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�is paper presents an adequate mathematical representation of a quadcopter’s system dynamics and e�ective control techniques.
A quadcopter is an unmanned aerial vehicle (UAV) that is able to do vertical take-o� and landing.�is study presents a nonlinear
quadcopter system’s mathematical modeling and control for stabilization and trajectory tracking. �e mathematical model of the
system dynamics of the quadcopter is derived using Newton and Euler equations with proper references to the appropriate frame
or coordinate system. A PD control algorithm is developed for the nonlinear system for stabilization. Another nonlinear control
technique called full state feedback linearization (FBL) using nonlinear dynamic inversion (NDI) is developed and implemented
on the quadcopter system. However, there is a problem with the normal approach of the complete derivation of the full state FBL
system using NDI as gathered from the literature review. In such an approach, the PD controller that was used for attitude
stabilization was able to stabilize the angles to zero states, but the position variables cannot be stabilized because the state variables
are not observable. �us, a new approach where the position variables are mapped to the angle variables which are controllable so
as to drive all states to zero stability was proposed in this study.�e aim of the study was achieved but the downside is that it takes a
longer time to achieve this stability so it is not e�cient and should only be considered when absolute zero stability is the aim
without considering time e�ciency. �e study further investigates the problem of nonlinear quadcopter system’s mathematical
modelling and control for stabilization and trajectory tracking using the feedback linearization (FBL) technique combined with
the PD controller. �e proposed control algorithms are implemented on the quadcopter model using MATLAB and analyzed in
terms of system stabilization and trajectory tracking. �e PD controller produces satisfactory results for system stabilization, but
the FBL system combined with the PD controller performs better for trajectory tracking of the quadcopter system.

1. Introduction

A quadcopter, also known as a quadrotor, is a rotor-based
aerial vehicle. �ey are multirotor aircrafts propelled by four
rotors. To balance the torque, these rotors are built with two
pairs of opposite rotors revolving clockwise and the other
rotor pair moving anticlockwise. A quadcopter’s dynamics
are highly nonlinear; it is an underactuated system with six
degrees of freedom and four control inputs which are the
rotor velocities. �e quadcopter is controlled by adjusting
the rotors’ angular speeds, which alters the quadcopter’s
torque and thrust characteristics.�e quadcopter is designed

with four rotors in cross-con�guration, as shown in Figure 1.
Two opposite rotors rotate in the same direction; the altitude
and position of the quadcopter can be controlled by varying
the rotor’s angular speed. �e quadcopter can be kept in a
balanced position without spinning if the generated torque
of the motors T1, T2, T3, and T4 is the same.

�rust controls the quadcopter’s altitude for ascending
and descending and is achieved by increasing or reducing
the rotational speed of motors 1, 2, 3, and 4, simultaneously.
Roll is the movement of the quadcopter by tilting either left
or right to allow side movements. Pitch is the movement of
the quadcopter by tilting either front or back to allow
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forward or backward movement. Yaw is movement in a
clockwise or anticlockwise manner while staying level to the
ground to change the quadcopter’s direction. (ese flight
motions can be achieved by controlling the rotational speeds
of the four motors.

Quadcopter designs have recently been popular in UAV
research. To control and stabilize the aircraft, these UAVs
use an electrical control system and sensors [1]. (e small
unmanned aerial vehicles (SUAV) have become a reality,
thanks to recent microcomputer technology, sensor tech-
nology, control systems, and dynamics theory advance-
ments. Due to their compact size, low cost, and agility, these
systems are being used in various applications.

Indoor quadcopters are usually relatively small in size
and cannot utilize GPS for absolute positioning. (ey thrive
in the absence of strong winds and relatively stable light
conditions and their missions are usually shorter than those
of an outdoor quadcopter [2, 3]. Outdoor quadcopters are
relatively bigger in size than the indoor quadcopter and can
utilize GPS for absolute positioning. (ey are more durable
and can fly for longer periods of time than indoor quad-
copters [2]. A DJI Phantom 4 is an example of an outdoor
quadcopter [4].

In the 1920s and 1930s, a few manned designs existed.
(ese vehicles were among the first heavier-than-air vertical
take-off and landing (VTOL) vehicles to be successfully
tested [1]. However, early prototypes performed poorly due
to weak stability augmentation and restricted control au-
thority, while latter versions required too much pilot effort.
Historically, basic linear control techniques were used to
ensure easy computation and flight stability, but due to
improved modeling techniques and faster computational
capabilities, it is now possible to run comprehensive non-
linear techniques in real-time [5]. (e major components of
a quadcopter are frame, propeller, motor, speed controller,
flight controller, battery, transmitter, and receiver [6, 7].
Linear control techniques can be implemented on the
controller of a quadcopter by linearizing the system about an
equilibrium point, but such approximationmay not preserve

the dynamics of the system at every point and are not usually
very effective in practical scenarios.

As the range and complexity of applications for quad-
copters expand on a daily basis, the control techniques
utilized on the systemmust also improve. (is paper aims to
develop a mathematical model of a quadcopter system and
implement nonlinear control techniques on the derived
model for stabilization and trajectory tracking of a quad-
copter. (e full state feedback linearization (FBL) system
control based on dynamic inversion for a nonlinear system
of a quadcopter is derived and computed in this paper
without the use of small-angle approximation.

2. Literature Survey

(emathematical modelling and control of a quadcopter are
presented in [8]. A matrix approach and the use of bond
graphs to describe the dynamic model of a quadrotor are
elaborated in [9]. A more detailed derivation of the system
dynamics is given in [10].(e work in [8] shows the basics of
quadcopter modelling and control to serve as a stepping
stone for future research advancement. A detailed study of
the mathematical model of the quadcopter dynamics is
given, and the differential state equations of the system
dynamics are derived from both the Newton–Euler and
Euler–Lagrange equations. A simple mathematical model is
presented in this paper, neglecting several aerodynamic
effects and the modelling of the electric motor spinning the
rotors. (e developed model is simulated to analyze the
behavior of the system, and control algorithms are imple-
mented for stability and trajectory control of the system.

