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Massive multiple input multiple output (massive MIMO) is a key technology in �fth-generation (5G) and beyond �fth-generation
(B5G) networks. It improves performance metrics such as gain, energy e�ciency, spectral e�ciency, and bit error rate (BER).
Because of the large number of users and antennas, sophisticated processing is required to detect the transmitted message signal.
One of the challenges in massive MIMO systems is transmitted message signal detection. To respond to these challenges, several
detection algorithms have been developed, including minimum mean squared error (MMSE), zero forcing (ZF), matched �lter
(MF), conjugate-gradient (CG), gauss-seidel (GS), and optimized coordinate descent (OCD). Although the ZF and MMSE
algorithms perform well, their computational complexity is high due to direct matrix inversion. When the number of users is
much lower than the number of antennas, the MF algorithm performs well. However, as the number of users increases, the
performance of the MF algorithm degrades. Although the OCD, CG, and GS algorithms have less computational complexity than
the MMSE algorithm, they perform poorly in comparison. To address and resolve the shortcomings of existing methods, an
e�cient iterative algorithm has been proposed in this manuscript, which is a hybrid method possessing the combination ofMMSE
with the alternating direction method of multipliers (ADMM) technique and Gauss-Seidel method. �e initial vector has a large
in�uence on the performance, complexity, and convergence rate of such iterative algorithms. �e proposed detector’s initial
solution is determined using the diagonal matrix and MMSE with the ADMM technique. �e proposed algorithm’s performance
and complexity are compared with existing algorithms based on BER and the real number of multiplications, respectively. �e
numerical results revealed that the proposed algorithm achieves the desired performance with a small number of iterations and a
signi�cant reduction in computational complexity. At 8QAM, SNR� 20 dB, 80×120 massive MIMO antenna con�guration, and
n� 2, the percentage performance improvement of the proposed detector from the GS detector is 99.82%. At 32QAM,
SNR� 25 dB, 120×180 antenna con�guration, and n� 5, performance improvement of the proposed detector is 99.89%. At
64QAM, SNR� 28 dB, 80×120 antenna con�guration, and n� 3, performance improvement of the proposed detector is 99.93%.

1. Introduction

Fifth-generation (5G) mobile networks are currently being
implemented in order to meet user demands for high
performance and high data rates. To achieve high data rates,
energy e�ciency, and spectral e�ciency, 5G used one of the
enabling technologies known as massive multiple input
multiple output (Massive MIMO) [1]. Massive MIMO is the
most enticing technology for 5G and beyond wireless access

[2]. Massive MIMO is an advancement of current MIMO
systems used in wireless networks that groups together a
large number of antennas at the base station and serves many
users at the same time as shown in Figure 1.

Massive MIMO technology is being considered by the
5G network as a potential solution to the problem caused by
massive data tra�c and users [3]. Massive MIMO’s extra
antennas will help focus energy into a smaller region of
space, providing better spectral e�ciency and throughput
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[4]. Radiated beams in a massive MIMO system become
narrower and more spatially focused toward the users as the
number of antennas increases. �ese spatially focused an-
tenna beams improve throughput for the intended user
while reducing interference for the neighboring user [5].

MassiveMIMO in 5G provides higher spectral e�ciency,
less radiated power required, higher data rate, low latency,
robustness, increased reliability, and enhanced security [6].
Although this massive MIMO scenario bene�ts the com-
munication system, it faces di�culties in detecting the
uplink transmitted signal. Signal detection necessitates ad-
vanced signal processing. Several detection methods such as
MMSE, ZF, CG, GS, OCD, and MF have been used to
mitigate the problem. For massive MIMO systems, mini-
mummeans square error and zero-forcing can achieve near-
optimal bit error rate performance [7]. However, due to
direct matrix inversion, both MMSE and ZF have high
computational complexity which is de�ned as O(U3) [8],
where U represents the number of users. To avoid a direct
matrix inversion, the Gauss-Seidel method decomposed the
equalization matrix (A) into three elements: the lower tri-
angular matrix, the upper triangular matrix, and the diag-
onal matrix. �e GS method has a fast convergence rate [9]
and low computational complexity. When compared to
more complex detectors, the matched �lter method per-
forms worse [10]. �e use of the optimized coordinate
descent method yields an approximate solution with low
computational complexity [11]. �e conjugate gradient
method solves the system equation with low computational
complexity through the nth iteration. However, the

performance of both the OCD and the CG methods is in-
ferior to that of the MMSE and ZF methods [12]. �is
manuscript proposes a low complexity and high-perfor-
mance hybrid detection algorithm based on MMSE with an
ADMMmethod and the GS method. �e diagonal matrix is
used to compute the initial solution. To avoid a direct matrix
inversion, the equalization matrix of the MMSE is
decomposed using Cholesky decomposition in the �rst it-
eration, and the ADMM method is applied to the Cholesky
decomposed matrix to reduce complexity. �e detection is
then carried out and iteratively re�ned using GS method
with the value of the �rst iteration serving as an input.

