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A new approach to the optimal design of power inverters for on-grid photovoltaic systems that uses genetic algorithms (GA) is
provided in this article. )e nonlinear average model is adopted to model the conversion stage in order to accurately evaluate and
quickly estimate the power losses of the power devices. )e hysteresis current control that guarantees a quasi-sinusoidal output
current is applied to generate the inverter control signals.)e design of the solar inverter must meet three contradictory objectives
that need to be optimized at the same time. In fact, the aim is to maximize the efficiency of the converter while minimizing its size
and price under electrical constraints. )e problem variables are the output current ripple and the passive and active components
available on the market (IGBTs/MOSFETs, Diodes, Inductors). NSGA-II (Elitist Nondominated Sorting Genetic Algorithm) is
appropriate in the case where discrete design variables are used to search for optimal Pareto solutions. It carries out a systematic
and efficient search among the developed databases for a set of components which define the optimal structures of the inverter.
)e introduced method makes the design task easier since the best solutions depend on the components available on the market
and significantly reduces the time to market for manufacturers.

1. Introduction

According to the BP Statistical Review of World Energy [1],
global energy demand has increased by 2.9% in 2018, nearly
twice the average annual growth in demand over the past
decade (+1.5%/year) and the fastest since 2010. At this
unprecedented increase, a strong growth in the integration
of renewable energy sources into power plants worldwide
has been recorded [2–9]. )us, progressive advances of
renewable energy power generation systems have led to the
search for solutions to improve the performances of these
systems, mainly by taking advantage of the enormous de-
velopments in the power semiconductor industry. In fact,
power electronics are at the core of power generation sys-
tems since they provide the technology between sources and
loads that converts energy from its continuous form into
alternative or inverse [10]. Recently, photovoltaic (PV)
electrical power generation has become more and more
visible because it is a very attractive way to produce energy
for several reasons, especially for its simplicity and

modularity. It is almost entirely in solid form from the PV
cell to the generated electricity. Whether it is a power plant
with less than 1W or a 100MW grid-connected one, all that
is needed between the solar system and the load are elec-
tronic and electrical components. Compared to other energy
sources that humanity has used to produce electricity for a
long time, PV is the most flexible and modular. Large PV
systems require more electric buses, fuses, and wiring, but
the most crucial component between the solar panel and the
load is the electronic component that converts and processes
electricity: it is the inverter [11, 12].

One approach widely adopted for improving the entire
grid-connected PV system performances is upgrading the
converter by acting on its own design or on its control
strategy or on both by benefiting from optimization algo-
rithms as efficient and commonly used tools to obtain the
best possible converter [13–16]. )e design, control, and
performance problems encountered in the field of power
electronics generally involve the simultaneous optimization
of multiple objectives which are often in contradiction (e.g.,
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the simultaneous minimization of the power losses and the
design cost or volume). In order to resolve conflicts, these
cases can be formulated as multiobjective optimization
problems.

)is paper describes a methodology for designing grid-
connected PV inverters that optimizes efficiency and/or
volume and/or price, taking into account the quality of
output current and the maximum switching frequency of
active devices and based on commercially available com-
ponents. )is approach simplifies the implementation phase
of the optimal solution since it is based on what we have on
the market.

)e next part highlights the modeling process of the
studied system, shown in Figure 1, by using the nonlinear
averaged model with discrete semiconductor devices and the
hysteresis current control. In the third part, the non-
dominated sorting genetic algorithm NSGA-II as well as the
method used to determine the optimal solution is investi-
gated. )e fourth part presents the process used to ma-
nipulate the genetic algorithm with discrete variables and
defines the design parameters, the constraints, and the fit-
ness of optimization problems. )en, optimization results
and interpretations are provided and finally, conclusions are
given.

2. DC/AC Converter Modelling

2.1. Nonlinear Average Model with Discrete Semiconductor
Devices. Modeling and dynamic simulation are essential
tools to analyze, design, control, and optimize a power
electronics structure. Averaging techniques are well used to
model power converters since it ensures both accuracy and
rapidity, two criteria that must always be met while mod-
eling power systems especially when dealing with multi-
objective optimization problems. )e average model of
power electronic devices is a simplified presentation of a
switching cell that is common in several converter topologies
[17, 18]. Nonlinear effects of the power semiconductor
devices are not included in most of averaged models because
they use ideal switches instead of semiconductor device
models. Considering the unsatisfactory situation in the
averaged modeling, an effort was undertaken in the averaged
models presented in [19–21]. )us, the authors have pro-
posed an advanced PWM-switch model including semi-
conductor device nonlinearities.