(e PD controller is used to achieve this, and a heuristic
method is developed for trajectory control of the quadcopter
flight. Integration of the PD controller and the heuristic
method is used to minimize the disturbance on the quad-
copter system caused by external forces. (e PD control
algorithm was integrated into the heuristic method because
the heuristic method development did not account for
unmodelled disturbances (wind). A decline in the perfor-
mance of the PD controller was observed if the parameter
values were extremely small or high. (e necessity for an
actual experimental prototype was identified, so those re-
alistic and accurate findings could be acquired and com-
parison between the simulated results and real-life
measurements would be possible.

(e PID controller may utilize the three controller terms
of proportional, integral, and derivative gains to implement
precise and optimum control output [11]. (e controller
attempts to minimize the error over time by adjusting the
control variable u(t). (e proportional gain produces an
output that is proportional to the error value e(t). (is
output is obtained by multiplying the error value by a
proportional constant. (e integral gain considers the past
error values and seeks to reduce the residual error by adding
a control effect obtained from the integration of the cu-
mulative previous errors. (e derivative gain anticipates or
predicts the future behavior of the error and exerts a control
effect produced by the rate of change of the error with
respect to time [12].(e linear quadratic regulator (LQR) is a
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Figure 1: Quadcopter dynamics.
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popular linear control algorithm that provides optimally
controlled feedback gains to enable stability and high-per-
formance design of closed-loop systems.(e LQR controller
is implemented on a linearized system and makes use of a
mathematical algorithm to minimize a cost function with
when the weighting factors are provided.(e cost function is
often described as the sum of deviations of certain key
measurements from their desired values [13].

Several control algorithms have been researched for
quadcopters for attitude stabilization and trajectory track-
ing. (e objective is to implement a control algorithm that
permits the quadcopter’s states to converge to an unpre-
dictable set of time-varying reference states. It is possible to
control the quadcopter by linearizing the system dynamics
around a stable point and applying linear control techniques,
as shown in [14, 15]. Nonlinear control algorithms such as
backstepping, sliding mode [16, 17], and feedback lineari-
zation [16, 18] are effective for quadcopter control as better
performances have been observed from their implementa-
tion. Numerous control algorithms for attitude control have
been studied. (ese include the PID controllers [5, 8, 10],
inverse dynamic control, sliding-mode controller [19], linear
quadratic regulator [5], and feedback linearization control
[18–20]. A hierarchical control approach is used in [10],
where different levels (controlling rotor rotational speed,
vehicle attitude, and trajectory position) form feedback
loops.

A review of control algorithms for autonomous quad-
rotors is presented in [20]. Several control algorithms are
analyzed to propose hybrid systems that would combine the
advantages of more than one control algorithm.(e focus of
this paper was to implement the optimal control algorithm
of the quadrotor manned aerial vehicle for game counting in
the protected game reserves in Africa. (e control algo-
rithms analyzed in this paper are PID, linear quadratic
regulator (LQR), sliding-mode control, backstepping con-
trol, adaptive control, and artificial neural networks. From
the review, no particular control algorithm gives the best
performance in all required features in terms of fast re-
sponse, disturbance rejection, stability, robustness, adapt-
ability, optimality, and tracking ability. A hybrid control
system could have the best combination of some of these
features but does not guarantee overall optimum perfor-
mance. Certain features are more important depending on
the application of the quadrotors; hence, compromises
would have to be made to implement control algorithms that
excel in such areas of application. A quadrotor to be used for
game counting is designed to prioritize specific character-
istics such as high endurance, high agility, high cruising, low
noise, and vertical take-off and landing ability. (is paper
concluded that the designed quadrotor would be suitable for
assisting nature conservationists in game counting and
obtaining accurate animal statistics. A PID controller with
provision for angular acceleration feedback is utilized in [21]
for attitude stabilization. (is causes significant gain in-
crease resulting in higher bandwidth.

A comprehensive mathematical modelling of the kine-
matics and dynamics of a quadcopter system is described in
[22]. (e kinematic aspect of the modelling depicts the

quadcopter motion without considering the forces acting on
it, whereas the dynamics explain the forces causing the
motion. (is gives an overview of the response of quad-
copters when under the influence of extraneous forces.
Nonlinear state equations for the system were derived, and
the manual method to obtain minimum steady-state error
for PID tuning is presented. (is research resulted in a
quadcopter with a composite frame assembled and imple-
mented in real-time for pitch, roll, and stabilization with PID
control. (e results yield adequate performance when the
hardware configuration is at the hover point.

A thesis on quadcopter flight mechanics model and
control algorithms is shown in [2]. (e focus of this thesis
was to develop a nonlinear model of quadcopter flight
mechanics with suitable control algorithms for stabilization
and implement in MATLAB/Simulink. (e quadcopter
dynamics were derived from the equation of motion and
forces, and a nonlinear model was obtained based on these
dynamics. Aerodynamic effects such as nonzero free steam
and blade-flapping are ignored in the derivation of the
system equations, but other forces such as air friction and
drag forces are considered. For analysis of the system, the
model is linearized at a stable hover point, and both the
linear and nonlinear models are analyzed. (e gradient
descent method is used for controller tuning to obtain
optimum control parameters, and the system is simulated
for a given period of time. A better performance was ob-
served from the automatically tuned PID controller (using
the gradient descent method) than the manually tuned PID
controller.