Massive MIMO encountered di�culties in detecting
uplink signals. Several detection methods were used to solve
this problem. �e performance and complexity of those
methods are the most important factors to consider while
evaluating them.�e equalization matrix inversion operation
is undesirable in massive MIMO detection systems because it
greatly increases computational complexity. In [9], a robust
and joint low complexity detection algorithm based on the
Jacobi and Gauss–Seidel methods are used, and an initial
solution is proposed by utilizing the bene�ts of a stair to
obtain a fast convergence rate and low complexity. For the
base, station-to-user antenna ratio (BUAR)�
160/30, 160/40, 160/50, and160/60 and the number of itera-
tions (n)� 2,3, and 4, the performance of MMSE, NS, GS, JA,
and proposedmethods is compared using the BER parameter.
In [13], a GS-based-soft detection algorithm is proposed to
accelerate the convergence rate of the conventional GS
method while maintaining an acceptable overhead
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Figure 1: Massive MIMO architecture with U number of mobile station (MS) users.
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complexity. +e performances of the proposed GS-based
algorithm, Cholesky decomposition approach, and Neumann
series expansion (NSE)-based algorithm are compared based
on the bit error rate for the BUAR� 128/8 and 128/16 using
64-QAM. +e complexity of the proposed algorithm reduces
from Ο(U3) to Ο(U2). In [14], A soft-output data detection
algorithm based on conjugate gradients is used to improve
error rate performance for massive MIMO systems with
medium BS-to-user antenna ratios. +e conjugate gradient is
used to reduce the signal detection’s high computational
complexity. To reduce complexity, a modified version of the
conjugate gradient least square (LS) algorithm is used. +e
performance of the CGLS, Neumann, and Cholesky inversion
methods is compared using a block error rate. According to
[15], MMSE is a linear detection technique on the receiver
side that is critical in terms of implementation complexity and
contributes significantly to the improvement of transmission
reliability. MMSE and ZF have comparable performance and
outperformmaximum ratio combination (MRC), particularly
in high spectral efficiency. +e two received techniques, on
the other hand, involve matrix inversion computation, and
the complexity grows with the number of users. +e adaptive
Damped Jacobi (DJ) technique and the conjugate gradient
algorithm developed in [7] are combined into a hybrid it-
erative algorithm for signal detection for uplink. +e CG
method is utilized to offer a good search direction for the
adaptive DJ algorithm, and the Chebyshev approach is
employed to speed up convergence. +e initial solution is
obtained by the first iteration of the Gauss–Seidel method,
and a hybrid detector based on the combined GS and SOR
methods is proposed [16]. +e signal is then estimated using
the iterative SOR approach. In [17], a low complexity soft-
output signal detection algorithm based on improved kacz-
marz’s methods are proposed, which avoids the matrix in-
version operation and thus reduces complexity by an order of
magnitude. +e algorithm is designed for uplink massive
MIMO systems to avoid the high dimensional matrix in-
version required by the MMSE criterion. An efficient massive
MIMO uplinks detection algorithm based on the alternating
direction method of multipliers and Huber fitting is proposed
in [18]. ADMM makes variable updates much easier in each
iteration, and variables are updated during each iteration by
solving an unconstrained convex optimization problem.
Huber fitting is a robust regression method that reduces the
sensitivity of the function to outliers in the data. Matrix
inversion is required for minimum mean squared error and
zero-forcing detectors, which has significant computational
complexity [8]. Proposed a detection algorithm for massive
MIMO that computes an approximate inverse using the
Cayley–Hamilton theorem and has quadratic complexity in
terms of the numbers of users. To reduce the complexity
caused by matrix inversion, the Cayley–Hamilton theorem is
applied.

2. Methods

2.1. System Model. A massive MIMO system with N total
numbers of antennas at the base station (BS) to serve up to
U single-antenna users concurrently has been considered,

where the number of users is less than the number of base
station antennas. +e vector x � [x1, x2, . . . . . . xu]T repre-
sents the signal transmitted by all users and the symbol
vector y � [y1, y2 . . . yN]T represents signal received at the
base station as shown in Figure 2. +e received data is
typically influenced by the channel effect and Gaussian
noise (w). +e channel matrix (H) entries are assumed to be
independent and identically distributed (i.i.d) Gaussian
random variables with mean and variance (δ2). +e de-
tection model is determined by y, x, H, and w, where w is
additive white Gaussian noise. y is defined as and shown in
Figure 3:

y � Hx + w. (1)

