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In this paper, the multimode payment scheduling project is studied, which aims to maximize the net present value (NPV) of a
project by deciding on payments and the start times of its activities. 1e problem is formulated mathematically from the point of
view of the selected contractor of the project. In the proposed model, a bonus and penalty structure is considered, in which the
project’s activities can be performed through different execution modes. Another interesting feature of the developed model is the
possibility of switching between the execution’s modes during the implementation of each activity, which can increase the NPV.
Because of the proposed model’s computational complexity, two metaheuristic algorithms are developed to tackle the underlying
problem. In order to evaluate the performance of the developed algorithms, a set of 108 test instances are solved, and the
computational results confirm the applicability of the solving methodologies.

1. Introduction

Net present value (NPV) is among the standard methods to
evaluate the economic aspects of the projects. Efficient
management of financial currents has a key role in im-
proving the benefits of any decision makings including those
made in project management. Balanced decisions in mul-
timode case of resource-constrained project scheduling have
influential importance in NPV based objectives. In this
version of project scheduling problems, each activity has
several scenarios for implementation with different dura-
tion, cost, and resources to be accomplished. In such cases,
when an activity needs to be finished sooner, more money
and resources should be spent. By contrast, if it is possible to
postpone an activity before the project’s deadline, the
implementation cost can be reduced through reduction of
the consuming resources. 1is flexibility in selection of the
execution modes can be exploited to achieve maximum
NPV.

A survey on the literature of the project scheduling
problem shows that despite a great deal of attention to

minimizing the makespan of projects, the works on maxi-
mizing NPV of projects are rare. How to schedule a project
to maximize the NPV has gone under study since 1970,
where Russell tried to model the financial dimensions of
project management to maximize a project’s financial
currents. In that model, the problem was formulated as a
nonlinear programming on activity-on-arc (AOA) network.
Grinold sought to maximize transactions’ present value. It
was found that a payment scheduling problem can be
transformed into a linear program [1]. Russell employed
present value maximization to optimize a linearly con-
strained nonlinear function and utilized a linear program-
ming succession to solve the problem [2]. Russell studied
project scheduling for net present value maximization based
on resource limitations, cash inflows, and cash outflows.
1ey incorporated 80 test instances to compare six heuristic
scheduling strategies [3]. Kazaz and Sepil proposed a pro-
gramming model to maximize the NPV of client’s financial
currents. 1ey considered a progress-based model for the
financial currents [4]. Payment scheduling problem was
studied by Ulusoy and Cebeli for the first time from both the
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employer and contractor’s point of view. 1ey presented a
two-loop genetic algorithm in which the exterior loop de-
notes the employer and the interior one denotes the con-
tractor. Having decided on the amount of payment in the
interior loop, the contractor schedules the activities to
maximize the project’s NPV [5]. Dayanand and Padman
studied a model to improve NPV from the viewpoints of
both the employer and the contractor.1ey presented a two-
step algorithm which determines a collection of payments at
the first step to maximize the employer’s NPV, followed by
the second step in which the activities are rearranged to
improve the contractor’s NPV [6]. Mika et al. investigated
multimode resource-constrained project scheduling by in-
corporating cash flow discounts. 1ey sought to implement
the net present value maximization of project’s cash flows.
Furthermore, they proposed tabu search and simulated
annealing for solving the problem [7]. Elazouni and Met-
wally employed a genetic algorithm (GA) for finance-based
scheduling to obtain maximized project profits via financing
and indirect cost minimization [8]. He and Xu studied the
project payment scheduling from the employer’s viewpoint
in which activities could be done separately and the goal was
to maximize the employer’s NPV [9]. He et al. presented the
multimode project payment scheduling in which activities
can be executive separately and the goal was to determine the
start time of the activities and prepayments to maximize the
employer’s NPV at the project due date [10]. Ranjbar
proposed an optimal solution procedure for the project
scheduling problem with permitted tardiness and discrete
time/resource tradeoffs under maximum net present value
objective. 1ey showed that the project costs could be di-
minished if the mode with the minimum duration of each
activity has been selected [11]. Fathallahi and Najafi pre-
sented a model to deal with imposed uncertainties in
projects with the aim of maximizing the project’s NPV.1ey
assumed some uncertain parameters as fuzzy numbers in
order to show the efficiency of using GA and SA algorithms
in solving the problems [12]. Leyman and Vanhoucke in-
vestigated two problems with the constraints on capital,
which result in positive cash balance for the intended
project. 1is study aimed to maximize the NPV by assigning
a negative or positive cash flow to the activities [13]. Nas-
rabadi and Mirzazadeh developed a model using Markovian
inflationary conditions to minimize the expected present
value of execution costs. In their study, unlike most of the
previous studies, the inflation rate and cost of items in each
cycle were considered continuous-time variables under a
Markov process. 1e numerical example and sensitivity
analysis showed that their model could be adopted for the
real-life projects as an applicable approach [14]. Leyman and
Vanhoucke in another study investigated the single and
multimode resource-constrained project scheduling prob-
lem. 1ey tried to present a new scheduling technique and
general framework with the help of a genetic algorithm
aiming at enhancing the net present value of the project. To
evaluate the influence of their approach, the proposed
technique was tested on several datasets. 1e final results
highlighted the far-reaching impact of the data’s parameters
on the project’s NPV [15]. Hassanpour et al. compared the