(e design and control of quadrotors in relation to
autonomous flying [1] are a thesis that entails the modelling,
design, and control of small flying drones with a focus on
vertical take-off and landing (VTOL) systems. In this thesis,
an autonomous quadrotor called OS4 is modelled and
simulated with various controllers. A more complex
mathematical model is presented here as the system dy-
namics account for more realistic aerodynamic coefficients,
sensor, and actuator models. (e OS4 quadcopter model is
simulated with five different control algorithms.(e first one
was based on Lyapunov theory and was implemented for
attitude stabilization, but after simulation on OS4, it was
observed that it was not stable enough to allow hover flight.
(e second control algorithm implemented was the PID
controller, and it was suitable for attitude stabilization of the
quadcopter system when flying near hover, but this was only
possible in the absence of huge disturbances. (e third
control algorithm was an LQR controller that presented
adequate stabilization, but this control algorithm was less
adaptive than the PID. (e fourth control algorithm was the
backstepping controller, which achieved excellent stabili-
zation and control in relatively large disturbances. (e fifth
control algorithm implemented was the sliding-mode
technique, but this control algorithm did not give desirable
results because the switching characteristics of the controller
were not compatible with the dynamics of the quadcopter
system. After the implementation and analysis of these five
control algorithms, a suitable control algorithm was de-
veloped by integrating the PID and the backstepping
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algorithm called integral backstepping. (is was used for
altitude, attitude, position, and trajectory control, and the
implementation of this control algorithm on the OS4 en-
abled the system to take-off, hover, land, and avoid colli-
sions. (e thesis noted that the OS4 was the first collision
avoidance quadcopter system.

A fundamental drawback in quadrotor control is related
to their high energy and power consumption [23].(erefore,
a controller was proposed with a power reduction meth-
odology and cuckoo search algorithm (CSA) for tuning the
controller gains to control the quadrotor position by a PID
controller while the orientation control is achieved through
a model-based controller [24]. A control strategy composed
of a sensor fault diagnosis unit and a disturbance observer-
based sliding-mode controller for quadrotor helicopters to
simultaneously accommodate sensor faults and external
disturbances were developed and analyzed [25]. Another
fault-tolerant control scheme [26] was proposed for attitude
control using adaptive sliding-mode backstepping control to
accommodate the actuator faults, despite actuator saturation
limitation and disturbances.

Classical controllers for UAVs and quadcopters involve
the use of small-angle approximations [27]. For instance, a
cascaded PID controller was designed for trajectory tracking
but was made to hover at an altitude where the nonlinear
model is linearized [28]. Sophisticated architectures such as
genetic algorithm, neural networks, fuzzy logic [29], and
adaptative control have to be integrated to classical con-
trollers in order to achieve stability, robustness, optimal
control, complex manoeuvres, and large angles. An example
is a novel deep learning-based robust nonlinear controller
that improves control performance of a quadrotor during
landing by combining a nominal dynamics model with a
deep neural network (DNN) that learns high-order inter-
actions. A nonlinear feedback linearization controller was
designed using the learned model and prove system stability
with disturbance rejection [30]. A self-tuning PID controller
based on fuzzy logic was designed to cater for payload weight
variation. An adaptive robust control (ARC) was utilized to
compensate for the parametric uncertainty for the UAVs
altitude control [31]. (e comparison between the con-
ventional PID and self-tuning PID base on fuzzy logic shows
the superiority of the self-tuning PID compared to the PID
for variable payload weight [32].(e effectiveness of the PID
controller was enhanced by the implementation of a genetic
algorithm to autotune the controllers in order to adapt to
changing conditions [33]. Five different control systems that
include a traditional PID controller, two fuzzy-PD con-
trollers, and two controllers autotuned using a GA were
designed based on the developed dynamic model and their
performance was compared. (e fuzzy-PD controllers
showed effectiveness with large angles and complex paths.

In this section, previous works on modelling and control
of a quadcopter were discussed and reviewed. A precise
overview of those topics was analyzed and examined to
provide a more rounded understanding of the quadcopter
system components, modelling, and control. From the pa-
pers reviewed, the importance of implementing a good
control for a quadcopter is emphasized and different linear

and nonlinear control algorithms are studied. In this re-
search, the FBL system control based on dynamic inversion
for the nonlinear system will be derived and computed
without the use of small-angle approximation in order to
achieve greater accuracy in tracking of trajectory. (e small-
angle conditions of less than π/2 are realistic for many
applications of a quadcopter but extremely small-angle
approximations cannot achieve extreme manoeuvers [34].
(is paper will focus on presenting an adequate mathe-
matical representation of the system dynamics and effective
control techniques for a quadcopter.

3. Methodology

(is section describes the mathematical modelling, system
stabilization, and trajectory tracking of a quadcopter. A
state-space model of the quadcopter in terms of rotational
and translational dynamics is first developed. For the
quadcopter system stabilization, the control objective is to
control the attitude variable and the linear motion of the
quadcopter. Feedback linearization is used to linearize the
nonlinear system dynamics so that linear control methods
can be used. Trajectory tracking to take the quadcopter
system from its current position to the desired position using
the quadcopter’s rotor angular velocities is achieved using
both PD control (using small-angle approximation) and FBL
(without small-angle approximation) control.

3.1. Mathematical Modelling. A quadcopter is an aerial
vehicle with four rotors that enable motion in different
directions. Proper explanation of the system dynamics
would require comprehension of the 6 degrees of freedom
concept, which presents the position and orientation of the
quadcopter in three dimensions (3-D).

(e 6 degrees of freedom (Figure 2) describes the po-
sition of a body with six coordinates categorized in two
reference frames. (e first reference frame is the fixed co-
ordinate system known as the inertial or Earth frame, which
is depicted by the x, y, and z coordinates in the cardinal
points of north, east, and down. (e second reference frame
is a mobile coordinate system known as the body frame,
which is depicted by the ϕ, θ, and ψ angles with respect to the
body center of gravity. (e quadcopter is an underactuated
nonlinear system because it has four inputs and six outputs.

x

z

y

roll

pitch

yaw

Figure 2: Six degrees of freedom.