Figure 2(a) presents the inverter leg to be modeled with
two complementary transistors (IGBTs or MOSFETs) con-
trolled by external gate signals and two freewheeling diodes.
In Figure 2(b), the equivalent representation of power
converter leg using averaged model is illustrated. In fact,
upper switches are replaced by a controlled voltage source
V1 while lower ones are substituted by a controlled current
source I1 given by

V1 �〈Uas〉,

I1 �〈ie2〉.
(1)

)e main advantage of the proposed nonideal average
model is to supply accurate losses values with acceptable

simulation costs. )e power losses of semiconductors
(Ptransistor and Pdiode) comprising conduction and switching
losses and taking into account the various conduction and
switching times are derived from switching characteristics of
power devices presented in Figure 3 and can be given by
[20, 21]
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Ts � 1/fs is the switching frequency.
To perform average model simulations with discrete

semiconductor devices, it is crucial to determine the static
and dynamic characteristics of each component. For that,
the determination of the model parameters is done using the
technical data sheets of the semiconductor devices and based
on study developed in [22].

2.2. Hysteresis Current Control. Hysteresis control is one of
the simplest nonlinear mechanisms to ensure spontaneous
current regulation in power systems [23, 24]. It will directly
define the state of the switches in the H-bridge topology to
track the output current Iout to its reference Iref with a fixed
value for the current ripple given by ΔI. )e band delimited
by (Iref±ΔI) is called the hysteresis band and any violation of
these two limits results in a change of power switch state
from conduction to blocking or vice versa. Figure 4 reveals
the principle of this control strategy where the on-time Ton
and off-time Toff depends on the sign of grid voltage Vs and
the output voltage Vout.



)e use of hysteresis control with model based on electrical
circuit does not pose any problems since the switches are
controlled by the generic gate signals (high for conduction state

and low for blocking one). However, this is not the case for the
average models where switches are monitored by duty cycle.
)is developed method is explained in more detail in [25, 26].
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Figure 2: (a) )e PWM-switch; (b) the corresponding averaged model.
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Figure 3: Adopted switching characteristics in the PWM-switch of (a) MOSFET and diode over a switching period. (b) IGBT during
blocking commutation.
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Figure 1: Overview of a grid-connected PV energy conversion system.



2.3.MaximumSwitching Frequency. One of the most critical
parameters in a power converter is the switching frequency
which can vary from a few kHz to a few MHz
(20 kHz–2MHz). A high value reduces the size of associated
components such as inductors, transformers, resistors, and
capacitors. On the other hand, the switching frequency
directly affects power dissipation in semiconductor devices
(diodes, MOSFETs, IGBTs, etc.), inductive and capacitive
elements, and electromagnetic interference.

Moreover, when discussing the switching frequency of a
semiconductor, it is obvious to be concerned with its in-
ternal temperature since these two parameters are inter-
dependent. In fact, an uncontrollable increase in the
switching frequency can lead to an unexpected rise in
temperature and subsequently to the instantaneous failure of
the component and, at best, a decrease in its life cycle. For
this reason, an estimation of the maximum switching fre-
quency fs,max as function of power system specifications
should be done.

3. Elitist Nondominated Sorting
Genetic Algorithm

Genetic algorithms are random optimization techniques
derived from approximate modeling of the natural evolution
of races. )ey are based on the principle of species evolution
mentioned by Darwin which shows how, since their ap-
pearance, species have been able to reproduce in an inno-
vative and flexible way to better adapt to the environment, by

allowing only individuals well adapted to their environment
to evolve [27]. )e basic principle, although simple, is
nevertheless powerful.

