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Growing interest in the smart grid, increasing use of distributed generation, and classical distribution system reconfiguration
(DSR) and restoration problems have led to the search for efficient distribution automation tools. One such tool, the improved
Fast Nondominated Sorting Genetic Algorithm (FNSGA), not only is effective in finding system configurations that are optimal
with respect to voltages, currents, and losses, but also considered parametric study to determine minimum values of N and Gen.
In this paper, the essential spanning tree concept is expanded to improve the computational efficiency of the algorithm. Results of
the study show that for relatively small test systems, optimum system configurations are obtained using values of N and Gen that
require very small CPU times. In larger systems, optimum values of N and Gen requiring reasonable CPU times can also be found,
provided that certain carefully chosen branches are removed from the pool of possibilities when producing the initial population
in the algorithm. By using essential trees, the efficiency of the calculation is improved.

1. Introduction

Growing interest in the smart grid [1] and increasing use
of distributed generation, along with classical problems of
DSR, have led to the need for efficient and reliable power
distribution system simulation tools. For systemperformance
optimization with respect to multiple objectives, such as
voltage profiles, system load balancing index, and power
losses, various formulations of genetic algorithms (GA) [2–
7] have been shown to be very effective.

One recently developed GA, the Fast Nondominated
SortingGenetic Algorithm (FNSGA) [8], converges relatively
efficiently to reliable Pareto-optimal solution sets in the
multiobjective DSR problem when applied to relatively small
test systems. When applied to larger test systems, however,
the original FNSGA is restricted by the use of the Newton-
Raphson numerical load flow solution method [9] and the
need for large initial population sizes (N) and numbers
of iterations (Gen), which leads to burdensome memory
requirements and long computation time. Computational

efficiency is increasingly important in large (real) systems [2,
3, 10]. In the improved FNSGA discussed here, the Newton-
Raphson load flow program is replaced with a revised version
of the direct load flow method [11]. Also, a parametric
study was conducted to determine minimum values of N
and Gen that lead to reasonably repeatable configurations
of a distribution system that are optimized for the multiple
objectives of voltages, currents, and power losses [12]. In that
study it was determined that computational efficiency could
be improved by judiciously removing certain branches from
the pool of possibilities when forming the initial population
for the algorithm.

A method for further improving algorithm computa-
tional efficiency, the principal subject of this paper, involves
the use of essential spanning trees. The method involves
replacing the so-calledMmatrix [8] and its associated process
in the algorithm with the random selection of b essential
branches, where b is the number of fundamental loops in
the system. Essential branches are those between essential
nodes, where essential nodes are buses that connect at least
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Figure 1: Illustration of the first two iterations (generations) of the genetic algorithm as applied to the 16-bus system shown in Figure 2.

three regular branches. The usual check for system radiality
is then made based on the b chosen essential branches. If
the system is radial, one regular branch within each essential
branch is then chosen randomly to form a possible solution
switch set. This switch set is then checked for repetition.
Finally, this process is repeated N times to determine the
initial population for application of the genetic algorithm.

In Section 2, the FNSGA is briefly described, with
emphasis on the roles of the parameters N and Gen in the
algorithm. In Section 3, the use of essential systems to further
reduce CPU time is described. In Section 4, the results of
parametric studies to optimize the values of N and Gen via
full switch pool and essential tree approaches are presented.
It is shown that the essential tree approach can result in
significant computation time reductions as compared to the
full switch pool approach. Section 5 concludes the paper with
a summary.

2. Brief Description of the FNSGA

The FNSGA is described in detail in [8, 13]. Here, a
brief description, illustrating its application to the above-
mentioned 16-bus test system and emphasizing the roles
of the two important parameters N and Gen, is provided
instead. The FNSGA is illustrated in Figure 1 for application
to the 16-bus test system shown in Figure 2. The example
illustrates the first two generations, i.e., iterations of the main
body program, with an initial population of 20 randomly
generated sets of tie or open switches in the initially meshed
test system. One such possible switch set consists of branches
7, 9, and 16, as in Figure 2.

The left column shows the current total population NT
of open switch sets under consideration during the process.
During the first iteration, the initial population, which is
equal to the size predefined by the user (20 in the example),
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Figure 2: 16-bus test system consisting of three fundamental loops.
Open (tie) switches in branches 7, 9, and 16 determine one possible
radial system.

is generated randomly. In the next step, an equal population
of offspring is generated from the initial population using
the genetic crossover operator. The total population in the
example now consists of 40 individuals. Due to the random-
ness involved in the first two steps, there might be repeated
individuals among the 40, and some of themmay not actually
create a radial topology. Thus, the next step (the third box
in the algorithm) is to detect and remove both the repeated
individuals and those that do not produce radial topologies.
At this point the population will consist of fewer than twice
the original number, e.g., 32, as shown in Figure 1.