4 Journal of Engineering



(e system is complex and to control it, the quadcopter is
modelled on the following assumptions [1]:

(i) (e structure is rigid
(ii) (e structure is axis symmetrical
(iii) (e center of gravity and the body-fixed frame

origin coincide
(iv) (e propellers are rigid
(v) (rust and drag are proportional to the square of

the propeller’s speed.

3.1.1. Euler Angles. (e Euler angles are three angles in-
troduced by Leonhard Euler to describe the orientation of a
rigid body in a coordinate system. (ey are also used to
describe the relationship between two reference frames and
convert the coordinates of a point in one reference frame to
coordinates of the same point in another reference frame.
Euler angles are denoted as ϕ, θ, and ψ for the roll, pitch, and
yaw angles, respectively, and represent the rotations of a
body about the axes of a coordinate system.

Any orientation of a rigid body can be achieved by the
combination of the three basic Euler angles. (e rotation
matrices are given by the following equation [5]:

Rx(ϕ) �

1 0 0

0 c(ϕ) −s(ϕ)

0 s(ϕ) c(ϕ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Ry(ϕ) �

c(ϕ) 0 s(ϕ)

0 1 0

−s(ϕ) 0 c(ϕ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Rz(ϕ) �

c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(1)

where c(ϕ) � cos(ϕ), s(ϕ) � sin(ϕ), c(θ) � cos(θ), s(θ) �

sin(θ), c(ψ) � cos(ψ), s(ψ) � sin(ψ). (e rotation matrix
depicting the relationship between the inertial frame and the
body frame is given as follows:

R � Rz(ψ) × Ry(θ) × Rx(ϕ),

R �

c(θ)c(ψ) s(ϕ)s(θ)c(ψ) − c(ϕ)s(ψ) c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)

c(θ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) c(ϕ)s(θ)s(ψ) − s(ϕ)c(ψ)

−s(θ) s(ϕ)c(θ) c(ϕ)c(θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(2)

R is a rotational matrix and is orthogonal such that
R− 1 � RT.

3.1.2. Reference Frame Transformation. We assume
x y z ϕ θ ψ 

T to be a vector of linear and angular
positions in the inertial frame and let u v ω p q r 

T be a
vector of linear and angular velocities in the body frame.

Typically, the derivative gain of angular positions should
give angular velocities, but the angular positions and ve-
locities above are in a different frame, so we require some
transformation matrix to convert from one reference frame
to another.

Let

ξ � x y z 
T
,

η � ϕ θ ψ 
T
.

(3)

Let

vI � _x _y _z 
T
,

ωI � _ϕ _θ _ψ 
T
.

(4)

Let

vB � u v ω 
T
,

ωB � p q r 
T

.
(5)

From this statement, vI ≠ vB andωI ≠ωB, instead

vI � R · vB,

ωI � ω−1
η · ωB,

_ϕ

_θ

_ψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 s(ϕ)t(θ) c(ϕ)t(θ)

0 c(ϕ) −s(ϕ)

0
s(ϕ)

c(θ)

c(ϕ)

c(θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

Conversely,

ωB � ωη · ωI,

p

q

r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 0 −s(θ)

0 c(ϕ) s(ϕ)c(θ)

0 −s(ϕ) c(ϕ)c(θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_ϕ
_θ
_ψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(7)

3.1.3. Rotational Motion. Assuming the quadcopter is a rigid
body and using Euler’s equations for rigid bodies, the dy-
namics equation in the body frame is given as follows:
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I _ωB + ωB × IωB(   + Γ � τB. (8)

We also assume that the quadcopter has a symmetric
structure with the four arms aligned with the body x- and y-
axes. (erefore, the inertia matrix I is a diagonal matrix in
which Ixx � Iyy.

I �

Ixx 0 0

0 Iyy 0

0 0 Izz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (9)

(e gyroscopic forces Γ are caused by the combined
rotation of the four rotors and the quadcopter body such that
the equation is as follows:

Γ � 

4

i�1
Jr ωB∧e3( (−1)

i+1ωri
. (10)

In matrix form,

Γ � JrωBωr whereωr � −ω1 + ω2 − ω3 + ω4. (11)

(e external torque

τB � τϕτθτψ 
T
. (12)

(e roll torque component τϕ and the pitch torque
component τθ are obtained from standard mechanics where
i � 1 and i � 3 motors are arbitrarily chosen to be on the
roll-axis while i � 2 and i � 4 are arbitrarily chosen to be on
the pitch-axis.

τϕ �  r × T � l −ktω
2
2 + ktω

2
4  � lkt −ω2

2 + ω2
4 ,

τθ �  r × T � l −ktω
2
1 + ktω

2
3  � lkt −ω2

1 + ω2
3 .

(13)

For the yaw-axis, the rotor axis is pointing in the z-
direction in the body frame, and the torque created around
the rotor axis is given as follows:

τψ � (−1)
i+1

kbω
2
i + Imωi, (14)

where (−1)i+1 is positive for the ith propeller if the propeller
is spinning clockwise and negative if it is spinning counter-
clockwise. (e term Im _ωi can be ignored because it is in a
steady-state, _ωi ≈ 0.