One of the most suitable genetic algorithms for solving
multiobjective optimization problems is NSGA-II intro-
duced by Deb et al. in [28, 29]. Figure 5 is a schematic
explanation of this algorithm process. NSGA-II first ran-
domly creates an initial population of N individuals, each of
whom is characterized by a set of design parameters
(Figure 5(a)). Based on objective functions, the NSGA-II
ranks the N individuals using the concept of “non-
domination”. In fact, all individuals are classified into groups
of different levels of nondominance in the fitness space
(Figure 5(b)). In addition to the fitness assignment, it is also
necessary to maintain the diversity of the population in the
nondominated front. For this, a density-estimation metric,
known as crowding distance, is calculated for each indi-
vidual (Figure 5(c)). After individuals ranking and their
crowding distances allocation, the binary tournament se-
lection is affected according to their objective function and
their crowding distance. NSGA-II first selects parents from
the 1st rank in the current generation population. )en,
individuals with a greater crowding distance are selected as
parents while those with a smaller distance are rejected
(Figure 5(d)). )e selected parents produce the corre-
sponding offspring through the crossover and mutation
operators. )e newly produced offspring population is then
merged with the current generation population
(Figure 5(e)). Finally, an elitist process is carried out on the
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combined population in order to identify the best solutioxns,
based on two criteria: the individuals’ ranks and their
crowding distances. )e best solutions of the current gen-
eration are the individuals of the next generation. )en, all
the above processes (the binary tournament selection,
crossover operator, mutation operator, etc.) are iterated
until the defined maximum number of generations is
reached. Finally, NSGA-II produces a set of N optimal
solutions towards a global Pareto front (Figure 5(f)). Once
the Pareto front is available, the decision maker should

calculate the distance between each Pareto solution and the
ideal solution as follows:
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where di(i � 1 . . . N; N: population size) is the distance
between the ideal point and the ith individual,
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Fi1
, Fi2

, . . . , Fim
􏽮 􏽯(m≥ 2)are the problem objectives for the
ith Pareto optimal individual, and [Fmin

1 , Fmin
2 , ..., Fmin

m ]Tis the
ideal objective vector.

And then the closest individual to ideal vector is defined
as the best solution.

4. Discrete Optimization Problem Formulation

Opposed to continuous optimization where all problem
parameters are continuous quantities, the discrete optimi-
zation deals with choosing an optimal solution using either
pure discrete design variables or a discrete and continuous
combination. )e appropriate process for grid-tied PV in-
verter optimization problemwith discrete design parameters
is illustrated in the flowchart in Figure 6. As presented, the
NSGA-II identifies the design parameters from databases
that are then used in the simulation model to calculate the
constraints of the problem and determine the values of the
objective functions that are then returned to the genetic
algorithm for evaluation. )is will be repeated for each
individual in the population and for each generation until
the maximum number of generations is reached.

)us, the optimization problem can be formulated by the
following general system:
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(5)

T and D are, respectively, the transistor and the diode.
NL, NT, and ND are the sizes of the database of inductances,
transistors, and diodes, respectively.

4.1. Design Parameters. )ese are the numerical quantities
that define each individual and are modified during the
optimization process to achieve fitness functions while
meeting the constraints. )e design parameters of our op-
timization problems with discrete variables are well de-
scribed in Table 1. Component databases are defined as an
input to the optimization algorithm. )ey are implemented
from text files to facilitate updating, maintenance, and setup
if necessary. )e databases of power transistors (IGBT,
MOSFET), freewheel diodes, and output inductors required
for the design and available on the market, their technical

characteristics, and their associated unit costs are given in
Tables 2–4.

4.2. Problem Constraints. Depending on the technical
characteristics of the system to be studied, limits on its
operation are always imposed and must be taken into ac-
count when formulating an optimization problem. In the
case of grid-tied PV inverter optimization, constraints on the
quality of the output power and the switching frequency of
the converter must be considered. )us, two constraints are
defined: the total harmonic distortion of output current
which should not exceed 5% in normal operation and the
maximum switching frequency fs,max which should not
overpass a limit value fs,lim chosen equal to 50 kHz.

4.3. Fitness Functions. )ree contradictory objective func-
tions are taken into consideration which are the power losses
of the grid-tied inverter, its volume, and its cost. In fact, the
losses of a power converter are very significant since they
characterize its conversion efficiency. )e volume specifies
the space to be allocated by the converter in relation to the
other equipment of the PV installation so it must be taken
into account because it is not profitable enough to design a
very large converter even if its efficiency is the best or its
price is the lowest. )e cost describes the economic aspect of
the converter that needs to be considered without degrading
the other performances.

