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A numerical method for the solution of the Falkner–Skan equation, which is a nonlinear differential equation, is presented. )e
method has been derived by truncating the semi-infinite domain of the problem to a finite domain and then expanding the
required approximate solution as the elements of the Chebyshev series. Using matrix representation of a function and their
derivatives, the problem is reduced to a system of algebraic equations in a simple way. From the computational point of view, the
results are in excellent agreement with those presented in published works.

1. Introduction

Ordinary differential equations are important tools in
solving real-world problems. Several natural phenomena are
modelled by ODEs that have been used in several fields, such
as physics, engineering, and biology [1–7].

)e Falkner–Skan equation arises in the study of
laminar boundary layers exhibiting similarity. )e simi-
larity solutions of the two-dimensional incompressible
laminar boundary layer equations are well-known as the
Falkner–Skan equation. )e F–S equation is a one-di-
mensional third-order nonlinear two-point boundary-
value problem which has no closed-form solution. )e
problem is given by

f
‴

+ β0ff″ + β 1 − f′
2

􏼒 􏼓 � 0, 0≤ η< ∞, (1)

where β0 and β are constants and primes denote differen-
tiation with respect to η.)e associated boundary conditions
are given by

f(0) � 0,

f′(0) � 0,

lim
η⟶∞

f′(η) � 1.

(2)

)e solution of (1) and (2) is characterized by f″(0) � α.
)e numerical treatment of this problem was addressed

by many authors, namely, Lakestani [8], Parand et al. [9], El-
Nady and Abd Rabbo [10, 11], Cebeci and Keller [12], Na
[13], Asaithambi [14], Asaithambi [15], Elgazery [16], and
Ganapol [17]. )ese techniques have mainly used shooting
algorithms or invariant imbedding. )e Chebshev colloca-
tion matrix method [18] has been presented the numerical
solution of nonlinear differential equations. )e method in
[18] transforms the nonlinear differential equation into the
matrix equation, which corresponds to a system of nonlinear
algebraic equations with unknown Chebyshev coefficients,
via Chebyshev collocation points. )e method in [19]
transforms the nonlinear differential equation into the
system of nonlinear algebraic equations with unknown
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shifted Chebyshev coefficients, via Chebyshev–Gauss col-
location points. )e solution of this system yields the
Chebyshev coefficients of the solution function. )e method
is valid for both initial-value and boundary-value problems.

)e purpose of this paper is to develop an efficient
method based on the Chebyshev series which is much
more straightforward and simpler than the other existing
algorithms. Using matrix notation of the Chebyshev series,
the nonlinear differential equation converts into a system
of algebraic equations which can be easily solved. )e
importance of the present method arises from its sim-
plicity and the fact that it does not require to guess the
value of f″(0).

2. Chebyshev Series

Any continuous function f(ξ) in the interval 0≤ ξ ≤1 can be
written in a Chebyshev series as follows [20]:

f(ξ) � 􏽘
∞

r�0

+
aTr(ξ). (3)

)e series expansion (3) is fast-converging, and a good
approximation is obtained by taking a few terms. )erefore,
equation (3) is approximated by

f(ξ) � 􏽘

N

r�0

+
arTr(ξ), (4)

where + sign means that the 1st term must be halved and ar
are constants to be determined so as to obtain the best
possible fit.

Tr(ξ) � Cos r t( 􏼁,

Cos(t) � 2ξ-1, 0≤ ξ ≤ 1.
(5)

)e shifted Chebyshev polynomials satisfy the recur-
rence relations

Tr+1(ξ) � 2(2ξ − 1)Tr(ξ)Tr − 1(ξ), 2≤ r≤N,

T0 � 1,

T1 � 2ξ-1,

(6)

and the orthogonality conditions

􏽚
1

0

Tm(ξ)Tn(ξ)( 􏼁

(
�
ξ

􏽰 ����
1 − ξ

􏽰
)

dξ �

0, for m≠ n,

π
2

, for m � n≠ 0,

π, for m � n � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where for a known function f(ξ), the coefficients are given
by

ar �
2
π

􏽚

1

0

f(ξ)Tr(ξ)
�
ξ

􏽰 ����
1 − ξ

􏽰 dξ, 0≤ r≤N. (8)