(erefore, the total torque about the z-axis is given by the
sum of all the torques from each propeller as follows:

τψ � kb −ω2
1 + ω2

2 − ω2
3 + ω2

4 . (15)

(erefore, the torque matrix can be written as follows:

τB �

τϕ
τθ
τψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

lkt −ω2
2 + ω2

4 

lkt −ω2
1 + ω2

3 

kb −ω2
1 + ω2

2 − ω2
3 + ω2

4 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

where kt is the thrust coefficient, kb is the drag coefficient,
and l is the distance between the rotor and the center of mass
of the quadcopter.

3.1.4. Translational Motion. Using Newtonian equation to
model the linear dynamics, the extraneous forces acting on
the quadcopter are given as follows:

_mv1 �

0

0

−mg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + RTB + FD. (17)

Drag force FD is the force acting on the system as a result
of fluid friction (air resistance). A simplified equation form is
used where friction is modelled as being proportional to the
linear velocity in all directions.

FD � −kdvI . (18)

(e angular velocity of the ith rotor creates a force Fi in
the direction of the rotor axis (z-direction). (e combined
forces create thrust T in the direction of the body z-axis such
that

T � 
4

i�1
Fi � kt 

4

i�1
ω2

i . (19)

Since it acts in the z-axis,

TB �

0

0

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � kt

0

0

 i � 1ω2
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

3.1.5. State-Space Model. From the rotational dynamics
discussed, equation (8) can be rewritten as follows:

_ωB � I
− 1

−ωB × IωB(  − Γ + τB( ,

_ωB � I
− 1

p

q

r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

Ixxp

Iyyq

Izzr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− Jr

p

q

r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ωr + τB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

_p

_q

_r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

Iyy − Izz qr

Ixx

Izz − Ixx( pr

Iyy

Ixx − Iyy pq

Izz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− Jr

q

Ixx

−p

Iyy

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ωr +

τϕ
Ixx

τθ
Iyy

τψ
Izz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

From the linear dynamics discussed, equation (16) can
be written out as follows:
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€x €y€z  � −g

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

T

m

c(ψ)s(θ)c(ϕ) + s(ψ)s(ϕ)

s(ψ)s(θ)c(ϕ) + c(ψ)s(ϕ)

c(θ)c(ϕ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

−
1
m

kdx 0 0

0 kdy 0

0 0 kdz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_x

_y

_z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(22)

3.2. Quadcopter System Stabilization. A quadcopter has only
four control inputs and primarily six outputs of interest

x y z ϕ θ ψ  which makes it an underactuated system.
(is is resolvedby separating it into twodifferent control loops,
with one working with attitude states and the other with po-
sition states. (e quadcopter’s angular motion is independent
of the linear components, but the linear motion is determined
by the angle variables. As a result, the goal is to control the
attitudevariable,which is independentof the linearmotionand
then control the linear motion. It is possible to integrate the
attitude control with the trajectory controller once it is
designed and optimized. (e control architecture to be
implemented on the quadcopter system is shown in Figure 3.

3.2.1. PID Control. (e general form of a PID controller is
given as follows:

e(t) � r(t) − y(t),

u(t) � KPe(t) + KI 
t

0
e(τ)dτ + KD

d

dt
e(t),

(23)

where u(t) represents the control input, r(t) represents the
desired state, and y(t) is the current or actual state. KP, KI,
and KD are the gain parameters for the proportional, in-
tegral, and derivative gains of the PID controller.

(e proportional and derivative gains would be used for
the quadcopter control. (e torque generated is proportional
to the angular velocities; therefore, we set the torques to be
proportional to the controller output such that

τ � I × u(t),

τϕ
τθ
τψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

Ixx kPϕ ϕdes − ϕ(  + kDϕ
_ϕdes − _ϕ  

Iyy kPθ θdes − θ(  + kDθ
_θdes − _θ  

Izz kPψ ψdes − ψ(  + kDψ _ψdes − _ψ(  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(24)

(e input to the quadcopter system is the angular ve-
locity of the rotors. Recall equation (15)relates the torque to
the square of the angular velocity of the rotors; there are
three equations, but four unknowns. (e reason for this
singularity is the use of Euler angles to model the quadcopter
dynamics rather than quaternions [35]; physical singularities
also occur due to the limitation of underactuation in the
dynamics of a quadcopter.

To allow simplification, the total thrust T which affects
the acceleration in the z-direction, is set to be equal to mg.
(is constraint is enforced to keep the quadcopter flying.
Converting this thrust equation to the appropriate reference
frame and utilizing a PD to minimize the error in the z-axis,

T � g + kPz zdes − z(  + kDz _zdes − _z( ( 
m

c(ϕ)c(θ)
. (25)

Solving for the angular velocities of the rotor ω2
1, ω

2
2,

ω2
3, ω

2
4 by computing equation (23) and equating it to

equation (15),

ω2
1

ω2
2

ω2
3

ω2
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

kt kt kt kt

0 −lkt 0 lkt

−lkt 0 lkt 0

−kb kb −kb kb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1 T

τϕ
τθ
τψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Simplifying equation (25) would give the equations as
follows:

ω2
1 �

T

4kt

−
τθ
2lkt

−
τψ
4kb

,

ω2
2 �

T

4kt

−
τϕ
2lkt

+
τψ
4kb

,

ω2
3 �

T

4kt

+
τθ
2lkt

−
τψ
4kb

,

ω2
4 �

T

4kt

+
τϕ
2lkt

+
τψ
4kb

.

(27)
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+

+
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Figure 3: Control architecture.
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3.2.2. Feedback Linearization. Feedback linearization is a
nonlinear control technique that has sparked a lot of interest
recently. (e main concept is to mathematically convert
nonlinear system dynamics into (fully or partially) linear
ones, allowing linear control methods to be used. (e goal is

to design a controller such that it exactly cancels out the
system dynamics.

From equation (21), we can replace €x � kax( _x − _xd),
_x � kdxkx(x − xd), where kax, kdx, and kx are gain values and
replace €y, _y, €z, and _z accordingly.

