced thermal environment, volume fraction of porosity,
material property gradient index, and porosity distribution
on fundamental frequencies of porous FG beams are investi-
gated. Numerical results show the following:

(i) By increasing the gradient index value, the nondi-
mensional frequencies are found to decrease.

(ii) Fundamental frequencies decrease by increasing the
four temperature risings and all two porosity distri-
butions.

(iii) The responses of the nondimensional frequencies in
the FG porous beams according to geometric param-
eters, under sinusoidal temperature rise, are very
similar to those under nonlinear, linear, and uniform
temperature rise. However, the critical temperature
gradient under sinusoidal temperature rise is higher
than those under the other temperature rises.

(iv) The nondimensional frequency predicted by STR is
always greater than those UTR, LTR, and NLTR and
the uniform temperature rise has more significant
effect on the nondimensional frequencies than the
other temperature rises.

(v) For FGM-I, at a constant value of temperature change,
increasing the volume fraction of porosity first yields
the increase in fundamental frequencies; however,
this trend is vice versa for upper values of gradient
indexes. This behavior is dependent on power-law
indexes and temperature changes. And for FGM-II,
increasing the volume fraction of porosity yields the
increase in fundamental frequencies for all values of
gradient indexes and temperature changes.

(vi) In FGM-I, the porosity hasmore significant impact on
natural frequencies of the beam in comparison with
FGM-II.

It is concluded that various factors such as porosity parame-
ter, porosity distribution, temperature rising, and power-law
index have a notable effect on the nondimensional frequen-
cies of FG beams with porosities, which emphasizes the
importance of inspected porosity volume fraction effect in
thermal environment. Therefore, the porosity and thermal
effects should be considered in the analysis of vibration
behavior of FG structures.
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