performance of genetic algorithm (NSGA-II) and a new
multiobjective imperialist algorithm called MOICA for solving
a biobjective preemptive multimode resource-constrained
project scheduling problem based on minimizing makespan
and maximizing net present value. In the end, they proved the
superiority of the proposed MOICA over NSGA-II in
obtaining the more high quality solutions [16]. Farughi et al.
considered the resources as renewable ones, unlike the past
studies. 1ey tried to maximize the net present value and
project flexibility with the aim of minimizing the project’s
completion time. 1e multiobjective simulated annealing al-
gorithm (MOSAA) was selected to solve the suggested model.
1ey found that the large scale problems need to be solved by
considering the efficient performance of the suggested algo-
rithm for four presented benchmark problems [17]. Alavipour
and Arditi proposed a model for financing cost minimization
via several financing alternatives. 1ey introduced a working
schedule with typical activity durations.1e advantages of their
model included lower financing expenses, preventing liqui-
dated damage and project time extension, and an optimized
financing schedule with a reduced number of essential activities
[18]. Alavipour and Arditi developed an integrated profit
maximization framework for expected profit maximization
through cost-time trade-off evaluation, activity start time ad-
justment, financing cost minimization, and work schedule
extension minimization. 1eir model demonstrated its effi-
ciency for contractors to maximize profits [19]. Liang et al.
presented a model considering stochastic activity durations in
robust resource-constrained max-NPV project problem.
1erefore, they used a composite robust scheduling model
together with simulated annealing and tabu search to achieve
the satisfactory solutions. 1eir approach provided them with
reducing the chance of payment plan disruptions besides
contributing to the notable performance of project scheduling
[20]. Delgoshaeia et al. proposed a dynamic backward ap-
proach to enhance the remaining resource usage while carrying
out the project. In this regard, they could maximize the net
present value (NPV) in multimode resource-constrained
project scheduling problem considering activity splitting.1eir
approach showed a considerable effect and flexibility of the
backward approach to be utilized in real-world projects [21].
Zarei et al. proposed a mathematical model for the project
schedule to find an optimal solution with the aim of maxi-
mizing the net present value and minimizing the project time.
GA, SA, and PSO algorithms were selected to solve the pro-
posed model. 1e best option to perform activities would be
considered, which led to a balance between time and cost. GA
algorithm showed a better performance compared to the other
two algorithms. However, SA was preferable in terms of using
less computational time to solve the problem [22].

1ere are many works in the literature of project
scheduling considering multiple modes for executing the
activities. Hsu and Kim developed a priority rule heuristic
algorithm for multimode resource investment problems [23].
Zhu et al. focused on a multimode problem with limited
general resources [24]. Sabzehparvar and Seyed-Hosseini
studied the model with several discrete modes with resource
restrictions considering the prerequisite relationships to
maximize and minimize the mode-dependent delays of the

2 Journal of Engineering



activities [25]. In another study, they proposed a model for
multimode resource investment problem with mode-de-
pendent time lags [26]. He et al. contributed to multimode
project payment scheduling for maximizing contractor net
present value under project deadline constraints. 1ey de-
veloped a tabu search and simulated annealing heuristic al-
gorithms. 1e latter was found to be promising in solving the
instances of the problem [10]. Peteghem and Vanhoucke
developed a problem considering multiple execution
modes for each activity of the project. 1ey utilized a
bipopulation genetic algorithm to solve this multimode re-
source-constrained project scheduling problem (MRCPSP).
1ey used two types of populations as well as an extended
serial schedule generation scheme in order to minimize the
finish time of activity. 1e final results proved the positive
influence of the mentioned elements on the performance of
the genetic algorithm [27].

Azimi et al. studied multimode resource-constrained
project scheduling with the aim of maximization of the net
present value and minimization of makespan simulta-
neously. To solve this problem, they used an evolutionary
algorithm named multiobjective particle swarm optimiza-
tion (MOPSO) [28]. A mixed-integer formulation and a
solution procedure based on simulated annealing were
proposed by Afshar-Nadjafi for the multimode resource
availability cost problem [29]. Qi et al. extended a modified
version of particle swarm optimization including forward
activity list for the multimode resource availability cost
problem [30].