T

m

c(ψ)s(θ)c(ϕ) + s(ψ)s(ϕ)

s(ψ)s(θ)c(ϕ) + c(ψ)s(ϕ)

c(θ)c(ϕ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

kax _x − _xd( 

kay _y − _yd( 

kaz _z − _zd( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ g

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+
1
m

kdxkx x − xd( 

kdyky y − yd( 

kdzkz z − zd( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

Expanding equation (26) would give the following
equation:

kax _x− _xd( +
kdxkx

m
x−xd( �

T

m
c(ψ)s(θ)c(ϕ),

kay _y− _yd( +
kdyky

m
y−yd( �

T

m
s(ψ)s(θ)c(ϕ)+c(ψ)s(ϕ),

kaz _z− _zd( +g+
kdzkz

m
z−zd( �

T

m
s(ψ)s(θ)c(ϕ)+c(θ)c(ϕ).

(29)

Taking the square of both sides and adding equations
together, we get the following equation:

T
2

m
2 � k

2
ax _x − _xd( 

2
+

k
2
dxk

2
x

m
x − xd( 

2
+
2kaxkdxkx

m
x − xd(  _x − _xd( 

+ k
2
ay _y − _yd( 

2
+

k
2
dyk

2
y

m
y − yd( 

2
+
2kaykdyky

m
y − yd(  _y − _yd( 

+ k
2
az _z − _zd( 

2
+

k
2
dzk

2
z

m
z − zd(  + g

2
+ 2gkaz _z − _zd( 

+
2gkdzkz

m
z − zd(  +

2kazkdzkz

m
z − zd(  _z − _zd( .

(30)

To obtain ϕd, from the x- and y-axis portion of equation
(27), let

Fx � c(ψ)s(θ)c(ϕ) + s(ψ)s(ϕ),

Fy � s(ψ)s(θ)c(ϕ) − c(ψ)s(ϕ).
(31)

From equation (30),we get the following:

s(θ)c(ϕ) �
Fy + c(ψ)s(ϕ)

s(ψ)
. (32)

Substituting equation (31) into equation (30),we get the
following:

Fx �
c(ψ)

s(ψ)
Fy + c(ψ)s(ϕ)  + s(ψ)s(ϕ),

s(ϕ) �
Fx − Fy/t(ψ) 

(c(ψ) + s(ψ)t(ψ)/t(ψ))
,

s(ϕ) �
Fxt(ψ) − Fy

c(ψ) + s(ψ)t(ψ)
,

ϕd � sin− 1 Fx tan(ψ) − Fy

cos(ψ) + sin(ψ)tan(ψ)
 .

(33)
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To obtain θd, from the x- and z-axis portion of equation
(27), let

Fz � c(θ)c(ϕ),

c(ϕ) �
Fz

c(θ)
.

(34)

Substituting equations (32) and (33) into equation (30),

Fx �
Fzc(ψ)s(θ)

c(θ)
+

Fxt(ψ)s(ψ) − Fys(ψ)

c(ψ) + s(ψ)t(ψ)
,

Fzc(ψ)t(θ) � Fx −
Fxt(ψ)s(ψ) − Fys(ψ)

c(ψ) + s(ψ)t(ψ)
,

t(θ) �
Fx

Fzc(ψ)
−

Fxt(ψ)s(ψ) − Fys(ψ)

Fzc
2
(ψ) + Fzs

2
(ψ)

.

(35)

We recall

cos2x+sin2x�1,

t(θ)�
Fx

Fzc(ψ)
−

Fxt(ψ)s(ψ)−Fys(ψ)

Fz

,

t(θ)�
Fx −Fxs

2
(ψ)−Fys(ψ)c(ψ)

Fzc(ψ)
,

t(θ)�
Fxc

2
(ψ)−Fys(ψ)c(ψ)

Fzc(ψ)
,

θd � tan−1 Fxcos
2
(ψ)−Fy sin(ψ)cos(ψ)

Fzcos(ψ)
⎛⎝ ⎞⎠.

(36)

For equations (32) and (34), Fx, Fy, and Fz are given as
follows:

Fx �
mkax _x − _xd(  + kdxkx x − xd( ( 

T
,

Fy �
mkay _y − _yd(  + kdyky y − yd(  

T
,

Fz �
mkaz _z − _zd(  + mg + kdzkz z − zd( ( 

T
.

(37)

From equations (6) and (23) in terms of desired angles,
we can replace ϕd � kϕ(ϕ − ϕd), where kϕ is the gain values,
and replace θd and ψd accordingly:

pd

qd

rd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1 s ϕd( t θd(  c ϕd( t θd( 

0 c ϕd(  −s ϕd( 

0
s ϕd( 

c θd( 

c ϕd( 

c θd( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

kϕ ϕ − ϕd( 

kθ θ − θd( 

_kψ ψ − ψd( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

τϕ

τθ

τψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

IxxkPϕ p − pd( 

IyykPθ q − qd( 

IzzkPψ r − rd( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

Iyy − Izz qdrd + Jrqdωr

Izz − Ixx( pdrd + Jrpdωr

Ixx − Iyy pdqd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

(e angular velocitiesω1, ω2, ω3, andω4 can be obtained
using equation (25).

3.3. Trajectory Tracking. Trajectory control aims to take the
quadcopter system from its current position to the desired
position by regulating the quadcopter’s rotor angular ve-
locities. Due to its complex dynamics, finding the best
quadcopter trajectory is a huge challenge.

Table 1: Quadcopter parameter values for simulation.