Power losses are caused mainly by the semiconductor
devices and the output inductor. Semiconductor power
losses are given by (2) and (3) and the load inductor losses
are defined by the following:

PL � Pcu + VLPcore. (6)

Pcu are the inductor copper losses and can be expressed
by

Pcu � RDCI
2
L,rms. (7)

RDC is the inductor DC resistance obtained from the
database of inductors, and IL,rms is the rms value of the
output current.

VL is the volume of output inductor and is determined
from the database of inductors while Pcore are the time-
average power losses per unit volume which are assumed to
be given by the well-known Steinmetz equation [30–32]:

Pcore � KF
α􏽢B

β
. (8)

We notice that all the inductors values in Table 4 are
supposed to be independent of frequency.

􏽢B is the peak induction of sinusoidal excitation with
frequency F and K, α, and β are Steinmetz parameters.

)us, the total power losses of the inverter can be defined
as

PInverter � PL + 4 Ptransistor + Pdiode( 􏼁. (9)

)e volume of the DC/AC converter for purely electrical
optimization problem is mainly due to the inductor volume
VL and the DC-link capacitor volume VCap:



VInverter � VL + VCap. (10)

)e total cost of the DC/AC converter is the sum of the
prices of its components determined from the databases and
is given by

CInverter � CCap + CL + 4 Ctransistor + Cdiode( 􏼁. (11)

5. Optimization Results

)e evolution of single objective optimizations over itera-
tions of power losses, volume, and cost of the grid-connected
PV inverter is illustrated in Figure 7. )e three fitness
functions decrease according to generations and converge
towards their minimal values; the inverter power losses
(Figure 7(a)) converge towards 32.72W and the volume
(Figure 7(b)) converges towards 645.7 cm3 while the cost
(Figure 7(b)) converges towards 77.94 €.

Table 5 presents the results of the single objective op-
timizations. For each single-objective optimization problem,
the converter optimal design depends on the objective
considered, although we have kept the same design variables
and optimization constraints in all cases. )e first structure
is the most efficient because it has the lowest losses, the
second is the smallest design which corresponds to the

lowest volume, and the third is the most economical, which
correctly reflects the concept of minimization.

Nevertheless, single objective optimization treats only
one performance criterion and neglects the others. Im-
proving one objective often means degrading others. )is is
why the concept of compromise is mentioned in optimi-
zation in order to obtain an optimal solution as close as
possible to the ideal solution which is defined by the optimal
solutions of each objective function considered indepen-
dently (i.e., the monoobjective optimization problems) and
which is given in our case for the biobjective optimization
problem by the vector:

Videal � [32.72W 77.94 €]T. (12)

)e result of biobjective cost vs. losses optimization is
shown in Figure 8(a), which is a set of optimal solutions
rather than a single optimal one and a trade-off between the
inverter losses and its cost. As can be seen, the Pareto front is
delimited by the two points “A” and “B.” )e first solution is
the most efficient of all Pareto optimal solutions but it is the
most expensive, whereas the second has the highest power
losses but it is most economical. )e choice of one solution
or another depends on the preferences of the designer and
the application for which the converter will be used.
However, if the best of the best solutions is desired, the
closest solution to the ideal one must be taken, which is
indicated in Figure 8(a) and its characteristics are given in
Table 6.

To go further and to have a more powerful inverter, we
consider the triobjective optimization problem which aims
to minimize power losses, volume, and cost in order to
obtain a structure closer to the ideal one defined by

Videal � 32.72W 645.7 cm3 77.94 €􏼂 􏼃
T
. (13)
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Table 1: Design parameters.

Parameter Description Type Limits
ΔI Output current ripple Continuous [2%Iref, 15%Iref]

L Output inductor Discrete [1.5mH,
15mH]

Transistor IGBT or MOSFET Discrete 15A/650V
Diode Freewheeling diode Discrete 15A/600V



Figure 8(b) depicts the Pareto front for the triobjective
optimization problem which is delimited by the two points
“C” and “D.” )e first represents the most efficient inverter
design based on the components available on the market,
while the second is the most economical with a lower
volume. )e switching frequency at point “D” is higher than
at point “C,” resulting in higher power losses, but the volume

and cost decrease because they are inversely proportional to
the frequency. )e best inverter structure for this optimi-
zation problem is detailed in Table 6.