Multimodal genetic algorithms (MMGAs) have been used
by Pérez et al. to optimize the resource-constrainedmultiproject
scheduling problem (RCMPSP) as an alternative approach in-
stead of heuristics algorithms based on priority rules. 1is ap-
proach enabled managers to use the capability of this algorithm
to select between suboptimal solutions [31]. Nemati-Lafmejani
et al. developed a novel biobjective optimization model to deal
with the multimode resource-constrained project scheduling
problem (MRCPSP) together with the contractor selection (CS)
problem. 1e final goal of their study was to minimize the total
project cost and minimize project makespan. 1erefore, 30 test
problems of various sizes were solved with the help of two
metaheuristic algorithms called a nondominated sorting genetic
algorithm (NSGA-II) and multiobjective particle swarm opti-
mization algorithm (MOPSO). 1e most worth-mentioning
conclusion to be drawnwas that themakespan of the project was
curtailed by increasing the number of contractors, which could
provide decision-makers with a wider range of flexible and
applicable approaches [32]. Ehsanifar et al. suggested a model
with the ability to perform activities under different executive
modes.1eir model aimed tominimize project completion time
andmaximize the cash flow of the project.1ey used simulating
annealing and multiobjective particle swarm optimization
(MOPSO) for solving the proposed model in which SA showed
better performance in obtaining the solutions [33].

Having a review of the project scheduling literature, we
found many works on project scheduling problems with
possibility of preemption for the activities. Chiu-Chi com-
pared and evaluated the benefits and downsides of tradi-
tional project management and theory-of-constraints (TOC)

in project management. 1ey also introduced an augmented
resource-constrained TOC project scheduling framework
[34]. Józefowska et al. performed an advantage/disadvantage
comparison of traditional and TOC project management
and proposed a TOC project scheduling method under
resource constraints [35]. Afshar-Nadjafi et al. presented
multimode resource-constrained project scheduling prob-
lem (P-MRCPSP) to minimize the project’s makespan
subject to mode changeability after preemption. He used
simulated annealing (SA) algorithm to obtain a globally
optimum solution. He concluded from the results of 480 test
instances of the problem that mode change would be so
influential in improving the optimal makespan of the
intended project [36]. Delgoshaei et al. developed a method
to address the long delay problem caused by resource
overallocation in the project completion date. 1is being the
case, they adopted a new forward programming heuristic to
consider positive cash flow priority and activity ID rules
simultaneously. 1eir model proved that the makespan
would be increased by modifying the overallocated sched-
ules [37]. Afshar-Nadjafi in another study developed the
preemptive multimode resource-constrained project
scheduling problem (P-MRCPSP), where mode change-
ability is allowed following preemption, to minimize
makespan of the project. He used simulated annealing (SA)
algorithm to deal with this problem and applied statistical
method in order to determine the effect of the presented
method on the problem. It turned out that mode change
could be influential in reaching the optimal makespan of the
project [38].

As mentioned, in the past decades, there have been many
studies on different management problems. From the point
of view of activities, project management has several discrete
modes based on prerequisite relations, the single or mul-
timode executive conditions of activities, and the possibility
of interruption of activities, and from the viewpoint of the
objective function, the goal of a problem can comprise
different goals for optimization. In the present study, it is
decided to have the possibility of mode change during ex-
ecution of the project.

Herein, we assume that each activity can be split in-
tentionally for resolving the resources’ conflicts. In addi-
tion, the project manager can take advantage of the
multimodeness of the activities. More specifically, the
planner can relax the uniqueness of the execution mode,
which permits an activity to be restarted after preemption
with a different mode than the initial mode. 1is may result
in a better solution than the classic models because it re-
laxes some constraints, which in turn widens the solution
space. In terms of activity preemption, it needs to be
highlighted that although splitting the activities may cul-
minate in a longer project’s makespan, it can increase the
NPV of the project, which is the objective function con-
sidered in this research.

1e remainder of this paper is structured as follows.
Section 2 descries the optimization model. 1e solution
procedures are presented in Section 3. 1e computational
results are analyzed and reported in Section 4. Finally,
Section 5 concludes the paper.
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2. Model Description

From the contractor’s viewpoint, the project payment
scheduling problem with a multimode execution structure
for maximization of NPV happens at regular time intervals.
Project activities management with one specific due date
happens while considering the probability of interruption of
the activities and changing the modes.

We assume that the activities are numbered from 1 to I.
Each activity has different execution modes (1, 2, . . ., i). 1e
project is shown as an AON network in which the node set
denotes the activities and the arc set represents the finish-to-
start prerequisite restrictions between the activities. At each
time instant, each activity is done according to one of its own
execution modes. 1ere is a limitation for each resource per
time unit (day), which will result in delay if its usage is
exceeded; in other words, there would be preemption in case
of resource shortages. If an activity is interrupted the exe-
cution mode of that activity can be changed to resolve the
resource balance. At the end of each time period, the ac-
complished percent of each performed activity at the
mentioned period is calculated, and then the payment
amount has resulted through cost, benefit, and the payment
proportion.

