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The vibration of a circular tunnel in an elastic half space subjected to uniformly distributed dynamic pressure at the inner
boundary is studied in this paper. For comparison purposes, two different ground materials (soft and hard soil) are considered
for the half space. Under the assumption of plane strain, the equations of motion for the tunnel and the surrounding medium
are reduced to two wave equations in polar coordinates using Helmholtz potentials. The method of wave expansion is used to
construct the displacement fields in terms of displacement potentials. The boundary conditions associated with the problem are
satisfied exactly at the inner surface of the tunnel and at the interface between the tunnel and surrounding medium, and they are
satisfied approximately at the free surface of the half space. A least-squares technique is used for satisfying the stress-free boundary
conditions at the half space. It is shown by comparison that the stresses and displacements are significantly influenced by the
properties of the surrounding soil, wave number (i.e., the frequency), depth of embedment, and thickness of the tunnel wall.

1. Introduction

The dynamic behavior of underground structures such as
tunnels and pipelines is an important engineering problem
in the field of dynamic soil-structure interactions. Compared
to the large volume of literature on the dynamic response of
structures in infinite media, the corresponding problem in
a half space has not received much attention. Even so, this
problem needs analysis, as half spaces are always present in
metropolitan areas. It is assumed that this limitation ismainly
due to the difficulties in satisfying boundary conditions
at the free surface of the ground. Thiruvenkatachar and
Viswanathan [1] investigated the dynamic response of an
elastic half spacewith a cylindrical cavity at a finite depth sub-
jected to time-dependent surface tractions on the boundary
of the cavity using a series of wave functions and the method
of successive approximations. El-Akily and Datta [2, 3] stud-
ied the response of a circular cylindrical shell to disturbances
in an elastic half space using matched asymptotic expansions
and a successive reflection technique. Datta et al. [4] studied
the dynamic response of a cylindrical pipe with a circular
cross-section lying in a concentric cylindrical region buried
in an elastic half space. In this study, the fields within each

of the regions were expanded in a series of wave functions,
and the unknown coefficients appearing in the solution were
obtained by considering a finite number of terms in the
series. In another study, Wong et al. [5] considered the two-
dimensional response of a tunnel with a noncircular cross-
section embedded in an elastic half space using a technique
involving wave function expansion in the half space com-
binedwith a finite element representation of the tunnel and its
vicinity. Balendra et al. [6] studied the in-plane vibrations of
a tunnel-soil-building system in a viscoelastic half space. The
displacement fields were formulated by the method of wave
function expansion, and the boundary conditions were satis-
fied only at a finite number of points along the traction-free
surface, tunnel-soil interface, and soil-foundation interface.
Therefore, the unknown coefficients of the wave function
were obtained using a least-squares approach. Lee and Karl
[7] studied the scattering and diffraction of plane waves
by underground, circular, and cylindrical cavities at various
depths in a half space. In this study, the authors used the
Fourier-Bessel series and approximated the half space as a
large-diameter elastic cylinder. Luco and de Barros [8, 9]
studied the seismic response of a cylindrical shell embedded
in a layered viscoelastic half space using a technique that
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combined an indirect integral representation for the exterior
domain with a simplified shell theory for tunnel represen-
tation. Guan and Moore [10] studied the dynamic response
of multiple cavities deeply buried in a viscoelastic medium
that were subjected to moving or seismic loading using the
Fourier-Bessel series. Bayıroğlu [11] studied the dynamic
response of an elastic half space with a circular cylindrical
shell using the finite elementmethod. Stamos and Beskos [12]
studied the dynamic response of an infinitely long cylindrical
tunnel buried in a half space that was subjected to plane
harmonic waves using a special boundary element method in
the frequency domain. Davis et al. [13] studied the transverse
response of cylindrical cavities and pipes embedded in a half
space that were subjected to incident plane SV waves. The
solution was obtained using the Fourier-Bessel series and a
convex approximation of the half-space free surface. Yang et
al. [14] studied the ground vibrations caused by trainsmoving
in tunnels embedded in half space using the finite element
method. Liang et al. [15] investigated the diffraction of inci-
dent plane SV waves by a circular cavity in a saturated poroe-
lastic half space using a wave function series and a downward
concave approximation of the half-space free surface. Jiang et
al. [16] studied the scattering of plane waves by a cylindrical
cavity with lining in a poroelastic half plane using the com-
plex variable function method. Zhou et al. [17] studied the
scattering of the elasticwaves by a circular pipeline in a poroe-
lastic medium using the wave function expansion method.
Gupta et al. [18] studied the generation and propagation
of vibrations from underground railways by performing a
parametric study on the soil and tunnel parameters. Lin et al.
[19] studied the dynamic response of a circular underground
tunnel in an elastic half space subjected to incident plane P-
waves using an analytical solution scheme. Coşkun et al. [20]
studied the vibration of an elastic half space with a cylindrical
cavity subjected to a uniform harmonic pressure at the inner
surface using the method of wave function expansion. Liu
andWang [21] studied the dynamic response of twin circular
tunnels in a full space subjected to plane harmonic excitation
using the complex variable method. Liu et al. [22] studied the
scattering of plane waves by a shallow lined circular tunnel in
an elastic half space using the complex variable method and
the image technique. Hamad et al. [23] studied the dynamic
interaction of two parallel tunnels embedded in a half space
using a fully coupled approach and a superposition approach.
More recently, Huang et al. [24] studied the nonlinear
dynamic responses of circular tunnels buried in normal fault
ground using the finite element method.

In this study, the dynamic response of a circular cylindri-
cal tunnel embedded in an elastic half space is analyzed. The
tunnel lies parallel to the plane free surface of the medium at
a finite depth and is subjected to a harmonic normal pressure
at the inner surface. By introducing potentials, the governing
equations for the tunnel and surroundingmedium are decou-
pled and reduced to Helmholtz equations, satisfied by the
potentials. The series solution for these equations is obtained
via the wave function expansion method.The boundary con-
ditions at the inner surface of the tunnel and at the tunnel-soil
interface are satisfied exactly; they are satisfied only approxi-
mately along the traction-free surface of the half space using
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Figure 1: Circular tunnel embedded in a half space.

the least-squares method. Once the unknown wave function
coefficients are determined numerically, the displacements
and stresses at any point in both the tunnel and surrounding
medium can be calculated in a straightforward manner.