Also, the derivatives of the function f(ξ) can be ex-
panded in a Chebyshev series keeping a recurrence relation

between the coefficients of the function and its derivatives.
)e first derivative f′(ξ) is expressed in a Chebyshev series
as [20]

f′(ξ) � 􏽘
N− 1

r�0

+
a

(1)

r Tr(ξ). (9)

)e coefficients a(1)
r satisfy the recursive relation

a
(1)
r− 1 − a

(1)
r+1 � 4rar, 1≤ r≤N. (10)

Similarly, the mth derivative is written as

f
m

(ξ) � 􏽘
N− m

r�0

+
a

(m)

r Tr(ξ), (11)

where a
(m)
r− 1 − a

(m)
r+1 � 4ra(m− 1)

r , 1≤ r≤N-(m - 1).

2.1. Matrix Representation of Function and Function
Derivatives. Any continuous function f(ξ) in the interval
0≤ ξ ≤1 and its derivatives can be written in a matrix form of
the Chebyshev series as follows:

f(ξ) � Tr􏼂 􏼃[I] ai􏼈 􏼉, r � 0, 1, 2, . . . , N, i � 0, 1, 2, . . . , N.

(12)

)e first-order-derivative coefficients a(1)
r􏼈 􏼉 in equation

(10) can be written in terms of the original function coef-
ficients {ai} using matrix notation as follows:

a
(1)
r􏽮 􏽯 � 4[A] ai􏼈 􏼉, r � 0, 1, 2, . . . , N − 1, i � 1, 2, 3, . . . , N,

(13)

where [A] is an upper triangular matrix of order N×N.
)e elements of the matrix aij are defined as

aij �
0, i> j or i + j odd,

j, i≤ j and i + j even.
􏼨 (14)

)e form of matrix [A] for N� 5 for example is

[A] �

1 0 3 0 5

0 2 0 4 0

0 0 3 0 5

0 0 0 4 0

0 0 0 0 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

From equation (13), it is noted that the first-order-de-
rivative coefficients are written in terms of the N coefficients
{ai}, (i� 1, 2, . . ., N) of the function f(ξ). To represent a(1)

r􏼈 􏼉

in terms of all function coefficients {ai}, i� 0, 1, 2, . . ., N, we
add a new left column with zero entries in the matrix [A],
and the new matrix is termed [A01]. )us,

a
(1)
r􏽮 􏽯 � 4[A01] ai􏼈 􏼉,

r � 0, 1, 2, . . . , N − 1, i � 1, 2, 3, . . . , N,
(16)

where [A01] is of order N×N+ 1 and takes; for N� 5, the
form
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[A01] �

0 1 0 3 0 5

0 0 2 0 4 0

0 0 0 3 0 5

0 0 0 0 4 0

0 0 0 0 0 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

)e second-order-derivative coefficients a(2)
r􏼈 􏼉 can be

written in terms of the function coefficients {ai} using matrix
notation as follows:

a
(2)
r􏽮 􏽯 � 16[A]− 1, − 1[A01] ai􏼈 􏼉, r � 0, 1, 2, . . . , N − 2,

a
(2)
r􏽮 􏽯 � 16[A02] ai􏼈 􏼉, i � 0, 1, 2, . . . , N,

(18)

where [A02] is of order N − 1×N+ 1. [A]− 1,− 1 is the matrix
[A] after deleting the last row and last column. − 1[A01] is the
matrix [A01] after deleting the first row.