Payments are done at regular periods and there exists
one payment at the reward and punishment system in which
there is a due date for each activity. If the activity is done
sooner, there is a reward for the days the activity is finished
sooner than scheduled and, of course, there is a fine for any
delay. 1e total cost can be achieved by calculating the
employer’s payment to the contractor and also the benefit
and cost of each daily activity. In NPV calculation, as the
total costs and payments are evaluated in comparison to the
first day of the project, money loses its value day by day; that
is why the interest rate is used to find out the final value of
cash currents.

2.1. Assumptions

(1) Project network is an AON which is a directed
digraph with multiple execution modes for each
activity.

(2) Payments are done periodically and the last pay-
ment should be done while finishing the project.

(3) 1e project should be completed before its due date.

(4) 1e contract expenditure includes both the con-
tractor’s total expenditure and his benefit.

(5) If there is preemption in activities, there can be a
change in execution mode.

(6) Each activity in each day of the project can be
executed by just one mode of the execution modes.

(7) All the parameters in each problem are
deterministic.

(8) 1ere is a due date for each activity.
(9) 1ere is a certain amount of job to be accomplished

for each activity.
(10) 1ere is a reward and punishment system for

completion of each activity.
(11) All the resources are renewable.

2.2. Parameters

wi: Workload of activity i
mi: Executive mode of activity i
wimi: Performed amount of job by activity i if it is
carried out according to mode mi (in each day).
hi: Due date of activity i
K: Number of payments
pk: Amount of payment k
ei: Bonus of activity i if it is carried out sooner than the
due date.
ei
′: Penalty cost of activity i if it is carried out after the
due date.
α: Modification rate
θ: Payment proportion
ε: Benefit margin
D: Project due date
D′: Project completion time
T′: Payment intervals
T0: Payment time of day zero (at the beginning of the
project in which we have no payment)

1e model:
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TK: Payment time of k
RiLmi: Amount of L resource needed for activity i if it is
carried out in mode mi (in each day).
Cit: Cost of the necessary resources to carry out activity
i in t day
CL: Specific cost of each resource L
Ci: Total cost of the necessary resources to carry out
activity i.

RL: Renewable limit of resource L in each day.1ere is a
limit for each resource during the whole project which
cannot be exceeded.
WiTk

: Performed amount of job by activity i at the end
of the payment time of k

Oi t �
1, if activity i is finished at time t � 1,

0, otherwise.

EFi: Earliest finish time of the activity i
LFi: Latest finish time of the activity i
ESi: Earliest start time of the activity i.

2.3. Objective Function and Constraints. Based on the
abovementioned formulation, the optimization model of
max NPV with a bonus penalty structure can be constructed
from the perspectives of the contractor. In this model, the
objective function represents the contractor’s NPV of the
project. 1e NPV is the subtraction of all discounted costs
associated with the project from the employer’s discounted
payments to a contractor while considering the bonus and
penalty structure of activities. 1e total costs include the
costs of used resources in a project. Also, if an activity is done
sooner, there is a bonus, and if it is finished later, there is a
penalty for it. To calculate NPV of the contractor, the
penalties are subtracted from the employer’s payments and
then the bonuses are added to that.

Equation (2) shows that the project activities are exe-
cuted just in one of their executive modes per day and each
activity cannot be done with more than one mode within a
day. Equation (3) shows that the project is done before its
deadline; D. Equation (4) calculates the finish point of each
activity. Equation (5) represents the summit of payments.
Equation (6) shows the value of each payment. Equation (7)
guarantees that using each resource in the whole project has
a specific restriction. Equation (8) specifies that each activity
has work content and in order to fulfill one activity, it should
reach its job content. Equation (9) denotes the prerequisite
relationships in a network. Equation (10) shows the total cost
of each activity in the project. Equation (11) denotes the
performed job content in each activity at the end of each
time period. Equation (12) represents the total cost of each
activity in a time period.

3. Heuristic Solution Procedures

Genetic algorithm (GA) has been used frequently to solve
scheduling problems due to its effectiveness and efficiency in
exploring solution space for complex problems. GA can
work on a collection of feasible solutions at any given time.
1is is why it can go through a bigger space in a shorter time.

1e algorithm is started with a set of solutions (repre-
sented by chromosomes) called population. Solutions from
one population are taken and used to form a new population
(generation). 1is is motivated by the hope that the new
population will be better than the old one by inheriting good
features from the parent population. Solutions that are se-
lected to form new solutions (offspring) are selected
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according to their fitness—the more suitable they are, the
more chances they have to reproduce.