2. Formulation of the Problem

Consider an infinitely long circular tunnel with inner and
outer radii 𝑎 and b, respectively, buried in an elastic half space
at a depth𝐻 below the free surface and subjected to harmonic
pressure that is uniformly distributed as 𝑃(𝑡) = 𝑃0𝑒−𝑖𝜔𝑡 at the
inner surface (Figure 1). As the loading and geometry of the
tunnel are assumed to be 𝑧-independent, the problem is two-
dimensional along the 𝑥- and 𝑦-axis and corresponds to the
plane strain case.

Therefore, using polar coordinates, the displacement vec-
toru of a pointwill be a function of 𝑟, 𝜃, and 𝑡.Thematerials of
the half space and the tunnel are assumed to be homogeneous,
isotropic, and linearly elastic. The equation governing u is

(𝜆 + 𝜇)(𝛼) ∇∇ ∙ u(𝛼) + 𝜇(𝛼)∇2u(𝛼) + 𝜌(𝛼)𝜔2u(𝛼) = 0, (1)

where 𝜆 and 𝜇 are the Lamé constants, 𝜌 is the mass density,
and 𝜔 is the circular frequency. The superscript (𝛼) can be 1
or 2 depending on whether the point is in the tunnel or in the
surrounding medium. It is assumed that the dependence on
time is a simple harmonic of the form 𝑒−𝑖𝜔𝑡. For brevity, this
term is henceforth suppressed from all expressions in the
sequence. The displacement vector u can be written in terms
of a dilatational scalar potential 𝜑(𝑟, 𝜃) and an equivoluminal
vector potentialΨ(𝑟, 𝜃) = 𝜓(𝑟, 𝜃)e𝑧 with the form

u(𝛼) = ∇𝜑(𝛼) + ∇ ×Ψ(𝛼); ∇ ∙Ψ(𝛼) = 0, (2)

where e𝑧 is the unit vector along the 𝑧-axis. Equation (2) is a
solution for (1) if the potentials are solutions of the following
reduced wave equations for steady-state, two-dimensional
wave propagation:

∇2𝜑(𝛼) + (𝑘(𝛼)1 )2 𝜑(𝛼) = 0,
∇2𝜓(𝛼) + (𝑘(𝛼)2 )2 𝜓(𝛼) = 0,

(3)



Journal of Engineering 3

where 𝑘(𝛼)1 and 𝑘(𝛼)2 are the longitudinal and shear wave num-
bers, respectively, and are given by

𝑘(𝛼)1 = 𝜔
{(𝜆(𝛼) + 2𝜇(𝛼)) /𝜌(𝛼)}1/2 ,

𝑘(𝛼)2 = 𝜔
{𝜇(𝛼)/𝜌(𝛼)}1/2 .

(4)

The displacement vector can be written in terms of radial𝑢(𝛼)𝑟 and tangential 𝑢(𝛼)
𝜃

components as follows:

u(𝛼) = 𝑢(𝛼)𝑟 e𝑟 + 𝑢(𝛼)𝜃 e𝜃, (5)

where e𝑟 and e𝜃 represent the unit vectors in the radial and
tangential directions, respectively. Substitution of (5) into (2)
yields

𝑢(𝛼)𝑟 = 𝜕𝜑(𝛼)𝜕𝑟 + 1𝑟 𝜕𝜓
(𝛼)

𝜕𝜃 ,
𝑢(𝛼)𝜃 = 1𝑟 𝜕𝜑

(𝛼)

𝜕𝜃 − 1𝑟 𝜕𝜓
(𝛼)

𝜕𝑟 .
(6)

The corresponding stress components are related to the
displacement via Hooke’s law

𝜎(𝛼)𝑟𝑟 = (𝜆(𝛼) + 2𝜇(𝛼)) 𝜕𝑢(𝛼)𝑟𝜕𝑟 + 𝜆(𝛼)𝑟 (𝑢(𝛼)𝑟 + 𝜕𝑢(𝛼)𝜃𝜕𝜃 ) ;
𝜎(𝛼)𝜃𝜃 = 𝜆(𝛼) 𝜕𝑢(𝛼)𝑟𝜕𝑟 + 1𝑟 (𝜆(𝛼) + 2𝜇(𝛼))(𝑢(𝛼)𝑟 + 𝜕𝑢

(𝛼)
𝜃𝜕𝜃 ) ;

𝜎(𝛼)𝑟𝜃 = 𝜇(𝛼)𝑟 (𝑟𝜕𝑢(𝛼)𝜃𝜕𝑟 − 𝑢(𝛼)𝜃 + 𝜕𝑢(𝛼)𝑟𝜕𝜃 ) .
(7)

Using the method of separation and noting that the number𝑛 must be an integer for a periodic solution, the solution of
(3) can be written as [25]

𝜑(𝛼) = ∞∑
𝑛=−∞

(𝐴(𝛼)𝑛 𝐽𝑛 (𝑘(𝛼)1 𝑟) + 𝐵(𝛼)𝑛 𝑌𝑛 (𝑘(𝛼)1 𝑟)) 𝑒𝑖𝑛𝜃;
𝜓(𝛼) = ∞∑

𝑛=−∞

(𝐶(𝛼)𝑛 𝐽𝑛 (𝑘(𝛼)2 𝑟) + 𝐷(𝛼)𝑛 𝑌𝑛 (𝑘(𝛼)2 𝑟)) 𝑒𝑖𝑛𝜃,
(8)

where 𝐽𝑛(∙) and𝑌𝑛(∙) are Bessel functions of the first and sec-
ond kind, order 𝑛, and𝐴(𝛼)𝑛 , 𝐵(𝛼)𝑛 ,𝐶(𝛼)𝑛 , and𝐷(𝛼)𝑛 are constants.
Using the relations 𝐽−𝑛 = (−1)𝑛𝐽𝑛 and𝑌−𝑛 = (−1)𝑛𝑌𝑛 and con-
sidering the potentials (𝜑)(𝛼) and (𝜓)(𝛼) to be symmetric and
antisymmetric, respectively, (8) can be written in the form