[A02] �

1 0 3 0

0 2 0 4

0 0 3 0

0 0 0 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

0 0 2 0 4 0

0 0 0 3 0 5

0 0 0 0 4 0

0 0 0 0 0 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0 0 2 0 16 0

0 0 0 6 0 30

0 0 0 0 12 0

0 0 0 0 0 20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

)e general form of themth derivative coefficients a(m)
r􏼈 􏼉

can be written in terms of the function coefficients {ai} using
matrix notation as follows:

a
(m)
r􏽮 􏽯 � (4)

m
[A]1− m, 1− m

− 1
[A0(m − 1)] ai􏼈 􏼉,

r � 0, 1, 2, . . . , N − m,

a
(m)
r􏽮 􏽯 � (4)

m
[A0m] ai􏼈 􏼉; i � 0, 1, 2, . . . , N,

(20)

wherem the order of derivative, [A]1− m, 1− m matrix [A] after
deleting the last (m − 1) rows and (m − 1) columns. − 1[ ]
matrix [ ] after deleting the first row.

f
m

(ξ) � (4)
m

Tr􏼂 􏼃[A0m] ai􏼈 􏼉,

r � 0, 1, 2, . . . , N − m, i � 0, 1, 2, . . . , N,

(21)

where [Tr] is a row matrix whose elements are Tr(ξ). Note
that in the matrix form the first term of [Tr] must be
halved.

Now, consider the general nonhomogenous differential
equation of mth order.

f
m

+ f
m− 1

+ f
m− 2

+ · · · + f′ + f � P. (22)

After expanding each term in the Chebyshev series, the
abovementioned differential equation can be written as

􏽘

N− m

r�0

+
a

(m)

r Tr(ξ) + 􏽘

N− (m− 1)

r�0

+
a

(m− 1)

r Tr(ξ) + · · · + 􏽘
N− 1

r�0

+
a

(1)

r Tr(ξ)

+ 􏽘

N

r�0

+
arTr(ξ) � 􏽘

N

r�0

+
prTr(ξ).

(23)

)e forcing-function coefficients pr can be evaluated
using equation (8). Equating the coefficients of like Che-
byshev polynomial terms on either side, the resulting
N+ 1 − m algebraic equations can be written in a matrix
form using equations (16) and (21) as

4(m)
[A0m] + 4(m− 1)

[A0(m − 1)] + · · · + 4[A01] +[I]􏽨 􏽩

ai􏼈 􏼉 � pr􏼈 􏼉; r � 0, 1, 2, . . . , N + 1 − m, i � 0, 1, 2, . . . , N,

(24)

where all matrices in equation (24) are of the same order
(N+ 1 − m×N+ 1). For all derivatives lower than the highest
derivative, the first N+ 1 − m rows are chosen so as to satisfy
equation (24). In order to be able to solve equation (24), m
additional equations are needed. )ese additional equations
are supplied by the problem boundary conditions.

2.2. Matrix Representation of Function Products. If f(ξ) and
g(ξ) are two continuous functions represented by truncated
Chebyshev series as

f(ξ) � 􏽘
N

r�0

+
arTr(ξ),

g(ξ) � 􏽘
M

r�0

+
brTr(ξ),

(25)

then the product of these functions can be written in a
Chebyshev series as

g(ξ)f(ξ) � 􏽘
M+N

r�0

+
crTr(ξ), (26)

where

co � 􏽘
N+M

i�0

+
aibi,

cr �
1
2

􏽘

N+M

i�0

+
ai bi+r + b|i− r|􏼐 􏼑,

1≤ r≤M + N, i + r≤M, |i − r|≤M∀i.
(27)

)e {cr} coefficients can be written in terms of the {ai}
coefficients only using matrix notation as follows:

cr􏼈 􏼉 � [H] ai􏼈 􏼉, (28)

where r� 0, 1, 2, . . ., N+M, i� 0, 1, 2, . . ., N, {cr} is a column
matrix of order N+M+ 1× 1, [H] is rectangular matrix of
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order N+M+ 1×N+ 1, and {ai} is a column matrix of order
N+ 1× 1.