Simulated annealing is a method for finding a good (not
necessarily perfect) solution to an optimization problem. If
you are in a situation where you want to maximize or
minimize some function, your problem can likely be tackled
with simulated annealing. 1is algorithm is among the most
powerful algorithms to face the combinatorial optimization
problems and this is why it is selected to solve our model.

3.1. Solving the Problem with GA Algorithm

3.1.1. Choosing Chromosome. 1e number of project ac-
tivities is shown by I and the vector length of the chro-
mosome is assumed to be 2I. Each chromosome is divided
into two divisions with length I and the members of the first
part of the chromosome represent the activities and the
members of the second part show the number of executive
modes.

3.1.2. Generating Initial Population of Chromosomes.
Producing chromosomes of the initial population or gen-
eration is randomly performed to start the algorithm.

Consider matrix i. “i” shows the number of activity.
Activities are shown while considering their prerequisite
relationships in a matrix. If “i” is the prerequisite of j, matrix
space will be filled. Now, we act as the following to choose
the primary sequence of the activities.

Step 1:
All the activities should be put on a list called activity
list.
Step 2:
Consider a collection called S-list which includes ac-
tivities which can be performed based on precedence
relations. 1is collection is empty at first at the start of
the algorithm.
Step 3:
We consider another collection named M-list, which
includes all the activities which can be at any stage and
can be executed.

Finally, we call the arranged list of activities a sequence.
1en, the activities are emitted from the activity list, while
considering the prerequisite relationships, and after that,
they are added to M-list. 1rough producing a random
number, the activities in M-list are emitted and then put in
the sequence list. In this method, the sequence of the ac-
tivities is in a way that we can have a proper sequence and,
therefore, chromosomes. A detailed structure of the pro-
posed algorithms is depicted in Figures 1 and 2.

3.1.3. Fitness. Herein we evaluate the fitness value of each
chromosome in the population. With the use of the fitness
function’s value, we can calculate each chromosome’s
probability and its cumulative probability to find the best
chromosome. After the production of one generation of the

initial population, it is time to have the genetic operator of
crossover and mutation. Before the crossover and mutation
operator, evolution operations are performed on chromo-
somes. First, chromosomes are put in an ascending order
based on the fitness value. A percent of the new generation
population comprises the best chromosomes of the previous
generation. Having arranged the chromosomes, the best
chromosomes are directly transferred to the new generation
based on the fitness value. 1e chromosomes transferred
through evolution are transferred based on the defined
evolution probability (1 − Pc − Pm). 1e achieved answers
out of the elite orientation are used in order to have the
crossover and mutation operators.

3.1.4. New Population. Create a new population by re-
peating following steps until the new population is
completed.

3.1.5. Selection. Select two parent chromosomes from a
population according to their fitness (the better fitness, the
bigger chance to be selected). Selecting parent chromosomes
for the crossover is done with roulette wheel. We calculate
the cumulative function probability on value for each
chromosome and then make a random number between
zero and one to have roulette wheel. 1e generated random
number is adapted to the cumulative probabilities of selected
chromosome and then we choose the parent chromosome
adapted to the random number to have the crossover op-
erator. 1e other parent chromosome should be chosen the
same way, too. It should be added that if the chosen adapted
number is put between two cumulative probabilities by
roulette wheel, the higher cumulative probability is chosen.
Parents are called P1 and P2.

3.1.6. Applying the Operators. In the above algorithm, the
chromosomes include two parts. 1e first part is the se-
quence of activities and the second part shows the executive
modes. 1e crossover operator is applied to the first part of
the chromosome and the mutation operator is applied to the
second part of it, and they both produce children as the new
answers.

(1) Crossover. At first, it is applied to the first part of
parent chromosomes with probability of (Pc) and then the
mutation operator is applied to the second part of chro-
mosomes with the probability of (Pm). 1e crossover op-
erator combines the features of the two parent chromosomes
to produce two children who have the qualities of their
parents. 1e crossover operators are one of the most im-
portant genetic algorithm operators and performing the
algorithm correctly is really dependent on the proper de-
signing of the crossover operator. Chromosomes are chosen
in pairs and each pair changes into an intersect operator with
the probability of (Pc) which results in the production of two
children. In this algorithm, one-point crossover is used to
choose parent chromosome and the roulette wheel is used
for the crossover.
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Firstly, in order to avoid the production of improper
children, the first part of parent chromosomes, point 1 to
cutting point, is copied in the child’s chromosome. Now, we
search all the copied activities of the first two parents in the

second parent and omit them in the second parent.1en, the
remaining activities of the second parent are copied in the
first child in a succession similar to that of the second parent
from cutting point to I.