Next, load flow analysis is conducted on all 32 radial
systems defined by the 32 valid switch sets, to generate voltage
profiles in preparation for the next step, which is guided
mutation. During guided mutation [8, 13], the branch that
is connected to the lowest voltage bus is replaced randomly
with one that is also connected to the lowest voltage bus, but
not present in the current switch set combination. If there
is not such an alternate, mutation for this bus is skipped.
This mutation process is conducted on the voltage profiles of
all 32 radial systems in question. Thus, the total population
is now doubled, to 64 in the example. At this point, there
might be repeated individuals among the 64, and some of
them may not actually create a radial topology. Thus, it is
again necessary to remove both the repeated individuals and
those that do not produce radial topologies. For the sake of
the example, it is assumed that 42 valid individuals remain,
as shown in Figure 1.

After the guided mutation step, load flow analysis is
conducted again, this time to determine all the performance
objectives defined by the user. For this study, the defined
multiple objectives were voltage profiles, total system power
losses, and the system load balancing index (SLBI) [5]. These
are the data needed for the nondominated sorting process
[13], which produces the Pareto-optimal (nondominated)
solution set. For the example, the population of the Pareto-
optimal set is assumed to be 5, as shown in Figure 1.

At this point, one genetic generation is complete, i.e.,
one iteration of the user-specified number of generations
Gen. The entire process is repeated for each remaining
generation, with the only change being that the Pareto-
optimal population set from each generation is kept and

1

9

8 7

4

5

6

3

19

2

20

30

31

32

33

181716
1514

13

12

22

21

24

25

26
2827 29

11

10

23

1

28

29
30

31

32

36

1716
15

14
13

12

35

21

20

19

18
2

3

4

5
25

26 27
37

24

23
22

733

8

11

10

9

34

6

Figure 3: Meshed 32-bus test system consisting of five fundamental
loops.

included as part of the population N at the start of the
succeeding generation. Thus, the solution “evolves” to better
and better results with each generation, and, thus, larger
values of Gen lead to better results. Similarly, larger values
of N allow the algorithm to consider more potential optimal
solutions, which also leads to better results. Of course, larger
values of N and Gen result in increased CPU times.

3. Applying Essential Spanning Tree to Reduce
Switch Pool Size

As described previously, the FNSGA randomly selects one
branch from each fundamental loop in the system to be
made radial; it checks to see whether the selected set of
open branches (a switch set) defines a radial system, and
if so, whether it has been selected already; it then repeats
the process N times. The N sets of open branches then
evolve to better solutions as the algorithm proceeds. If N is
very small in comparison with the number of possibilities, a
very large number of generations will be required in order
for the algorithm to consider a sufficient number of switch
sets to produce repeatable results. This will result in the
consumption of excessive CPU time. Thus, it should be
possible to decrease CPU time by reducing the number of
switches to be considered in forming the initial populations,
i.e., the size of the eligible switch pool.

Here, we use the essential spanning tree concept [14] to
simplify the original graph describing the system in question
to an essential graph. For example, the complete 32-bus test
system and its corresponding essential graph or mesh are
shown in Figures 3 and 4, respectively. To make use of the
essential mesh, the random switch sets are created using
it, rather than the complete system. The FNSGA shown in
Figure 1 is then accordingly modified, as shown in Figure 5.
Thus, following initialization, radiality of the essential tree in
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Table 1: Results summary from 25 runs of the FNSGA on the 16-bus test system with various values for N with Gen = 5.

Gen N Average CPU time
(seconds) Total no. of Solutions Number of unique

solutions
Maximum occurrence

rate (percent)
5 2 0.048 49 17 24
5 4 0.073 66 18 48
5 8 0.146 97 16 44
5 12 0.203 110 12 80
5 16 0.265 118 11 92
5 20 0.330 118 9 96
5 24 0.369 118 10 96
5 28 0.436 118 7 100
5 30 0.448 122 8 100

1

10

4

3

5

6

8

7

9

2

1

12

4
3

147

6

13
11

8 2

5

10

9

Figure 4: Essential graph of the 32-bus test system shown in
Figure 3.

question is determined, followed by random selection of one
switch from each branch in the radial essential tree. Load flow
analysis is then performed on the associated system to calcu-
late voltage profile, power loss, and SLBI information. Next,
guided mutation based on the voltage profile is performed
and repeated branches are deleted. Because mutation may
cause the radiality situation to change, new essential branch
sets are found, and the above steps are repeated. At this point
nondominated sorting to obtain the Pareto-optimal solution
sets is performed, and one iteration of the entire algorithm is
complete.