)e elements hij of the matrix [H] can be written as

hij �

1
4

b|i− j| + bi+j− 2􏼐 􏼑, for i � 1, 2, . . . , N + M + 1, j � 1,

1
2

b|i− j| + bi+j− 2􏼐 􏼑, for i � 1, 2, . . . , N + M + 1,

j � 2, 3, . . . , N + 1,

|i − j|≤M, i + j − 2≤M, ∀i, j.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

)erefore, equation (28) takes the form
c0

c1

c2

c3

·

·

·

cN+M

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
1
2

b0 2b1 2b2 2b3 · · ·

b1 b0 + b2 b1 + b3 b2 + b4 · · ·

b2 b1 + b3 b0 + b4 b1 + b5 · · ·

b3 b2 + b4 b1 + b5 b0 + b6 · · ·

· · · · · · ·

· · · · · · ·

· · · · · · ·

· · · · · · ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a0

a1

a2

a3

·

·

·

aN

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(30)

3. Application to the Falkner–Skan Equation

)e purpose of the present section is to solve the Fal-
kner–Skan equations (1) and (2) numerically by using the
Chebyshev series in a matrix form. Again, to solve this
problem, the semi-infinite physical domain [0, ∞] of the
problem is truncated to a finite domain [0, L], where L is a
sufficiently large number. )e Falkner–Skan equation (1)
can be written in the nondimensional form as

1
L3

d3f(ξ)

dξ3
+ β0f(ξ)

1
L2

d2f(ξ)

dξ2
− β

1
L

df(ξ)

dξ
1
L

df(ξ)

dξ
� β, ξ �

η
L

.

(31)

)e associated boundary conditions (2) are written in the
nondimensional form as

f(0) � 0,

1
L

df(0)

dξ
� 0,

1
L

df(1)

dξ
� 1.

(32)

Expanding f(ξ) in (N+ 1)-Chebyshev terms, we get N+ 1
unknown coefficients. Now, using matrix notation for the
functions, function derivatives, and functions products and
applying the rule of matrix multiplication, equation (31) can
be written as a system of algebraic equations in the following
matrix form:

64
L3 [A03] + β0

16
L2 [Hb] − β

4
L

[Ha]
4
L

[A01]􏼔 􏼕 fi􏼈 􏼉 � βr􏼈 􏼉,

(33)

where [Ha] is the matrix of coefficients of the first deriv-
ative, [Hb] is the matrix of coefficients of the second de-
rivative, {fi} are Chebyshev coefficients of the function f,
and {βr} are Chebyshev coefficients of β and obtained from
equation (8).

)e highest derivative in equation (33) is of order 3, so
the number of algebraic equations is N − 2 along with 3
boundary conditions at ξ� 0 and ξ� 1, leading to N+ 1
equations in N+ 1 unknowns, which can be easily solved. It
is to be noted that all matrices in equation (33) are of order
(N − 2×N+ 1).

3.1. Boundary Conditions. Fortunately, it is relatively easy to
represent any boundary conditions for the functions ex-
panded in the Chebyshev series. )e boundary conditions
given in (32) can be written as

[TR0] fi􏼈 􏼉 � 0,

4
L

[TR01][A01] fi􏼈 􏼉 �
4
L

[T0A01] fi􏼈 􏼉 � 0,

4
L

[TR11][A01] fi􏼈 􏼉 �
4
L

[T1A01] fi􏼈 􏼉 � 1,

(34)

where [TR0] is a row matrix of N + 1 Chebeychev terms at
ξ� 0, [TR01] is a row matrix of N Chebeychev terms at
ξ� 0, and [TR11] is a row matrix of N Chebeychev terms at
ξ� 1. Note: the first term of Chebyshev terms must be
halved.

3.2. Procedure of Solution. )e present algorithm consists of
the following procedure:

(a) It is started with a relatively small value of L as the
initial value for semi-infinite domain.