Parameter Value Unit
G 9.81 m/s2

M 0.468 kg
L 0.225 m
J r 3.357 × 10− 5 kg m2

k t 2.980 × 10− 6

k b 1.140 × 10− 7

Ixx 4.856 × 10− 3 kg m2

Iyy 4.856 × 10− 3 kg m2

Izz 8.801 × 10− 3 kg m2

kdx 0.25
kdy 0.25
kdz 0.25

Table 2: Initial conditions for simulation.

Position Value State Value
x −1 Φ 10
y 2 Θ −10
z 1 Ψ 5
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Figure 4: Control inputs for the angular velocities of the rotors.
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Figure 5: Control inputs for the positions x, y, and z and the angles ϕ, θ, and ψ.

Table 3: Gain values for PD controller.

Parameter Value Parameter Value
kPϕ 1.5 kDϕ 2.6
kPθ 1.5 kDθ 2.6
kPψ 1.5 kDψ 2.6
kPz 6 kDz 1.5
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Figure 6: Result of angles ϕ, θ , andψ as a function of time for implemented PD controller to drive the system states to zero.
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3.3.1. Trajectory Tracking with PD Control. To relate the
desired position x and y, which are not controllable to the
desired angles of ϕ and θ that are controllable, we make two
assumptions:

(i) Small-angle approximation such that sin(x) ≈ x and
cos(x) ≈ 1.

(ii) (e desired ψ angle is zero.

From the above assumptions, equation (21) can be
simplified as follows.

Equations (27) and (28) can be rewritten as follows:

θdes �
1
T

m €xdes + kdx _xdes + kPxy xdes − x(  ,

ϕdes � −
1
T

m €ydes + kdy _ydes + kPxy ydes − y(  ,

Tdes � m €zdes + g(  + kdz _zdes.

(40)

θdes, ϕdes, and Tdes represent the desired values of pitch
angle, roll angle, and thrust.

3.3.2. Trajectory Tracking with FBL Control. To relate the
desired position x and y, which are not controllable to the
desired angles of ϕ and θ that are controllable using FBL
control techniques, we make two assumptions:

(i) No small-angle approximation
(ii) he desired ψ angle is zero

4. Simulation and Results

(e dynamic model and controllers are implemented in
MATLAB 2021 for simulation with MATLAB programming
language. For attitude stabilization, a PD controller is
implemented on the nonlinear system to stabilize and drive
the system states to zero. Simulation results for trajectory
tracking using both PD and FBL control are presented.

(e quadcopter model is simulated with parameter
values, as shown in Table 1 [8]. (e initial conditions
assigned to the system for simulation are given in Table 2.

€xdes �
T

m
θdes −

kdx

m
_xdes, €ydes �

T

m
ϕdes −

kdy

m
_ydes, €zdes

� −g +
T

m
−

kdz

m
_zdes. (39)

(e simulation progresses at 0.001-second intervals to a
total time of 15 seconds. (e control inputs (angular ve-
locities of the rotors) are shown in Figure 4, and the po-
sitions x, y, and z and the angles ϕ, θ, and ψ are shown in
Figure 5.

(e control input remains constant, and hence, the
angles remain the same, but the positions become unstable.

4.1. Attitude Stabilization. A PD controller is implemented
on the nonlinear system to stabilize and drive the system
states to zero. (e initial conditions assigned for the system

remain the same, as shown in Table 2. (e control gain
values for the PD controller are determined by manual
tuning and are shown in Table 3.

(e simulation progresses at 0.001-second intervals to a
total time of 15 seconds. (e angles ϕ, θ, and ψ are shown in
Figure 6, the angular velocities of the rotors are shown in
Figure 7, and thepositionsx, y, and z are shown inFigure 8.(e
angles are stabilized to zero after 10 seconds, and the position z
is stabilized to zero after 5 seconds.(ex and ypositionsdonot
stabilize to zero because the states are not observable.
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Figure 8: Positions x, y, and z as a function of time for imple-
mented PD controller for attitude stabilization.
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Figure 7: (e angular velocities of the rotors as a function of time
for implemented PD controller for attitude stabilization.
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Using the concept of trajectory tracking, an attempt can
be made to drive the x and y positions to zero. (is can be
done by mapping the zero desired states of x and y to the
desired ϕ and θ states, which are controllable as shown in
equations (28)–(30). An additional proportional controller
gain kPxy, with a control gain of 0.04 is implemented to drive
the system states to zero, and the simulation advances at

0.001-second intervals to a total time of 45 seconds. (e
angular velocities of the four rotors and the angles
ϕ, θ , andψ are shown in Figure 9; the modified positions
x, y, and z are shown in Figure 10.

(e angles ϕ, θ, and ψ are stabilized to zero after 35
seconds, and the positions x, y, and z are stabilized to zero
after 45 seconds.
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Figure 9: Control input and angles ϕ, θ , andψ with an additional proportional controller gain kPxy, with a control gain of 0.04, implemented
to drive the system states to zero.
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Figure 10: Positions x, y, and z with an additional proportional controller gain kPxy, with a control gain of 0.04, implemented to drive the
system states to zero.
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Figure 12: Coordinate-wise comparison between desired and actual trajectories of Figure 11.
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4.2. TrajectoryTracking. Two controls for trajectory tracking
are considered and simulated for two different trajectories.
(e first control strategy is implemented with a PD con-
troller, and the second strategy is a PD controller integrated
with the linearized feedback system. (e total time assigned
for the simulation in both cases is 45 seconds.

4.2.1. Trajectory Tracking with PD Controller. (e com-
parison between the desired and actual trajectories for the
first path is shown in Figure 11. Figure 12 shows the graph of
the position variables against time.

Another trajectory path is simulated, and the result is
shown in Figure 13. (e graph of the position variables
against time for this path is shown in Figure 14.

A similar result as shown in Figure 12 is also obtained;
the quadcopter cannot follow the desired trajectory with
precision.