Start

Input prerequisite relationships

Investigation the sequence of the
schedule activities’ validity

Remove the copied
activities from second

parent

Finish

No

Yes

Evaluate NPV of every schedule and then evaluate Fitness Function of every schedules
by considering NPV value.

Select two of the best schedules based on Fitness Function

Apply crossover operator with Pc probability on activities of the two selected schedules
(Utilized in first part of chromosomes)

Apply mutation operator with Pm probability on executive modes of activities of the two 
selected schedules (Utilized in second part of chromosomes)

Add the two new generated schedules in initial population 
and evaluate the NPV of each schedules

Create ‘n’ schedule with activities that can be executed in several modes

Generation = 0

Arrangement of all schedules NPV in ascending orderbased on evaluating of their Fitness Functions

Stop and present the 
maximum NPV as the best 

schedule for project 
scheduling among all 

generations

Investigation the validity of executive
mode of the schedule activities

No

Yes

g = g + 1

Generation < MAX 
generation

YesNo

The generated Fitness Functions are arranged in ascending order. (A higher NPV value
indicates a better design for schedule)

Choose one executive mode
randomly out of the present

operational mode for the 
specific activities

Figure 1: Conceptual flowchart of optimization process by GA.
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(2) Mutation.With a mutation, probability mutates new
offspring at each locus (position in chromosome). 1e
chromosomes in the above problem have two I parts.
1erefore, in order to finally produce the children, the
operator should be applied to the second part of chromo-
some. 1e mutation operator is the selective operator ap-
plied to the second part of chromosome; roulette wheel is
used to choose chromosomes to have a mutation. 1e

second parts of chromosomes are the modes to execute the
activities. Later, the mutation operator is applied to the
second part of a chromosome.

I+ 1 spaces relate to the executive mode of the first
activity, I+ 2 is for the operational mode of the second
activity, and I+ 1 is related to the executive mode of activity,
all of which have the mutation operation, too. 1e mutation
operator is applied to the modes, and if we face the

r = 0, Primary temperature = Tt

Produce a neighborhood chromosome out of the initial chromosome
and calculate NPV1 according to the new answer

Choose a random number between Zero and One

Accept the new chromosome as the better answer (accepting the worse answer) 
Shomar = Shomar + 1 and NPV0 = NPV1

Shomar = 0, α, Rc, Ts
NPV0, Ts = Tt

R = R + 1

Tt = ∞.Tt

0 < Δ NPV = NPV1–NPV0

R ≤ Rc

Shomar <
ts/1000 (100)

Print shomar

Accept the new
chromosome as the

better answer
Shomar = 0 and
NPV0 = NPV1

Yes

No

Yes

Yes

Yes

No

No

Reject the new chromosome (new neighborhood) and choose the previous answer as the 
superior answer up to that time. NPV0 = NPV1 and Shomar = Shomar + 1

k ≤ e^(ΔNPV/Tt)

Start

Finish

Figure 2: Conceptual flowchart of optimization process by SA.
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infeasibility chromosome, we will randomly choose one
executive mode out of the present operational mode for the
specific activities.

3.1.7. Accepting. Place new offspring in a new population.
Each time the algorithm produces a new generation of
answers and then achieves the new answers through ap-
plying the elitism operators of crossover and mutation.

3.1.8. Replace. Use the newly generated population for a
further run of the algorithm. 1e new population will be
better than the old one, which is selected for a further run of
the algorithm.

3.1.9. Test. If the end condition is satisfied, stop and return
the best solution in current population. 1e needed con-
dition to end the genetic algorithm in the above problem is
considered to be the number of generations. Each generation
has better answers compared to the previous one because
each time the best is transferred to the next generations or we
can produce a child through combining the best chromo-
somes of parents. When the condition to end the algorithm
is met, the optimum answer is achieved which is the best
succession of activities with the executive modes at the
beginning of the project to have the highest amount of NPV
for the contractor and to solve the management problem.

3.1.10. Loop. If the condition is not fulfilled, go to step 3.1.5.

3.2. Solving the Problem with SA Algorithm. To choose
chromosome in this method is similar to GA algorithm.
Project activities equal I and the vector length of the
chromosome is 2I. Each chromosome is divided into I parts.
1e members of part one are the activities and the members
of part two show the number of executive modes for each
activity. First, we enter the primary parameters and then
perform them while considering the condition of stopping
the algorithm during the described steps.

SA algorithm parameters
Starting temperature (Ts)
Iterations at each temperature (Rc)
Predetermined cooling rate (0< a< 1)
SA algorithm stop condition

We defined the condition of algorithm stop (ts/1000)
which is a counter as the function of temperature. First, we
produce a proper answer under the initial temperature and
then calculate the value of objective function according to
the primary chromosome.