To validate the approach using discrete variables, a
comparison for the same triobjective optimization problem
with the one using continuous parameters is presented in
Figure 9. As shown, the result of the continuous

Table 2: Power transistor database.

Transistor Description
Nonlinear averaged model parameters

Cost (€)
Rton

(Ω) Vt0
(V) Rg

(Ω) eg (V) Vth (V) Vgsp (V)
Ciss
(pF)

Crss
(pF) gfs (S)

dIF

dt
(A/μs)

SiHA22N60AE MOSFET
(12A; 600V) 0.66 0 9.1 10 3 7.42 1451 13.9 4.8 333.3 1.55

FCPF165N65S3L1 MOSFET
(12.3A; 600V) 0.51 0 4.7 10 3.5 5.45 1415 9.5 12 452.4 4.41

FCB20N60F MOSFET
(12.5A; 600V) 0.76 0 25 10 4 6.32 2370 33.3 17 142.9 4.62

FMV20N60S1 MOSFET
(12.6A; 600V) 0.11 0 27 10 3 5.25 1470 2.4 17.5 250.0 6.16

FCP190N60 MOSFET
(12.7A; 600V) 0.63 0 4.7 10 3 4.3 2220 8.4 21 1000.0 2.93

IRG7SC12FPbF IGBT (13A; 600V) 0.04 1.42 47 15 6 9.23 880 7.2 6.2 400.0 1.34

IRFP460BPbF MOSFET
(13A; 500V) 0.72 0 4.3 10 3 5.45 4200 10 13 339.0 2.02

SiHP22N60E MOSFET
(13A; 600V) 0.50 0 4.7 10 3 6.2 1920 13.7 6.4 407.4 1.59

SPW20N60S5 MOSFET
(13A; 600V) 0.12 0 3.6 10 4.5 8 3000 7 12 800.0 4.15

FCH190N65F MOSFET
(13.1A; 650V) 0.69 0 4.7 10 4 5.59 2425 9.5 18 909.1 4.03

STGB14NC60K IGBT (14A; 600V) 0.10 1.39 10 15 5.5 9.84 760 26.5 3 823.5 1.43
STGD7NC60HT4 IGBT (14A; 600V) 0.05 1.53 10 15 4.75 8.44 720 20.8 4.3 823.5 1.63

FCPF150N65F MOSFET
(14.9A; 650V) 0.69 0 4.7 10 4 5.7 2810 9.5 22 800.0 5.05

SiHP24N65EF MOSFET
(15A; 650V) 0.70 0 9.1 10 3 5.67 2656 13.3 7.2 352.9 2.50

IRGS15B60KPbF IGBT (15A; 600V) 0.03 1.11 22 15 4.5 7.33 850 19 10.6 937.5 2.19
NGTG15N60S1EG IGBT (15A; 600V) 0.02 1.11 22 15 5.5 9.375 1950 22.7 10.1 535.7 1.56
SGP15N60 IGBT (15A; 600V) 0.05 1.3 21 15 4 6.96 800 44.1 10.9 652.2 1.48
IXYP15N65C3 IGBT (15A; 650V) 0.05 1.07 20 15 4.75 9.4 583 13.3 8.5 750.0 2.13

Table 3: Power diode database.

Diode Description
Nonlinear averaged model

parameters Cost (€)
Rdon

(Ω) Vd0
(V)

12EWH06FN-M3 12A/600V 0.05 1.29 0.49
15EWH06FN-M3 15A/600V 0.02 1.33 1.11
ETL1506-M3 15A/600V 0.01 0.88 1.14
15EWX06FN-M3 15A/600V 0.04 1.81 0.5
ETX1506FP-M3 15A/600V 0.08 1.68 1.19
ETU1506-M3 15A/600V 0.02 1.18 1.23
ETX1506-M3 15A/600V 0.06 1.87 1.23
ETH1506-1-M3 15A/600V 0.03 1.42 1.35
15ETL06PbF 15A/600V 0.01 0.87 1.36
15ETH06PbF 15A/600V 0.04 1.34 1.42
15ETX06PbF 15A/600V 0.05 1.73 1.45
HFA15PB60-N3 15A/600V 0.02 1.39 2.92



Table 4: Output inductor database.