4.2.2. Trajectory Tracking with Feedback Linearization and
PD Controller. (e feedback linearization technique is
implemented on the quadcopter model and simulated with a
PD controller. (e desired trajectory and the actual tra-
jectory for the first path are shown in Figure 15. Figure 16
shows the graph of the position variables against time.

Another trajectory path is simulated, and the result is
shown in Figure 17. A similar result as shown in Figure 15 is
also obtained; the quadcopter can lock on to the desired
trajectory with more accuracy with this control.

-4

-3

-2

-1

0

1

2

3

4
po

sit
io

n 
- x

 [m
]

x actual

x desired

0 5 10 15 20 25 30 35 40 45

Time [s]

(a)

y actual

y desired

0

2

4

6

8

10

12

14

16

po
sit

io
n 

- y
 [m

]

0 5 10 15 20 25 30 35 40 45

Time [s]

(b)

Figure 14: Coordinate-wise comparison between desired and actual trajectories of Figure 13.
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5. Result Analysis

Detailed analysis on the performance of the PD controller
for stabilization and its integration with the FBL system is
required to determine the most suitable control strategy.(e
results show that the feedback linearization technique with
the PD control is more effective in trajectory tracking than
the regular PD control.

5.1. Altitude Stabilization. As discussed earlier, the PD
controller with control gains shown in Table 3 was able to
stabilize the angles to the desired zero state after 10 seconds
and drive the z position variable to zero in 5 seconds. (e x
and y positions are eventually stabilized, but they do not
stabilize to the desired zero state. By mapping the desired

states of x and y to the desired ϕ and θ states which are
controllable, an additional proportional controller gain is
used to drive all the system states to zero. However, this
approach is inefficient because it takes too long for the angles
and position to stabilize. (e angles ϕ, θ, and ψ stabilize to
zero after 35 seconds, and the positions x, y, and z stabilize to
zero after 45 seconds. (e ϕ, θ, x, and y states experience
overshoots before stabilizing to zero. Side-by-side com-
parisons of the angle and position variables of the two
approaches are shown in Figures 18 and 19.

5.2. Trajectory Tracking. (e results of the two control
strategies implemented for trajectory tracking were previ-
ously discussed. Better performance is observed in the
feedback linearized system with a PD control. (e
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Figure 17: Desired and actual trajectories with feedback linearization and PD controller.
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Figure 16: Coordinate-wise comparison between desired and actual trajectories of Figure 15.
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quadcopter is able to lock on to the desired trajectory and
follow the path with accuracy in a lesser time period.
Figures 20–22 show the desired and actual trajectory plot
after 15, 30, and 45 seconds, respectively, for both the PD
control and the FBL with a PD control.

(e quadcopter system simulated with the FBL and PD
control is able to lock on to the desired trajectory after the
first 15 seconds, while the system with only the PD control is
unable to do that properly even after 30 seconds. (is shows
that the feedback linearization technique with the PD
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Figure 18: (e angles ϕ, θ , andψ stabilize to zero after 35 s; the ϕ and θ states experience overshoots before stabilizing to zero.
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Figure 19: (e position variables x, y, and z stabilize to zero after 45 s; the x and y states experience overshoots before stabilizing to zero.

16 Journal of Engineering



3

2

1

0

y 
[m

]

-1

-4

-3

-2

-5 -4 -3 -2 -1 0

x [m]

1 2 3

Actual Trajectory
Desired Trajectory
Start of desired trajectory
Start of actual trajectory

(a)

3

4

2

1

0y 
[m

]

-1

-3

-2

-3 -2 -1 0

x [m]

1 2 3

Actual Trajectory
Desired Trajectory
Start of desired trajectory
Start of actual trajectory

(b)

Figure 20: (e trajectory for PD (a) and FBL with PD control (b) after 15 seconds.
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Figure 21: (e trajectory for PD (a) and FBL with PD control (b) after 30 seconds.
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Figure 22: (e trajectory for PD (a) and FBL with PD control (b) after 45 seconds.
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control is more effective in trajectory tracking than the
regular PD control.

6. Conclusion

(e mathematical modeling of the quadcopter system dy-
namics has been developed based on a few standard as-
sumptions. (is was achieved by adequately understanding
the different coordinate systems involved, Euler angles, and
the Newtonian equation to express the various extraneous
forces acting on the quadcopter body. (e state-space model
of the system dynamics was obtained using Newton’s and
Euler’s laws. (e model was tested by simulating the
quadcopter flight on MATLAB with already established
parameters.

Attitude stabilization and control of the quadcopter
system have been achieved by using a PD controller. (e
simulation showed that the PD control algorithm stabilized
the system states to the desired states. However, the PD
controller could not stabilize the x and y positions to the
desired state because the state variables are not observable.
Another mapping approach was considered to drive the x
and y positions to the desired zero state, but this was
achieved after a more extended period of time.

Two nonlinear control strategies were implemented for
trajectory tracking of the quadcopter system.(e simulation
showed that the PD control was inferior to the FBL with PD
control. (e hybridization of FBI and PD approach pre-
sented accurate tracking of the desired trajectory in a lesser
period of time as reflected in Figure 22.

6.1. Recommendation to Improve the New Technique. (e
NDI technique used in feedback linearization of the system
is implemented based on the assumption that all the states
are available and measurable. Since this does not always
seem to be the case, a further step in this control strategy can
be the design of a suitable estimator or observer which can
generate the possible outcomes of a full state from partial
state variables. Another step forward in this research is the
design of a controller to address the failure of one or more
rotors. (e quadcopter must be configured to apply the
contingency algorithm once failure is detected based on
inputs of the controller. Also, the proposed model and
control techniques were evaluated using simulations only.
Further studies can include the construction of the actual
prototypes of a quadcopter to obtain more practical and
accurate results.
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