SA algorithm operation steps are as follows.

Step 1:
Primary temperature (Ts), the number of repetitions in
each temperature (Rc), predetermined cooling rate
(0< α< 1), and (Shomar� 0) as a counter are entered.

Step 2:
Now we determine the present temperature (Tt � Ts)
and the amount of objective function (NPV0).
Step 3:
Now we determine the present temperature as Tt, and
the present repetitive number R� 0. Later, we enter
Shomar and the primary answer (initial chromosome)
and the amount of objective function (NPV0).
Step 4:
We produce a neighborhood chromosome out of the
initial chromosome and calculate NPV1 according to
the new answer.
Step 5:
If △NPV � NPV1 − NPV0 < 0, we accept the new
chromosome as the better answer, shower� 0 and
NPV0 � NPV1; now go to 6. If not, we choose a random
number between Zero and One.
If R≤ eΔNPV/Tt , we accept the new chromosome as the
better answer (accepting the worse answer), Shomar�

Shomar + 1 andNPV0 � NPV1; go to 6. If not, we reject
the new chromosome (new neighborhood) and choose
the previous answer as the superior answer up to that
time. NPV0 � NPV1 � and Shomar� Shomar + 1 and
now go to 6.
Step 6:
Print Shomar and if Shomar< ts/1000, go to 7; if not go
to 9.
Step 7:
Now R�R+ 1. If R≤Rc, go to step 4. If not, go to step 8.
Step 8:
Tt � α · Tt; go to step 3.
Step 9:
Print Shomar and Render the achieved results and offer
the best answer of NPV.

After frequent and defined repetitions which are a
function of temperature, if no better condition is achieved
for NPV, we stop the algorithm and then the best answer up
to that time is given as the optimum answer.

Chromosome’s state of being proper is another im-
portant consideration. If one activity is a prerequisite for
the next activity, it cannot be a proper candidate to produce
new neighborhood ones, because if it is exchanged by each
of the next activities which are not the prerequisite, it will
be called improper in its next first activity due to being a
prerequisite.

1e flowcharts of optimization process by SA and GA
algorithms are shown in Figures 1 and 2.

4. Computational Results

1e function of the two metaheuristic algorithms (GA and
SA) is compared and studied through different tests. To do
such tests, we require defining some proper problems.
Obviously, setting the algorithm parameters has a direct
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relation with its efficiency; this is why Taguchi method is
used to regulate the parameters.

4.1. Assumptions and Setting of GA Parameters. In this al-
gorithm, the initial population is randomly produced as big
as the pop size. Random move and crossover are used as
operators. 1e algorithm is stopped after a certain repetition
(generation). 1erefore, the algorithm has four parameters
called probability crossing, probability mutation, population
size (pop size), and generation number (generation). In
Tables 1–5, the operators and parameters along with their
levels are given.

4.2. Assumptions and Arranging or Setting SA Parameters.
In this algorithm, we consider a hypothetical value for tem-
perature based on previous studies (Initial TEMP� 200000).
1e algorithm is stopped after a certain repetition (T/1000) and
it has three parameters called initial temperature (TEMP),
repetition in each temperature (Repeat), and temperature
decrease coefficient (α). In Tables 6–10, the operators and
parameters along with their levels are given.

In this study, the performance of the proposed methods
is evaluated by two indicators, which are NPV and solving
time. Comparing the results of doing tests on solution al-
gorithms, the tables and graphs show the average function
evaluation of GA and SA algorithm in three groups called
small, medium, and large groups (each problem is per-
formed five times).

To compare the two presented algorithms, 108 sample
problems were produced and each of the mentioned
problems was solved using genetic and simulated annealing
algorithms.1e sample problems were given in three groups

called small, medium, and large. 1e achieved results are
shown in Figures 3–8 through two algorithms.

As can be seen, the genetic algorithm has achieved much
better answer in comparison to simulated annealing algo-
rithm at 100 percent of the cases. Further as the time needed
to solve problems by SA algorithm was so close to that of GA
algorithm in most problems and even in some problems,
solving them by SA algorithm was much more time-con-
suming, and the achieved answers through genetic algorithm
seemed better and finally resulted in higher NPV for the

Table 1: Taguchi’s orthogonal arrays matrix (GA).

Run A B C
1 A(1) B(1) C(1)
2 A(1) B(2) C(2)
3 A(1) B(3) C(3)
4 A(2) B(1) C(2)
5 A(2) B(2) C(3)
6 A(2) B(3) C(1)
7 A(3) B(1) C(3)
8 A(3) B(2) C(1)
9 A(3) B(3) C(2)

Table 2: Operators, parameters, and their levels (GA).