(b) )e system of equations (33) and (34) are solved
simultaneously to find the velocity profile f′(η).

(c) L is continuously increased up to limη⟶∞f′(η) �

1. )is is achieved if two successive values f″(0)

differ by about 1E − 6. Figure 1 shows the results for
β0 � 1 and β � 2.

4. Results and Discussion

)e Falkner–Skan equation has two coefficients β0 and β.
)e solutions corresponding to β� 0 have been known as
constant flow, those corresponding to β> 0 are called
accelerating flow, and those corresponding to β< 0 are
known as decelerating flow. Physically relevant solutions
exist only for − 0.1988 < β≤ 2. If β0 � 1/2 and β� 0, it is
called Blasius flow; if β0 � 1 and β�½, it describes the
Homann axisymmetric stagnation flow, if β0 � 1 and β� 1,
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it describes the Hiemenz flow, if β0 � 0 and β� 1, it is called
the Pohlhausen flow, and if β0 � 2 and β� 1, it represents
the problem of Homann, describing the steady flow in the
boundary layer along a surface of revolution near the
stagnation point. Sometimes, the Falkner–Skan equation
specifically refers to β0 � 1.

)e Falkner–Skan equation was solved using the pro-
posed Chebyshev series in a matrix form for different values
of β0 and β. It was noted that the solution is stable and
convergent even for small number of terms less than ten.
Finally, in all solutions, the number of Chebyshev terms is
taken N� 20. Table 1 compares the initial slope f″(0) ob-
tained using the present method with the values obtained in
[17] by using highly accurate algorithm based on a
Maclaurin series representation. It is seen that the present
method delivers the same order of accuracy.

It is noted that L has a great effect on the solution. )e
results show that the system equations (33) and (34) have a
solution with high level of accuracy for different values of the
semi-infinite interval L as presented in Table 2.

)e velocity profile for different flows mentioned above
is obtained using the present technique and Runge–Kutta 4th
order method and presented in the following figures.

Figure 2 shows the velocity profile of the Blasius flow
for β0 �½ and β� 0. Figure 3 shows the velocity profile of
the Homann axisymmetric stagnation flow for β0 � 1 and
β�½. Figure 4 shows the velocity profile of the Hiemenz
flow for β0 � 1 and β� 1. It is clear that the present solution
has an excellent agreement with that obtained by the
Runge–Kutta 4th order method. )e solutions shown are
not a single solution, but it is a set of solutions for different
lengths and gives the same value of f″(0) as presented in
Table 2.

Figure 5 shows the velocity profile of the Pohlhausen
flow for β0 � 0 and β� 1. It is clear in this figure that the

solution obtained by the Runge–Kutta 4th order method is
divergent at L nearly equal 3.25 while the present solution is
still convergent until L� 6.98476 which means that the
present solution is powerful. )is note is valid for all values
of β and β0 � 0.

Figure 6 shows the velocity profile of the problem of
Homann describing steady flow in the boundary layer along
a surface of revolution near the stagnation point in which
β0 � 2 and β� 1. As mentioned previously, the present so-
lution has an excellent agreement with that obtained by the
Runge–Kutta 4th order method.

)e values of f″(0) and the largest L for each case are
presented.

For β0 � 1 and β< 0, two families of solutions are ob-
tained. One family of solutions corresponds to forward flow
and the other corresponds to reverse flow as shown in
Figures 7 and 8.

)e step of increasing L is 0.05, and the error between
two consecutive values of f″(0) is 1E − 2.

Refining ΔL� 0.001 and adopting the error between two
consecutive values of f″(0) to be 1E − 6, the results are
shown in Figures 9 and 10.

Table 1: Comparison of f″(0) for β0 � 1 and different values of β.