𝜑(𝛼) = ∞∑
𝑛=0

(𝐴(𝛼)𝑛 𝐽𝑛 (𝑘(𝛼)1 𝑟) + 𝐵(𝛼)𝑛 𝑌𝑛 (𝑘(𝛼)1 𝑟)) cos 𝑛𝜃;
𝜓(𝛼) = ∞∑

𝑛=0

(𝐶(𝛼)𝑛 𝐽𝑛 (𝑘(𝛼)2 𝑟) + 𝐷(𝛼)𝑛 𝑌𝑛 (𝑘(𝛼)2 𝑟)) sin 𝑛𝜃,
(9)

where𝐴(𝛼)𝑛 ,𝐵(𝛼)𝑛 ,𝐶(𝛼)𝑛 , and𝐷(𝛼)𝑛 are constants to be determined
from the boundary conditions. Substituting (9) into (6), the
displacement fields are obtained as

𝑢(𝛼)𝑟 = ∞∑
𝑛=0

{𝐴(𝛼)𝑛 (𝑛𝑟 𝐽𝑛 (𝑘(𝛼)1 𝑟) − 𝑘(𝛼)1 𝐽𝑛+1 (𝑘(𝛼)1 𝑟))
+ 𝐵(𝛼)𝑛 (𝑛𝑟𝑌𝑛 (𝑘(𝛼)1 𝑟) − 𝑘(𝛼)1 𝑌𝑛+1 (𝑘(𝛼)1 𝑟))
+ 𝐶(𝛼)𝑛 (𝑛𝑟 𝐽𝑛 (𝑘(𝛼)2 𝑟)) + 𝐷(𝛼)𝑛 (𝑛𝑟𝑌𝑛 (𝑘(𝛼)2 𝑟))}
⋅ cos 𝑛𝜃,

𝑢(𝛼)𝜃 = ∞∑
𝑛=0

{−𝐴(𝛼)𝑛 (𝑛𝑟 𝐽𝑛 (𝑘(𝛼)1 𝑟)) − 𝐵(𝛼)𝑛 (𝑛𝑟𝑌𝑛 (𝑘(𝛼)1 𝑟))
− 𝐶(𝛼)𝑛 (𝑛𝑟 𝐽𝑛 (𝑘(𝛼)2 𝑟) − 𝑘(𝛼)2 𝐽𝑛+1 (𝑘(𝛼)2 𝑟))
− 𝐷(𝛼)𝑛 (𝑛𝑟𝑌𝑛 (𝑘(𝛼)2 𝑟) − 𝑘(𝛼)2 𝑌𝑛+1 (𝑘(𝛼)2 𝑟))} sin 𝑛𝜃.

(10)

Likewise, substituting (10) into (7), the associated stress fields
can be written as

𝜎(𝛼)𝑟𝑟 = ∞∑
𝑛=0

2𝜇(𝛼) {𝐴(𝛼)𝑛 (𝛽(𝛼)1 𝐽𝑛 (𝑘(𝛼)1 𝑟)
+ 𝑘(𝛼)1𝑟 𝐽𝑛+1 (𝑘(𝛼)1 𝑟)) + 𝐵(𝛼)𝑛 (𝛽(𝛼)1 𝑌𝑛 (𝑘(𝛼)1 𝑟)
+ 𝑘(𝛼)1𝑟 𝑌𝑛+1 (𝑘(𝛼)1 𝑟)) + 𝐶(𝛼)𝑛 (𝑛

2 − 𝑛𝑟2 𝐽𝑛 (𝑘(𝛼)2 𝑟)
− 𝑘(𝛼)2 𝑛𝑟 𝐽𝑛+1 (𝑘(𝛼)2 𝑟)) + 𝐷(𝛼)𝑛 (𝑛2 − 𝑛𝑟2 𝑌𝑛 (𝑘(𝛼)2 𝑟)
− 𝑘(𝛼)2 𝑛𝑟 𝑌𝑛+1 (𝑘(𝛼)2 𝑟))} cos 𝑛𝜃,

(11)

𝜎(𝛼)𝜃𝜃 = ∞∑
𝑛=0

2𝜇(𝛼) {𝐴(𝛼)𝑛 (𝛽(𝛼)2 𝐽𝑛 (𝑘(𝛼)1 𝑟)
− 𝑘(𝛼)1𝑟 𝐽𝑛+1 (𝑘(𝛼)1 𝑟)) + 𝐵(𝛼)𝑛 (𝛽(𝛼)2 𝑌𝑛 (𝑘(𝛼)1 𝑟)
− 𝑘(𝛼)1𝑟 𝑌𝑛+1 (𝑘(𝛼)1 𝑟)) + 𝐶(𝛼)𝑛 (−𝑛

2 − 𝑛𝑟2 𝐽𝑛 (𝑘(𝛼)2 𝑟)
+ 𝑘(𝛼)2 𝑛𝑟 𝐽𝑛+1 (𝑘(𝛼)2 𝑟)) + 𝐷(𝛼)𝑛 (−𝑛2 − 𝑛𝑟2 𝑌𝑛 (𝑘(𝛼)2 𝑟)
+ 𝑘(𝛼)2 𝑛𝑟 𝑌𝑛+1 (𝑘(𝛼)2 𝑟))} cos 𝑛𝜃,

(12)
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𝜎(𝛼)𝑟𝜃 = ∞∑
𝑛=0

2𝜇(𝛼) {𝐴(𝛼)𝑛 (−𝑛2 − 𝑛𝑟2 𝐽𝑛 (𝑘(𝛼)1 𝑟)
+ 𝑘(𝛼)1 𝑛𝑟 𝐽𝑛+1 (𝑘(𝛼)1 𝑟))
+ 𝐵(𝛼)𝑛 (−𝑛2 − 𝑛𝑟2 𝑌𝑛 (𝑘(𝛼)1 𝑟) +𝑘(𝛼)1 𝑛𝑟 𝑌𝑛+1 (𝑘(𝛼)1 𝑟))
+ 𝐶(𝛼)𝑛 (𝛽(𝛼)3 𝐽𝑛 (𝑘(𝛼)2 𝑟) − 𝑘(𝛼)2𝑟 𝐽𝑛+1 (𝑘(𝛼)2 𝑟))
+ 𝐷(𝛼)𝑛 (𝛽(𝛼)3 𝑌𝑛 (𝑘(𝛼)2 𝑟) − 𝑘(𝛼)2𝑟 𝑌𝑛+1 (𝑘(𝛼)2 𝑟))}
⋅ sin 𝑛𝜃,