2.2. Minimum Mean Square Error. +e MMSE detector’s
main goal is to minimize the mean-square error (MSE)
between the transmitted signal x and the estimated signal
HHy. +e estimated signal using MMSE method can be
expressed as [9]

xMMSE � A
− 1

yMF, (2)

where A � HHH + δ2IU and yMF � HHy.
δ2 is the noise variance, IU is the UxU identity and

matrix, and HHH is Gram matrix (G), where the exponent
H refers to matrix Hermitian, which is the complex con-
jugate transpose of the matrix. Due to direct computation
of A− 1, MMSE algorithm requires computational com-
plexity of Ο(U3). In an iterative procedure, the alternating
direction method of multipliers is used to solve an issue by
breaking it down into smaller problems. It is considerably
easier to update variables in each iteration, and variables
are updated by solving an unconstrained convex optimi-
zation problem during each iteration, with the first itera-
tion of MMSE-ADMM, which is used to obtain good initial
condition in the proposed detector. MMSE-ADMM is
described as [19]

x � H
H

H + βI 
− 1

H
H

y + β(z − λ) , (3)

where β is a scaled version of δ2I, and the scaled dual variable
λ is associated with the constraint z� x. When z and λ are
equal to zero, then equation (3) becomes equation (2).

2.3.Gauss-Seidel. +e Gauss–Seidel algorithm, also known
as the successive displacement method, is used to solve the
linear system depicted in equation (1). +e GS method
decomposes the equalization matrix A into a diagonal
matrix (D), an upper triangular matrix (U), and a lower
triangular matrix (L), where A=D+U+ L. +e GS
method converges quickly if good initialization is con-
sidered. +e estimated signal using GS algorithm is
written as [16]

x(n) � (D − L)
− 1

yMF + Ux(n−1) , (4)

where yMF � HHy.
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2.4. ConjugateGradients. Another method for solving linear
equations using n iterations is the conjugate gradients
method. �e signal calculated using the CG technique is
written as [20]

x̂(n+1) � x̂(n) + α(n)p(n), (5)

where p(n) is the conjugate direction with respect to A, i.e,

p(n)( )
H
Ap(j) � 0 for n≠ j, (6)

where A is the equalization matrix, A � HHH + δ2IU, and
α(n) is a scalar parameter.

2.5. Optimized Coordinate Descent. Optimized coordinate
descent is a low complexity iterative approach for inverting a
high dimensional linear system. Using a sequence of simple,
coordinate-wise updates, it achieves an approximate solu-
tion to a wide number of convex optimizations. �e esti-
mated solution is as follows [11]:

x̂k � hk
����
����22 +No( )

− 1
hHk y − ∑

j≠ k
hjxj , (7)

where No is the noise variance.

2.6. Zero Forcing. �e zero-forcing mechanism works by
inverting the channel matrix H and so eliminating the
channel e«ect. �e estimated signal is denoted by [10]

x̂ZF � Ay, (8)

where A � (HHH)− 1HH.
�e ZF detector clearly ignores the e«ect of noise, and it

performs well in interference-limited circumstances at the
cost of increased computing complexity.

2.7. Matched Filter. By setting A�H, the matched �lter
treats interference from other substreams as pure noise.
Using MF, the estimated received signal is given by

xMF � H
Hy. (9)

When the number of users is signi�cantly smaller than
the number of antennas in the base station, it performs well,
but as the number of users grows larger, it performs poorly
compared to more complicated detectors [10].

2.8. ProposedMethod. �emain issues for transmitted signal
detection algorithms in massive MIMO systems are perfor-
mance and complexity.�e performance-complexity pro�les,
as well as the convergence rate, are in�uenced by the ini-
tialization of detection algorithms. �e proposed method
takes MMSE equalization matrix and applies Cholesky de-
composition to it, then uses the ADMM technique on this
decomposed matrix to solve the system for the �rst iteration
to obtain good initialization, and then the GS algorithm is
applied. �e ADMM technique is an iterative strategy for
solving an issue by breaking it down into smaller problems.
�e GS algorithm has low complexity and a high rate of
convergence. Based on the diagonal matrix, the starting so-
lution is computed. �e proposed detector’s block diagram is
depicted in Figure 4 and the �owchart of the proposed de-
tector’s two steps, initialization, and �nal detection, is shown
in Figure 5. To achieve balanced performance and complexity,
the proposed detector employs BUAR ≤ 2.

Step 1. �e initial solution x̂(0) is calculated as follows:

x̂(0) � D
− 1yMF, (10)

where yMF � HHy.

Step 2. Use the MMSE with ADMM method with n� 1,
where n denotes the number of iterations required to obtain
the lowest BER. Compute the �rst iteration solution x̂(1)
using equation (3) as follows:

x̂(1) �(A)
− 1 HHy + β(z − λ)( ), (11)

where A � HHH + βI by applying Cholesky decomposition
A � LL∗ to avoid the direct inversion of A. In a signal
detection system, the performance of the detector is highly
a«ected by the initial condition. In this paper, an initial value
based on ADMM is used to obtain a good initial value, which
helps in achieving less BER.