L (mH) RDC (Ω) Volume (cm3) Cost (€)
1 0.009 23.485 5.51
2 0.018 23.485 5.51
2.5 0.011 17.108 7.12
3 0.027 46.97 11.02
3.3 0.0084 80.08 13.32
3.5 0.02 40.593 12.63
4 0.036 46.97 11.02
4.3 0.0174 103.565 18.83
4.5 0.029 40.593 12.63
5 0.022 34.216 14.24
5.3 0.0264 103.565 18.83
5.8 0.0194 97.188 20.44
6.3 0.0354 127.05 24.34
6.6 0.0168 160.16 26.64
7 0.04 57.7 19.75
7.6 0.0258 183.645 32.15
8.6 0.0348 183.645 32.15
9.1 0.0278 177.268 33.76
10 0.1 709.93 36.68
11 0.109 733.415 42.19
12 0.118 733.415 42.19
12.5 0.111 727.038 43.8
13.3 0.1084 790.01 50
14 0.298 756.9 47.7
14.5 0.129 750.523 49.31
15 0.062 2098.5 119.2
15 0.12 802.944 94.9
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Figure 7: Convergence of the fitness functions according to the number of iterations.



Table 5: Optimal design of the grid-connected inverter for the monoobjective optimization problems.

Optimization
problem

Objectives Variables Constraints
Losses
(W)

Volume
(cm3)

Cost
(€)

ΔI
(A)

L
(mH) Transistor Diode THD fs,max

(kHz)
Losses 32.72 645.7 98.86 0.556 5 MOSFET SPW20N60S5 ETU1506-M3 0.0477 17.97

Volume 39.59 645.7 91.5 0.504 5 MOSFET
FCPF165N65S3L1 ETX1506FP-M3 0.0433 19.83

Cost 62.99 628.6 77.94 0.426 2.5 IGBT STGB14NC60K 15EWX06FN-
M3 0.039 46.96
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Figure 8: Pareto front of the (a) biobjective optimization problem cost vs. losses. (b) Triobjective optimization problem cost vs. volume vs.
losses.

Table 6: Optimal design of the grid-connected inverter for the multiobjective optimization problems.

Optimization
problem

Objectives Variables Constraints

Losses (W) Volume
(cm3)

Cost
(€)

ΔI
(A)

L
(mH) Transistor Diode THD fs,max

(kHz)

Cost/losses 34.67 — 95.9 0.584 5 MOSFET
SPW20N60S5

12EWH06FN-
M3 0.0499 17

Cost/volume/losses 41.12 645.7 87.86 0.588 4.5 IGBT

IXYP15N65C3 15EWX06FN-
M3 0.05 17
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Figure 9: Comparing the Pareto front for discrete triobjective optimization problem to the Pareto space for a continuous one.



optimization problem is a Pareto space that certainly con-
tains unfeasible solutions while the discrete variable problem
is a Pareto front where each solution matches a set of
components present on the market. In addition, we notice
that the discrete variable problem delivers solutions that
dominate those of the continuous variable problem so it
gives better results. )is is mainly due to the use of a well-
defined pair (transistor; diode) in the continuous case that
limits the optimization task and the attachment to the model
used to estimate the costs and volumes of passive compo-
nents that remains more or less close to reality.

6. Conclusion

)e power converter is a key stage in any simple or complex,
small or large scale, stand-alone or grid-connected power
generation system. )erefore an accurate design of this
conversion stage influences the performance of the entire
system. )is task is too difficult since the power converter is
the seat of several physical phenomena (electrical, thermal,
electromagnetic, etc.) which leads to the development of the
predesign approach of the power converters.

In fact, optimization algorithms are applied to determine
the optimal design of the converter before proceeding with
its implementation. )e purpose of this paper is to exploit
genetic algorithms to overcome the difficulties encountered
in the design of power converters, to take advantage of the
accuracy and speed of nonlinear average models in con-
junction with the utility and simplicity of hysteresis current
control, and finally, to use the active and passive components
available on the market to find the optimal structures of the
solar inverter in a grid-connected PV application depending
on considered fitness functions. )e approach developed in
this article will considerably facilitate the design task of
power converters for a given application.
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