(13)

where 𝛽(𝛼)1 = (𝑛2 − 𝑛)/𝑟2 − ((𝜆(𝛼) + 2𝜇(𝛼))/2𝜇(𝛼))(𝑘(𝛼)1 )2,𝛽(𝛼)2 = −(𝑛2−𝑛)/𝑟2−(𝜆(𝛼)/2𝜇(𝛼))(𝑘(𝛼)1 )2, and 𝛽(𝛼)3 = −(𝑛2−𝑛)/𝑟2 + (1/2)(𝑘(𝛼)2 )2.
The boundary conditions for the problem will be deter-

mined at the inner surface of the tunnel, at the interface
between the tunnel and the surrounding medium, and at
the free surface of the half space. It will be assumed that
all contacts are perfect such that the displacements and the
tractions are continuous across the interface between the
tunnel and the surrounding medium. Given that the tunnel
is subjected to an internal pressure 𝑃0 in magnitude, the
boundary conditions at 𝑟 = 𝑎 are as follows:

𝜎(1)𝑟𝑟 = −𝑃0,
𝜎(1)𝑟𝜃 = 0. (14)

For the interface, at 𝑟 = 𝑏,
𝑢(1)𝑟 = 𝑢(2)𝑟 ,
𝑢(1)𝜃 = 𝑢(2)𝜃 ,
𝜎(1)𝑟𝑟 = 𝜎(2)𝑟𝑟 ,
𝜎(1)𝑟𝜃 = 𝜎(2)𝑟𝜃 .

(15)

For the traction-free surface, at 𝑥 = 𝐻,

𝜎(2)𝑥𝑥 = 0,
𝜎(2)𝑥𝑦 = 0. (16)

To use the stress boundary conditions given in (16) and
describe the displacement distribution on the free surface,
the stress and displacement components are transformed into
Cartesian coordinates via the relations

𝜎(𝛼)𝑥𝑥 = 𝜎(𝛼)𝑟𝑟 cos2𝜃 + 𝜎(𝛼)𝜃𝜃 sin2𝜃 + 2𝜎(𝛼)𝑟𝜃 sin 𝜃 cos 𝜃; (17a)

𝜎(𝛼)𝑥𝑦 = − (𝜎(𝛼)𝑟𝑟 − 𝜎(𝛼)𝜃𝜃 ) sin 𝜃 cos 𝜃
+ 𝜎(𝛼)𝑟𝜃 (cos2𝜃 − sin2𝜃) ; (17b)

𝑢(𝛼)𝑥 = 𝑢(𝛼)𝑟 cos 𝜃 − 𝑢(𝛼)𝜃 sin 𝜃; (17c)

𝑢(𝛼)𝑦 = 𝑢(𝛼)𝑟 sin 𝜃 + 𝑢(𝛼)𝜃 cos 𝜃. (17d)

Substituting (11), (12), and (13) into (17a) and (17b) and (10)
into (17c) and (17d), the transformed stress and displacement
components can be obtained:

𝜎(𝛼)𝑥𝑥 = ∞∑
𝑛=0

2𝜇(𝛼)⟨𝐴(𝛼)𝑛 {[−𝜆(𝛼) + 𝜇(𝛼)2𝜇(𝛼) (𝑘(𝛼)1 )2 𝐽𝑛 (𝑘1𝑟) + ((𝑛2 − 𝑛𝑟2 − 12 (𝑘(𝛼)1 )2)𝐽𝑛 (𝑘1𝑟) + 𝑘
(𝛼)
1𝑟 𝐽𝑛+1 (𝑘1𝑟)) cos 2𝜃]

⋅ cos 𝑛𝜃 − [−𝑛2 − 𝑛𝑟2 𝐽𝑛 (𝑘1𝑟) + 𝑘(𝛼)1 𝑛𝑟 𝐽𝑛+1 (𝑘1𝑟)] sin 2𝜃 sin 𝑛𝜃} + 𝐵(𝛼)𝑛 {∙} + 𝐶(𝛼)𝑛 {[𝑛2 − 𝑛𝑟2 𝐽𝑛 (𝑘2𝑟) − 𝑘(𝛼)2 𝑛𝑟 𝐽𝑛+1 (𝑘2𝑟)]
⋅ cos 2𝜃 cos 𝑛𝜃 − [𝛽(𝛼)3 𝐽𝑛 (𝑘2𝑟) − 𝑘(𝛼)2𝑟 𝐽𝑛+1 (𝑘2𝑟)] sin 2𝜃 sin 𝑛𝜃} + 𝐷(𝛼)𝑛 {∙}⟩ ,

(18)

𝜎(𝛼)𝑥𝑦 = ∞∑
𝑛=0

2𝜇(𝛼)⟨𝐴(𝛼)𝑛 {[(𝑛2 − 𝑛𝑟2 − 12 (𝑘(𝛼)1 )2)𝐽𝑛 (𝑘1𝑟) + 𝑘
(𝛼)
1𝑟 𝐽𝑛+1 (𝑘1𝑟)] sin 2𝜃 cos 𝑛𝜃

+ [−𝑛2 − 𝑛𝑟2 𝐽𝑛 (𝑘1𝑟) + 𝑘(𝛼)1 𝑛𝑟 𝐽𝑛+1 (𝑘1𝑟)] cos 2𝜃 sin 𝑛𝜃} + 𝐵(𝛼)𝑛 {∙}
+ 𝐶(𝛼)𝑛 {[𝑛2 − 𝑛𝑟2 𝐽𝑛 (𝑘2𝑟) − 𝑘(𝛼)2 𝑛𝑟 𝐽𝑛+1 (𝑘2𝑟)] sin 2𝜃 cos 𝑛𝜃 + [𝛽(𝛼)3 𝐽𝑛 (𝑘2𝑟) − 𝑘(𝛼)2𝑟 𝐽𝑛+1 (𝑘2𝑟)] cos 2𝜃 sin 𝑛𝜃}
+ 𝐷(𝛼)𝑛 {∙}⟩ ,