Factor Symbol Level Type

Temp A

Small problems B(1)� 10, B(2)� 20, B(3)� 30
Medium problems B(1)� 40, B(2)� 50, B(3)� 60
Large problems B(1)� 80, B(2)� 100, B(3)� 120

Repeat B

Small problems C(1)� 0.6, C(2)� 0.7, C(3)� 0.8
Medium problems C(1)� 0.7, C(2)� 0.8, C(3)� 0.9
Large problems C(1)� 0.7, C(2)� 0.8, C(3)� 0.9

α C

Small problems C(1)� 0.05, C(2)� 0.07, C(3)� 0.09
Medium problems B(1)� 0.05, B(2)� 0.07, B(3)� 0.09
Large problems B(1)� 0.05, B(2)� 0.07, B(3)� 0.09

Table 3: Optimum levels of GA parameters in small size instances.

Factor Symbol Optimal level
Pop size B A(2) � 20
(Pc) B B(2) � 0.7
pm B C(2) � 0.07

Table 4: Optimum levels of GA parameters in medium size
instances.

Factor Symbol Optimal level
Pop size B A(2) � 50
(Pc) B B(2) � 0.8
pm B C(2) � 0.07

Table 5: Optimum levels of GA parameters in large size instances.

Factor Symbol Optimal level
Pop size B A(2) � 100
(Pc) B B(2) � 0.8
pm B C(2) � 0.07
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contractor. In general, it can be concluded that genetic al-
gorithm has better answers than SA at the same given time to
solve problems.

To show GA algorithm quality compared to SA al-
gorithm in all problems, the 2-sample t-test with the
certainty level of %95 (a � 0.05) is given to compare NPV.
1e variance of samples was considered equal and the
quality of the achieved answers in all the three groups,
small, medium, and large, seemed better by GA

algorithm compared to SA, because the P value amount is
larger than a � 0.05 recognition level. 1erefore, the
“Zero” hypothesis is accepted and the opposite one is
rejected.

In project scheduling problems, time-oriented and fi-
nancial objectives have always been modeled as trade-off
measures. In this paper, we tried to investigate the proce-
dure, in which mode switching may increase projects
profitability.

Table 6: Taguchi’s orthogonal arrays matrix (SA).

Run A B C
1 A(1) B(1) C(1)
2 A(1) B(2) C(2)
3 A(1) B(3) C(3)
4 A(2) B(1) C(2)
5 A(2) B(2) C(3)
6 A(2) B(3) C(1)
7 A(3) B(1) C(3)
8 A(3) B(2) C(1)
9 A(3) B(3) C(2)

Table 7: Operators, parameters, and their levels (SA).

Level Factor Symbol Type

Small
Temp

A

A(2)� 100000
Repeat B(2)� 15

α C(3)� 0.99

Medium
Temp

B

A(2)� 500000
Repeat B(2)� 30

α C(3)� 0.99

Large
Temp

C

A(2)� 1500000
Repeat B(2)� 50

α C(3)� 0.99

Table 8: Optimum levels of SA parameters in small size instances.

Factor Symbol Optimal level
Temp A A(2) � 100000
Repeat B B(2) � 15
α C C(3) � 0.99

Table 9: Optimum levels of SA parameters in medium size instances.

Factor Symbol Optimal level
Temp B A(2) � 500000
Repeat B B(2) � 30
α C C(3) � 0.99

Table 10: Optimum levels of SA parameters in large size instances.

Factor Symbol Optimal level
Temp B A(2) � 200000
Repeat B B(2) � 50
α C C(3) � 0.99
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Figure 3: Comparison chart of net present value obtained by GA and SA algorithms in small problems.
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Figure 4: Comparison chart of net present value obtained by GA and SA algorithms in medium problems.
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Figure 6: Comparison the outcomes of running time of small size algorithm between GA and SA algorithms.
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5. Conclusion

1is paper proposes the use of metaheuristic algorithm to
solve project scheduling problems with activities along with
the possibility of preemption and change mode with a bonus
penalty structure.1e problem has complexity in calculation
time, and in other words, it is classified as NP-hard prob-
lems. In this research, genetic metaheuristic algorithm and
simulated annealing algorithm were used for optimized
scheduling. In order to compare the two presented algo-
rithms, 108 sample problems were studied in this paper. 1e
performance of the procedures was tested on an available
test set, which shows genetic algorithm is more efficient than
simulation annealing at the given time. For further research,
it is recommended that studying the other metaheuristic
algorithms can be considered to develop the desired model.
Furthermore, there should be amodel to discuss the problem
from the viewpoints of both the contractor and employer.
1is is just the multiobjective model which can focus on
maximizing NPV, resource restriction, and minimizing the
project time.

Data Availability

1e data used to support the findings of this study are
available from the corresponding author upon request. It is
worth mentioning that the used data are based on hypo-
thetical values considering different real-world projects.
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