After the algorithm has been repeated the specified num-
ber of times (Gen), a reduced switch pool will have been pro-
duced, which consists of only the branches in selected essen-
tial tree branches.The FNSGA algorithm can then be applied
to this reduced size switch pool, rather than either the full 37
branches in the system or the 22 branches described in [12].

4. Parametric Study to Reduce CPU Time

In order to optimize N and Gen by finding minimum
values of the two (for CPU time purposes) that lead to

highly repeatable Pareto-optimal configurations, the above-
described FNSGA was used to determine Pareto-optimal
radial configurations of the initiallymeshed (no initially open
switches) 16- and 32-bus test systems.N andGenwere defined
as variable parameters. The algorithm was programmed in
MATLAB and implemented on a 2.7 GHz, 8 GB RAM laptop
personal computer.

4.1. 16-Bus Test System. To optimize the initial population
size N, Table 1 shows a summary of the results of applying the
FNSGA to the 16-bus system shown in Figure 2. All switches,
including numbers 7, 9, and 16, were initially closed, so as not
to bias any one possible solution. Bus and branch input data
describing the system were taken from [15]. The number of
generations was fixed at 5 and the initial population size was
varied from 2 to 30. For each (Gen, N) pair the algorithmwas
run 25 times. Data in the table include, for each (Gen, N) pair,
the average CPU time per run, the total number of Pareto-
optimal solutions in the 25 runs, the number of unique
solutions, and the occurrence rate of the most frequently
occurring solution in the 25 runs (the maximum occurrence
rate).Thus, for example, in the case ofN= 16, the averageCPU
time was 0.265 seconds, eleven unique three-open-switch
Pareto-optimal solutions appeared 118 times, and at least one
such solution appeared 92 percent of the time or 23 times in
the 25 runs of the algorithm.

The data in Table 1 show that CPU time is acceptably
small, and it increases linearly with N, at least over the range
of N considered in the study. Also, the maximum occurrence
rate saturates at well over 90 percent as N increases beyond
approximately 20, shown by the plotted data in Figure 6.
Using the criterion that N is sufficiently large when at least
one solution appears at least 90 percent of the time, the fourth
order curve fitted to the data in Figure 6 shows that an initial
population size of approximately 20 is sufficient to produce
repeatable solution sets (with Gen = 5) in the 16-bus test
system.

To optimize the number of generations Gen, Table 2
shows results (from 25 runs of the algorithm) of varying
Gen with N fixed at 20, the approximately optimum value
found via Figure 6. The data show that CPU time increases
linearly with Gen, at least over the range of Gen considered
in the study. It also shows that the maximum occurrence rate
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Figure 5: Illustration of the first two iterations (generations) of the application of the FNSGA using the essential spanning tree concept.
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Table 2: Results summary from 25 runs of the FNSGA on the 16-bus test system with various values for Gen with N = 20.

N Gen Average CPU time
(seconds) Total no. of Solutions Number of unique

solutions
Maximum occurrence

rate (percent)
20 1 0.079 81 22 36
20 2 0.146 96 14 68
20 3 0.203 106 18 76
20 4 0.263 111 9 80
20 5 0.318 118 9 92
20 6 0.359 119 9 96
20 7 0.400 118 11 92
20 8 0.435 122 8 100
20 9 0.442 121 9 100
20 10 0.500 122 5 100
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Figure 6: Maximum occurrence rate versus N, with Gen = 5, from
Table 1.

saturates at well over 90 percent as Gen increases beyond
approximately five; i.e., five generations are sufficient to
produce repeatable solution sets (with N = 20) in the 16-bus
test system.

4.2. 32-Bus Test System. The 16-bus parametric study showed
that the maximum occurrence rate, which indicates the
achievement of repeatable Pareto-optimal solutions, saturates
above the 90 percent level for reasonable values of N and
Gen, approximately 20 and 5, respectively. Also, the average
CPU time for these two parameters is only approximately 0.32
seconds, as shown in Tables 1 and 2.Thus, there is no consid-
erable computational burden with the 16-bus test system.

A similar parametric study to that done with the 16-bus
test system was conducted on the 32-bus system shown in
Figure 3. Bus and branch input data describing this system
were taken from [16]. Note that since the system consists of
five fundamental loops, Pareto-optimal solutions consist of
five open switches, rather than three, as in the 16-bus case.

Tables 3 and 4 summarize the results of 25 runs of the
FNSGA on the 32-bus system with N varied and Gen fixed
at 16, and with Gen varied and N fixed at 160, respectively.