(19)
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𝑢(𝛼)𝑥 = ∞∑
𝑛=0

⟨𝐴(𝛼)𝑛 {[𝑛𝑟 𝐽𝑛 (𝑘1𝑟) − 𝑘(𝛼)1 𝐽𝑛+1 (𝑘1𝑟)] cos 𝜃 cos 𝑛𝜃 + 𝑛𝑟 𝐽𝑛 (𝑘1𝑟) sin 𝜃 sin 𝑛𝜃} + 𝐵(𝛼)𝑛 {∙}
+ 𝐶(𝛼)𝑛 {[𝑛𝑟 𝐽𝑛 (𝑘2𝑟) − 𝑘(𝛼)2 𝐽𝑛+1 (𝑘2𝑟)] sin 𝜃 sin 𝑛𝜃 + 𝑛𝑟 𝐽𝑛 (𝑘2𝑟) cos 𝜃 cos 𝑛𝜃} + 𝐷(𝛼)𝑛 {∙}⟩ ,

(20)

𝑢(𝛼)𝑦 = ∞∑
𝑛=0

⟨𝐴(𝛼)𝑛 {[𝑛𝑟 𝐽𝑛 (𝑘1𝑟) − 𝑘(𝛼)1 𝐽𝑛+1 (𝑘1𝑟)] sin 𝜃 cos 𝑛𝜃 − 𝑛𝑟 𝐽𝑛 (𝑘1𝑟) cos 𝜃 sin 𝑛𝜃} + 𝐵(𝛼)𝑛 {∙}
+ 𝐶(𝛼)𝑛 {− [𝑛𝑟 𝐽𝑛 (𝑘2𝑟) − 𝑘(𝛼)2 𝐽𝑛+1 (𝑘2𝑟)] cos 𝜃 sin 𝑛𝜃 + 𝑛𝑟 𝐽𝑛 (𝑘2𝑟) sin 𝜃 cos 𝑛𝜃} + 𝐷(𝛼)𝑛 {∙}⟩ ,

(21)

where 𝑘1𝑟 = 𝑘(𝛼)1 𝑟, 𝑘2𝑟 = 𝑘(𝛼)2 𝑟, and {∙} represents the coeffi-
cients of𝐵(𝛼)𝑛 and𝐷(𝛼)𝑛 having the same formas the coefficients
of 𝐴(𝛼)𝑛 and 𝐶(𝛼)𝑛 , respectively, and are obtained by replacing𝐽𝑛(∙) and 𝐽𝑛+1(∙) with 𝑌𝑛(∙) and 𝑌𝑛+1(∙).
3. Solution of the Problem

Equations (10)–(13) constitute a system containing an infinite
number of equations with the unknown constants 𝐴(𝛼)𝑛 , 𝐵(𝛼)𝑛 ,𝐶(𝛼)𝑛 , and 𝐷(𝛼)𝑛 (𝑛 = 0, 1, 2, . . .). Because of the difficulty
of taking into account an infinite number of terms in the
series given above, particularly for the functions 𝑌𝑛 for a
small argument with a large index, the series are truncated
at a finite number𝑁. Furthermore, as the coefficients of 𝐶(𝛼)𝑛
and 𝐷(𝛼)𝑛 become zero for 𝑛 = 0 in (10)–(13), the constants𝐶(𝛼)0 and 𝐷(𝛼)0 can be likewise assumed to be zero. In this
case, the number of constants (𝐴(𝛼)0 , 𝐵(𝛼)0 , 𝐴(𝛼)𝑛 , 𝐵(𝛼)𝑛 , 𝐶(𝛼)𝑛 , and𝐷(𝛼)𝑛 ; 𝛼 = 1, 2; 𝑛 = 1, 2, . . . , 𝑁) to be determined in the
equations becomes 8 × 𝑁 + 4. To obtain these constants,
one can use the boundary conditions given by (14) and (15).
Substituting (11) into (14) and considering that the solution
must be valid for all values of 𝜃, 𝑁+1 equations are obtained.
This solution is obtained by equating the coefficient of cos 𝑛𝜃
to 𝑃0 for 𝑛 = 0 and zero for 𝑛 > 0, respectively. Similarly,
substituting (13) into (14) and equating the coefficient of
sin 𝑛𝜃 to zero for 𝑛 > 0,𝑁 equations are obtained. Therefore,
using the boundary conditions at the inner surface of the
tunnel (𝑟 = 𝑎), 2 × 𝑁 + 1 equations are obtained. Following
the same solution procedure, 4×𝑁+2 equations are obtained
from the interface boundary conditions (i.e., (15)).Therefore,
the total number of equations becomes 6 × 𝑁 + 3. The
necessary 2 × 𝑁 + 1 equations will be obtained from the
boundary conditions given by (16), which require the stresses
at each point of the free surface to be equal to zero. As
there are an infinite number of points along the surface, the
use of these conditions leads to an infinite set of algebraic
equations. Furthermore, these boundary conditions cannot
be satisfied exactly at each point as the series are truncated
by keeping only a finite number of terms in the summations.
Therefore, the boundary conditions (i.e., (16)) are satisfied
approximately only at a finite number of points along the
free surface by applying the least-squares technique. For this
purpose, using 4×𝑁+2 equations obtained for the interface,

the constants of region 2 (𝛼 = 2) are solved in terms of the2 × 𝑁 + 1 constants of region 1 (𝛼 = 1) as
𝐴(2)0 = 𝑓 (𝐵(1)0 ) ,
𝐵(2)0 = 𝑓 (𝐵(1)0 ) ,
𝐴(2)𝑛 = 𝑓 (𝐶(1)𝑛 , 𝐷(1)𝑛 ) ,
𝐵(2)𝑛 = 𝑓 (𝐶(1)𝑛 , 𝐷(1)𝑛 ) ,
𝐶(2)𝑛 = 𝑓 (𝐶(1)𝑛 , 𝐷(1)𝑛 )
𝐷(2)𝑛 = 𝑓 (𝐶(1)𝑛 , 𝐷(1)𝑛 ) ,

(22)

and then substituted into (18) and (19). This procedure
reduces the number of constants to 2 × 𝑁 + 1 in these
equations. Subsequently, these 2 × 𝑁 + 1 constants can
be obtained from a set of algebraic equations that will be
established by using 𝑟𝑘 = 𝐻/cos 𝜃𝑘 in (18) and (19) and
applying the least-squares technique given by

Π = 𝑀∑
𝑘=1

((𝜎(𝑘)𝑥𝑥 − 𝜎(𝑘)𝑥𝑥)2 + (𝜎(𝑘)𝑥𝑦 − 𝜎(𝑘)𝑥𝑦 )2) = min . (23)