β f″(0) [17] Present method Absolute error L
40 7.314784974 7.314784949 2.5E − 08 1.19
30 6.338208628 6.338208608 2.0E − 08 1.35
20 5.180718025 5.180718025 3.9E − 10 1.61
15 4.491486898 4.491486992 − 9.4E − 08 1.78
10 3.675234101 3.675234108 − 6.8E − 09 2.18
2 1.687218169 1.687218169 3.1E − 11 4.37
1 1.232587657 1.232588439 − 7.8E − 07 4.30
0.5 0.92768004 0.927686117 − 6.1E − 06 4.41
0 0.469599988 0.4704412 − 8.4E − 04 4.03

Velocity profile for β0 = 1, β = 2
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0.6
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0.5 1 1.5 2 2.5 3 3.5 40
η

Figure 1: Velocity profile for (β0 �1 and β� 2).
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Table 2: Effect of η on f″(0) for β� 40 and β0 � 1 (error� 1E − 7).
η 1.01 1.02 1.03 1.04 1.05 1.06
f″(0) 7.3147854 7.3147853 7.3147852 7.3147852 7.3147851 7.3147851
η 1.07 1.08 1.09 1.1 1.11 1.12
f″(0) 7.3147851 7.3147850 7.3147850 7.3147849 7.3147849 7.3147849
η 1.13 1.14 1.15 1.16 1.19
f″(0) 7.3147848 7.3147848 7.3147847 7.3147846 7.3147857

Velocity profile for β0 = 0.5, β = 0
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f′

 (η
)

1 2 3 4 5 60
η

Figure 2: Velocity profile of the Blasius flow (β0 �½ and β� 0). f″(0) � 0.332057336151 for L� 5.7205339053.
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Figure 3: Velocity profile of the Homann axisymmetric stagnation
flow (β0 �1 and β�½). f″(0) � 0.927686124423 for L� 4.404.
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Figure 4: Velocity profile of the Hiemenz flow (β0 �1 and β� 1).
f″(0) � 1.232588438646 for L� 4.3.
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Velocity profile for β0 = 0, β = 1
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Figure 5: Velocity profile of the Pohlhausen flow (β0 � 0 and β� 1). f″(0) �1.154700538379 for L� 6.98476.
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Figure 6: Velocity profile of the problem of Homann, describing steady flow in the boundary layer along a surface of revolution near the
stagnation point (β0 � 2 and β� 1). f″(0) �1.311937693752 for L� 3.18407676.
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Figure 7: Velocity profile for β � − 0.1.
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Velocity profile for β0 = 1, β = –0.15
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Figure 8: Velocity profile for β � − 0.15.
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Figure 9: Velocity profile for β � − 0.1, ΔL� 0.001; f″(0) �0.326218125788279 (Forward flow), L� 3.913; f″(0) � − 0.140741363248159
(reverse flow), L� 8.
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Figure 10: Velocity profile for β � − 0.15, ΔL� 0.001; f″(0) � 0.233877086171824 (Forward flow), L� 3.88; f″(0) � − 0.133696366858524 (reverse
flow), L� 7.135.
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5. Conclusions

In the present study, a technique based on the Chebyshev
series expansion is applied to determine an approximate
solution for the Falkner–Skan (F–S) third-order nonlinear
differential equation.)e nonlinear differential equation has
been transformed into a system of algebraic equations which
was presented in a matrix form. )is system of equations is
easily solved by matrix inversion, by assuming initial values
for chebyshev coefficients and iterating this process until the
correct values are within acceptable error.)e new proposed
technique is straightforward and well adapted to the com-
puter implementation. One of the advantages of this method
is that the solution is expressed as a system of algebraic
equations which is directly solved using the computer
program without any computational effort.

A comparison of the present results with the published
results indicates excellent accuracy of the solution. It is
concluded that the present technique is an accurate tool in
handling the Falkner–Skan (F–S) equation with a high level
of accuracy.

)is technique can be considered as a powerful tool to
solve the linear and nonlinear differential equations defined
on a finite range.
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