The data in the tables show that CPU times are relatively long
and increase approximately linearly over the range of values
covered by N and Gen and that the maximum occurrence
rates are no higher than approximately 60 percent in any
case considered. Thus, the values of N and Gen required
for saturation of the maximum occurrence rate (and thus
repeatable Pareto-optimal solution sets) are much larger than
any of the values considered, and the corresponding CPU
time will be impractically large. A way of dealing with this
is discussed in the next section.

4.3. Use of Essential Spanning Trees. To examine the com-
putation efficiency when using the spanning tree approach
described previously, CPU times were compared for applica-
tion of the algorithm to the 32-bus test system using both the
full switch pool and that determined with the spanning tree
approach. As shown in Table 5, essential branch set (4, 6, 7,
9, and 10) clearly has the maximum occurrence rate, so this
set was used in the comparison study. (If multiple essential
branch sets have similar occurrence rates, a combination of
them can also be used.)

Having determined a reduced switch pool via the above-
identified essential branch set, the FNSGA was simulated 25
times using a Mac Pro with a dual-core intel Core i5 2.3 GHz
CPU. The results are shown in Table 6 and compared with
corresponding results using the full 37-switch pool. The data
show that, as the (N, Gen) values increase from (30, 5) to (40,
16) to (80, 16), the maximum occurrence rates improve from
12 percent to 64 percent, from 36 percent to 96 percent, and
from 52 percent to 100 percent, respectively.

In the full 37-switch pool case, a maximum occurrence
rate of only 52 percent is obtained with 1.96 seconds of CPU
time, but in the essential branch case, the desired 100 percent
maximum occurrence rate is achieved with a very reasonable
CPU time of 1.266 sec.

5. Conclusion

The paper shows that parametric studies of the initial popu-
lation size and number of generations in the FNSGA can be
used to find minimum values of the two that lead to highly
repeatable Pareto-optimal configurations with reasonable
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Table 3: Results summary from 25 runs of the FNSGA on the 32-bus test system with various values for N with Gen = 16.

Gen N Average CPU time
(seconds) Total no. of Solutions Number of unique

solutions
Maximum occurrence

rate (percent)
16 30 2.75 113 58 24
16 50 3.94 117 52 32
16 70 6.07 123 51 36
16 90 8.33 133 49 40
16 110 10.6 147 44 40
16 120 12.8 171 60 44
16 140 13.3 155 46 48
16 160 14.4 162 48 44
16 170 16.4 154 36 52
16 180 15.1 164 38 56
16 190 18.3 161 33 60

Table 4: Results summary from 25 runs of the FNSGA on the 32-bus test system with various values for Gen with N = 160.

N Gen Average CPU time
(seconds) Total no. of Solutions Number of unique

solutions
Maximum occurrence

rate (percent)
160 5 6.64 137 78 28
160 10 12.6 165 54 40
160 15 14.9 152 43 44
160 20 15.6 145 34 52
160 25 18.3 170 43 52
160 30 19.1 172 38 56

Table 5: Occurrence rate of the essential switch sets.

Essential switch sets Occurrence in 15 runs
4 5 9 7 10 2
4 5 9 14 10 9
4 6 9 7 10 26
4 6 9 14 10 7
4 6 12 7 10 3
4 6 12 14 10 7
4 11 9 7 10 2
13 5 9 14 10 5
13 6 9 7 10 3
13 6 9 14 10 6

Table 6: Comparing average CPU time and maximum occurrence rates in 25 runs obtained with the full 37-switch pool and the essential
switches for the 32-bus test system.

Gen N

Full (37) switch pool Reduced switch pool from selected essential
switches

Average CPU time
(seconds)

Maximum
Occurrence rate

(percent)

Average CPU time
(seconds)

Max Occurrence rate
(percent)

5 30 0.314 12 0.192 64
16 40 0.958 36 0.652 96
16 80 1.96 52 1.27 100
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CPU times. As the size of the system increases, the number of
eligible switches to be used in the algorithm may have to be
limited. This can be done with some preliminary simulations
to determine and remove from the eligible-switch pool those
switches that never appear in preliminary simulations. The
idea could be extended to larger systems by reducing the size
of the eligible switch pool even further by also removing those
switches that appear rarely, e.g., only one to four percent of the
time in the preliminary simulations.

A more radical way to improve the computational effi-
ciency of the algorithm is to take advantage of essential
spanning trees [16]. This is accomplished by replacing the
so-called M matrix and its associated process in the FNSGA
[8] with the random selection of b essential branches, where
b is the number of fundamental loops in the system. The
usual check for radiality is then made based on the b
chosen essential branches and the process continued as usual.
The results of parametric studies show the improvement in
computational efficiency due to the use of the spanning tree
approach. Continuation of this work should focus on ways
to improve the algorithm and further decrease CPU times in
larger, i.e., realistic, test systems.
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