Here,𝑀 is the number of points on the free surface, 𝜎(𝑘)𝑥𝑥 and𝜎(𝑘)𝑥𝑦 are the stress components to be computed approximately
at any point 𝑘, and 𝜎(𝑘)𝑥𝑥 and 𝜎(𝑘)𝑥𝑦 are the external stress
components at these points. Using (23), a set of algebraic
equations for the unknowns 𝐵(1)0 , 𝐶(1)𝑛 , and𝐷(1)𝑛 can be found
from

𝜕Π𝜕𝐵(1)0 = 𝑀∑
𝑘=1

(𝜎(𝑘)𝑥𝑥 𝜕𝜎(𝑘)𝑥𝑥𝜕𝐵(1)0 + 𝜎(𝑘)𝑥𝑦 𝜕𝜎
(𝑘)
𝑥𝑦𝜕𝐵(1)0 ) = 0,

𝜕Π𝜕𝐶(1)𝑛 = 𝑀∑
𝑘=1

(𝜎(𝑘)𝑥𝑥 𝜕𝜎(𝑘)𝑥𝑥𝜕𝐶(1)𝑛 + 𝜎(𝑘)𝑥𝑦 𝜕𝜎
(𝑘)
𝑥𝑦𝜕𝐶(1)𝑛 ) = 0,

𝑛 = 1, 2, . . . , 𝑁,
𝜕Π𝜕𝐷(1)𝑛 = 𝑀∑

𝑘=1

(𝜎(𝑘)𝑥𝑥 𝜕𝜎(𝑘)𝑥𝑥𝜕𝐷(1)𝑛 + 𝜎(𝑘)𝑥𝑦 𝜕𝜎
(𝑘)
𝑥𝑦𝜕𝐷(1)𝑛 ) = 0,

𝑛 = 1, 2, . . . , 𝑁.

(24)
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Here, it is assumed that 𝜎(𝑘)𝑥𝑥 = 𝜎(𝑘)𝑥𝑦 = 0 at 𝑟𝑘 = 𝐻/cos 𝜃𝑘
as the surface is traction-free. After determining 2 × 𝑁 + 1
constants from (24), the constants 𝐴(2)0 , 𝐵(2)0 , 𝐴(2)𝑛 , 𝐵(2)𝑛 , 𝐶(2)𝑛 ,
and 𝐷(2)𝑛 can be obtained from (22). Finally, the remaining
constants (𝐴(1)0 , 𝐴(1)𝑛 , and 𝐵(1)𝑛 ) can be determined through
(14) as they are dependent on the other constants of region 1.
Once the constants are obtained, the displacement and stress
components at any point can be calculated.

4. Numerical Results and Discussion

Numerical computations are presented for a concrete circular
tunnel of outer radius 𝑏 = 6m buried in the elastic half
space shown in Figure 1. The wall thickness of the tunnel
and the inner radius are taken to be 𝑡 = 𝑡∗𝑏 and 𝑎 = (1 −𝑡∗)𝑏, respectively, where 𝑡∗ (0 < 𝑡∗ < 1) represents the
thickness parameter. The material properties for the tunnel
are 𝜌 = 2410 kg/m3, 𝐸 = 2.01 × 1010N/m2, and ] =0.2. Two types of outside ground material are considered for
comparison purposes. The first ground material is hard soil
with properties 𝜌(1) = 2664 kg/m3, 𝐸(1) = 7.569 × 109N/m2,
and ](1) = 0.333. The second ground material is soft soil with
properties 𝜌(2) = 2665 kg/m3, 𝐸(2) = 6.9 × 108N/m2, and
](2) = 0.45. The internal pressure 𝑃0 on the inner surface of
the tunnel, the truncation constant 𝑁, and the region at the
free surface are taken to be 𝑃0 = 105N/m2,𝑁 = 8, and −30 ×𝑏 ≤ 𝑦 ≤ 30× 𝑏, respectively.The dimensionless wave number(𝑘(2)2 𝑏), the dimensionless depth ratio (𝐻/𝑏), and the thick-
ness parameter (𝑡∗) are used to represent the behavior. Fur-
thermore, the following dimensionless parameters are used
to show numerical results: radial and tangential displacement
amplitudes 𝑢∗𝑟 = |𝑢𝑟|𝜆(1)/𝑏𝑃0 and 𝑢∗𝜃 = |𝑢𝜃|𝜆(1)/𝑏𝑃0, surface
displacement amplitudes 𝑢∗𝑥 = |𝑢𝑥|𝜆(1)/𝑏𝑃0, and radial and
tangential stress amplitudes 𝜎∗𝑟𝑟 = |𝜎𝑟𝑟|/𝑃0 and 𝜎∗𝜃𝜃 = |𝜎𝜃𝜃|/𝑃0.
Owing to the symmetry of the system with respect to the𝑥-axis, the displacement and stress distributions become
symmetrical about this axis in all figures.

Figures 2–5 show the effect of varying the wave number
(i.e., the frequency) on the displacements and stresses at
the outer surface of the tunnel wall when the surrounding
material is hard soil. Note that 𝑘(2)2 = 𝜔/𝛽(2)2 , in which 𝛽(2)2
is equal to the shear wave speed in the ground.

One can see from Figure 2 that radial displacements
increase with frequency first and then decrease. Depending
on the frequency, maximum radial displacements occur at𝜃 = 0∘ and 𝜃 = 180∘, that is, at the points nearest and
farthest from the free surface. As in the case of the radial dis-
placements, tangential displacements (Figure 3) are found to
increase first with frequency and then decrease. Their maxi-
mum values (except at low frequencies) occur at approxi-
mately 𝜃 = ±45∘ and 𝜃 = ±120∘. Figures 4 and 5 show
the results for radial and tangential stresses, respectively. One
can see from Figure 4 that the radial stress distribution is
nearly symmetric about the center and that the stresses first
decrease and then increase with increasing frequency. As in
the case of the radial displacements, the maximum radial
stresses occur at the points nearest and farthest from the free
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Figure 2: Radial displacement (𝑢∗𝑟 ) versus polar angle at 𝑟 = 𝑏 for
different wave numbers (𝑘(2)2 𝑏) for a tunnel in hard soil.
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Figure 3: Tangential displacement (𝑢∗𝜃 ) versus polar angle at 𝑟 = 𝑏
for different wave numbers (𝑘(2)2 𝑏) for a tunnel in hard soil.

surface. In contrast to the radial stresses, tangential stresses
(Figure 5) first increase with frequency and then decrease; the
maximum values occur at nearly 𝜃 = ±90∘. Furthermore, at
low frequencies the distribution is nearly symmetrical about
the 𝑦-axis. However, as the frequency increased, the distri-
bution became more asymmetric. From Figures 2–5, one can
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Figure 4: Radial stress (𝜎∗𝑟𝑟) versus polar angle at 𝑟 = 𝑏 for different
wave numbers (𝑘(2)2 𝑏) for a tunnel in hard soil.
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Figure 5: Tangential stress (𝜎∗𝜃𝜃) versus polar angle at 𝑟 = 𝑏 for
different wave numbers (𝑘(2)2 𝑏) for a tunnel in hard soil.

observe that the radial displacements and tangential stresses
are considerably larger than the corresponding tangential
displacements and radial stresses at the same frequency.

Figure 6 shows the variations of the radial displacement
with respect to the frequency at 𝑟 = 𝑏 for the top (𝜃 = 0∘)
and bottom (𝜃 = 180∘) points of the tunnel. As in the spatial
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Figure 6: Radial displacement (𝑢∗𝑟 ) versus frequency at 𝑟 = 𝑏 for𝜃 = 0∘ and 𝜃 = 180∘ for a tunnel in hard soil.
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Figure 7: Radial (𝜎∗𝑟𝑟) and tangential (𝜎∗𝜃𝜃) stresses versus frequency
at 𝑟 = 𝑏 for 𝜃 = 0∘ and 𝜃 = 180∘ for a tunnel in hard soil.

distribution shown in Figure 2, radial displacement increases
initially as the frequency increases and then decreases and
increases again as the frequency increases further. The maxi-
mum value occurs at 𝜃 = 180∘, that is, at the point farthest
from the free surface. Figure 7 shows the variations of the
radial and tangential stresses with respect to the frequency
at 𝑟 = 𝑏 for the top (𝜃 = 0∘) and bottom (𝜃 = 180∘) points
of the tunnel. One can see that the tangential stresses, as
expected, are significantly higher than the radial stresses for
all frequency values. In addition, the maximum values occur
at the top point of the tunnel for both the radial and tangential
stresses at different frequency values.
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Figure 8: Radial displacement (𝑢∗𝑟 ) versus polar angle at 𝑟 = 𝑏 for
different wave numbers (𝑘(2)2 𝑏) for a tunnel in soft soil.

2.01.51.00.50.00.51.01.52.0

30

210

60

240

90 270

120

300

150

330

180

0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1.037
1.728

2.419
3.109

k(2)2 b = 0.346

t∗ = 0.1
H/b = 6

Figure 9: Radial stress (𝜎∗𝑟𝑟) versus polar angle at 𝑟 = 𝑏 for different
wave numbers (𝑘(2)2 𝑏) for a tunnel in soft soil.

Figures 8–10 show the results for a tunnel embedded in
soft soil. Note that the ratio of the shear wave speeds in the
hard and soft soils is 3.455. Because of this fact, the value
of 𝑘(2)2 𝑏 in soft soil is larger by a factor of 3.455 compared
with that for hard soil for the same frequency. Therefore, for
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Figure 10: Tangential stress (𝜎∗𝜃𝜃) versus polar angle at 𝑟 = 𝑏 for
different wave numbers (𝑘(2)2 𝑏) for a tunnel in soft soil.

example, 𝑘(2)2 𝑏 = 0.5 in hard soil corresponds to 𝑘(2)2 𝑏 = 1.728
in soft soil. Radial displacements in the tunnel are shown
in Figure 8. One can see that the displacement configuration
has a complicated structure with local maxima and minima.
However, as in the case of the hard soil, the maximum radial
displacements occur at 𝜃 = 0∘ and 𝜃 = 180∘ except for 𝑘(2)2 𝑏 =1.037, for which the maximum occurs at nearly 𝜃 = ±90∘.
The maximum value decreases initially as the frequency
increases and then increases and decreases again as the
frequency increases further. Tangential displacements were
also considered, but the results are not shown here. It was
found that the maximum tangential displacement in the
tunnel decreased first with frequency, then increased, and
then decreased again, similar to the radial displacements.
Radial stresses in the tunnel are shown in Figure 9. One can
see that radial stresses increase with frequency first and then
decrease.Maximum values occur in the upper half of the tun-
nel but close to ±90∘ at high frequencies. Note that the varia-
tions shown in Figure 9 are quite different from those shown
in Figure 4. Tangential stresses in the tunnel are shown in
Figure 10. One can see that the stress distribution is nearly
symmetrical about the center at low frequencies. Stresses
decrease initially as the frequency increases and then increase
as the frequency increases further. As in the case of the hard
soil, tangential stresses in soft soil are found to be consid-
erably larger than radial stresses.

Figures 11 and 12 show the effect of varying the depth
of the tunnel on the radial displacements at the tunnel wall
for 𝑘(2)2 𝑏 = 0.9 and 3.109 in hard and soft soil, respectively.
The corresponding frequency for these dimensionless wave
numbers is 𝜔 = 154.83 rad/s. In hard soil (Figure 11),
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Figure 11: Radial displacement (𝑢∗𝑟 ) versus polar angle at 𝑟 = 𝑏 for
different depths (𝐻/𝑏) for a tunnel in hard soil.
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Figure 12: Radial displacement (𝑢∗𝑟 ) versus polar angle at 𝑟 = 𝑏 for
different depths (𝐻/𝑏) for a tunnel in soft soil.

the maximum radial displacement, which increases in mag-
nitude with depth continuously, occurs at the points nearest
and farthest from the free surface (i.e., 𝜃 = 0∘ and 𝜃 =180∘). The exception is 𝐻/𝑏 = 7.5, for which the maximum
occurs at 𝜃 = ±90∘. However, in soft soil (Figure 12) the
maximum radial displacement increases initially as depth
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Figure 13: Tangential displacement (𝑢∗𝜃 ) versus polar angle at 𝑟 = 𝑏
for different depths (𝐻/𝑏) for a tunnel in soft soil.

increases and then decreases and increases again as the depth
increases further. The same behavior is observed for the
maximum tangential displacement (Figure 13). As can be
seen in Figure 12, maximum radial displacements occur at𝜃 = 0∘ and 𝜃 = 180∘.The exception is𝐻/𝑏 = 7.5 for which the
maximum occurs at around 𝜃 = ±45∘. On the other hand, the
maximum tangential displacement in hard soil (not shown
here) was found to increase with depth.

Figures 14 and 15 show the effect of varying the depth of
the tunnel on the tangential stresses at the tunnel wall in hard
and soft soil, respectively. The wave numbers are the same
as noted previously. In hard soil (Figure 14), the maximum
tangential stress, which increases in magnitude with depth,
is found to occur at 𝜃 = 0∘ and 𝜃 = ±90∘. However,
the maximum value in soft soil (Figure 15) increases first
with depth, then decreases, and then increases again, like in
the radial displacements. Note that the maximum tangential
stresses occur at 𝜃 = ±45∘, except for𝐻/𝑏 = 4.5. In contrast
to themaximum tangential stresses, maximum radial stresses
(not shown here) decreased in magnitude continuously with
increasing depth for both of soils. This decrease, however,
occurred slowly in the hard soil but sharply in the soft soil.
Furthermore, numerical results revealed that the tangential
stresses and theirmaximumvalues increased slightly for both
soils if the depth was increased further beyond the values that
we examined. Based on the results in Figures 2–15 for two dif-
ferent ground materials, one can observe that larger stresses
and displacements occur in tunnels embedded in soft soil.

Figure 16 shows the effect of varying the wall thickness
of the tunnel on the tangential stresses for the hard-soil case.
One can see that the maximum stress, which occurs at nearly𝜃 = ±90∘, decreases as the thickness of the tunnel increases.
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Figure 14: Tangential stress (𝜎∗𝜃𝜃) versus polar angle at 𝑟 = 𝑏 for
different depths (𝐻/𝑏) for a tunnel in hard soil.
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Figure 15: Tangential stress (𝜎∗𝜃𝜃) versus polar angle at 𝑟 = 𝑏 for
different depths (𝐻/𝑏) for a tunnel in soft soil.

Note that the distribution becomes nearly symmetrical about
the 𝑦-axis with increasing thickness. As in the case of hard
soil, the maximum tangential stress (Figure 17) in soft soil
decreases as the thickness increases. However, the point
at which the maximum stress occurs varies significantly
depending on the values of the thickness of the tunnel. Based
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Figure 16: Tangential stress (𝜎∗𝜃𝜃) versus polar angle at 𝑟 = 𝑏 for
different thicknesses (𝑡∗) for a tunnel in hard soil.
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Figure 17: Tangential stress (𝜎∗𝜃𝜃) versus polar angle at 𝑟 = 𝑏 for
different thicknesses (𝑡∗) for a tunnel in soft soil.

on numerical results (not shown here), the maximum values
of the radial stresses and radial and tangential displacements
also decreased as the wall thickness increased for both soils.
In other words, a thinner tunnel experiences higher stresses
and displacements.
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Figure 18: Vertical displacement (𝑢∗𝑥) at the free surface of the half
space for different thicknesses (𝑡∗) for a tunnel in hard soil.

Finally, the effect of the wall thickness on the free-surface
vertical displacements (𝑢∗𝑥) is shown in Figure 18 for the hard-
soil case. In this figure, the displacements along the surface of
the half space are plotted from 𝑦/𝑏 = −30 to 𝑦/𝑏 = 30, where𝑦/𝑏 is the dimensionless distance along the horizontal 𝑦-axis.
As expected, the vertical displacements along the free surface
decrease as the horizontal distance to the tunnel increases,
and themaximum values occur at the point nearest to the top
of the tunnel (i.e., 𝜃 = 0∘ and 𝑥 = 𝐻). Furthermore, one can
see that free surface displacements decrease as the thickness
of the tunnel increases. The corresponding results for the
soft soil (not shown here) are similar, but the displacement
magnitudes were considerably larger.

5. Conclusions

In this paper, the dynamic response of a circular tunnel buried
in an elastic half space is discussed. Two types of ground
material (hard and soft soil) were considered for the half
space for comparison purposes. The effects of the soil type,
frequency, and depth on the stresses and displacements at the
outer surface of the tunnel wall and the effects of the tunnel
thickness on the stresses at the tunnel wall and the vertical
displacements at the free surface of the half space have been
presented in the figures. It was found that, generally, larger
stresses and displacements occurred in the soft-soil case than
in the hard-soil case. Additionally, the radial displacements
and tangential stresses in both soils were significantly larger
than the corresponding tangential displacements and radial
stresses, respectively.

In the range of frequencies considered, the maximum
radial stresses in the hard soil and the maximum tangential
stresses in the soft soil first decreasedwith frequency and then
increased. However, the maximum values of the tangential
stress in the hard soil and radial stress in the soft soil increased

first with frequency and then decreased. For the hard soil,
it was observed that the maximum radial stresses occurred
at the points nearest and farthest from the free surface; the
maximum tangential stresses occurred at points along the 𝑦-
axis. For soft soil, however, the maximum radial and tangen-
tial stresses generally occurred in the upper half of the tunnel.
Similar to the variations in maximum stresses, the maxi-
mum displacements, in absolute terms, also increased and/or
decreased significantly with frequency for both the soils. In
particular, the maximum radial displacements occurred at
the points nearest and farthest from the free surface.

Variations of stress and displacement at the outer surface
of the tunnel wall strongly depended on the depth of
embedment. The maximum radial stresses decreased with
increasing depth for both soils. The maximum tangential
stress increased with depth in the hard soil but increased,
decreased, and then increased again in the soft soil. As in
the case of the variations with frequency, the maximum
displacements (like the maximum stresses) also increased
and/or decreased significantly with depth for both soils.

The thickness of the tunnel also affected the stresses
and displacements considerably. Both the maximum stress
and displacement in the tunnel and the maximum vertical
displacement at the free surface (which occurs at the point
nearest to the top of the tunnel) decreased as the thickness
of the tunnel increased. Additionally, the amplitudes of
the vertical displacement along the free surface decreased
gradually as one moved away from the tunnel, as expected.

From the preceding remarks, it can be concluded that
the properties of the surrounding ground, the frequency, the
thickness of the tunnel wall, and the depth of embedment
have a considerable effect on the dynamic response of the
tunnel.
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