β is a scaled version of δ2I, z � x̂(0) and λ is zero vector.

Step 3. Apply the GS algorithm where n≥ 2 as shown in (4)
to estimate the signal.

Where c> 0 is an adequate step size for the ADMM
technique, projCO(x̂(1) + λ, α) refers to the orthogonal
projection of x̂(1) + λ , and α is the maximum of the real
parts of the transmitted symbol.
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Figure 2: Massive MIMO uplink system.
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Figure 3: System model.
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3. Results and Discussion

�e Simulation parameters used in this paper are shown in
Table 1.

Computation complexity of the algorithm is largely
depending on the total number of multiplication and di-
vision required in the algorithm. To drive the multiplication
complexity of the proposed algorithm, consider the formulas
that are used in Algorithm 1:

x̂(1) � (L− 1)
HL− 1(yMF + β(z(0) − λ)), in this formula, U

number of division is required to �nd (L− 1)H and again U
number of division is required to �nd (L− 1), and for the
multiplication between (L− 1)HandL− 1, U2 computation is
required, then for (L− 1)HL− 1, U + U + U2 � U2 + 2U,
computation is required, where U is the number of users.
Since β(z(0) − λ) is scalar computation, its computational
complexity is negligible. Again, to multiply, (L− 1)HL− 1 and
yMF + β(z(0) − λ), U2 additional computation is required.
�en for computing, x̂(1) � (L− 1)

HL− 1(yMF + β(z(0) − λ)),
U2 + U2 + 2U � 2U2 + 2U computation is required. �e
complexity of projection is negligible. U multiplication is
needed to compute λ � λ − c(ẑ(1) − x̂(1)). U real number of
divisions are required to compute the inverse diagonal
matrix (D− 1) for �nding x̂(0). For the �rst iteration, 2U2 +

2U + U + U � 2U2 + 4U number of multiplications is re-
quired. �en the remaining n−1 iterations solution is cal-
culated based on GS method, which is de�ned by
x̂(n) � (D − L)

− 1(yMF + Ux̂(n−1)). To �nd (D − L)− 1, U2

multiplications are required. To compute yMF + Ux̂(n−1),
2U2 multiplications is required. Again, to multiply
(D − L)− 1andyMF + Ux

�
(n−1), U2 multiplication is required.

�en for each iteration 2U2 + U2 + U2 � 4U2 multiplications
are required. Since there are n − 1 iterations, the total
computational complexity for GS method is given by
(n − 1)4U2 � 4nU2 − 4U2. �en the total computational
complexity of the proposed algorithm becomes

4nU2 − 4U2 + 2U2 + 4U

� 4nU2 − 2U2 + 4U.
(12)

�e proposed algorithm’s complexity is reduced to
Ο(U2). Table 2 compares the proposed method to other
methods in terms of complexity.

Figure 6 shows a comparison of the proposed detector’s
complexity to that of other detection algorithms based on
the number of users. �e complexity of the proposed al-
gorithm is far lower than that of the MMSE algorithm, as
shown in Figure 6. As compared to other methods, the ZF

Compute x(0) based on
diagonal matrix

ˆ

x̂

Compute x(1) using
MMSE-ADNN method

for n = 1

ˆ
Apply GS

method for n ≥ 2

Initialization

y

Figure 4: Block diagram of proposed detector based on MMSE with ADMM and GS methods.
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Figure 5: Flowchart of proposed detector based on MMSE with ADMM and GS methods.
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andMMSE algorithms have high computational complexity.
+e proposed method met the requirements for low com-
putational complexity. +e number of users, base station
antenna, and iterations used in the simulation determine the
computational complexity.

By considering some numbers of users Figure 6 has been
expressed in tabular form. As the number of users increases,
the computational complexity also increased as shown in
Table 3. Table 3 shows the complexity comparison of the
proposed method and other methods for some value of
users.

+e transmission channel is set to additive white
Gaussian noise (AWGN) channel, the noise is independent
and identically distributed additive Gaussian white noise,
and the baseband signal modulation techniques are 8-QAM,
16-QAM, 32-QAM, and 64-QAM, respectively, in order to
simulate the performance. +e antenna scale is set to
80×120, 120×180 (BUAR� 1.5), and 128× 256 (BUAR� 2),
where the first number indicates the number of MS user’s
antennas and the second number represents the number of
base station antennas with n representing the number of

iterations. +e simulation results compare the performance
of the proposed algorithm with that of recently introduced
massive MIMO (mMIMO) uplink detectors. +e perfor-
mance is shown in terms of bit error rate versus signal-to-
noise ratio. +e MATLAB software is used to generate
simulation results, the method of simulation model is shown
in Figure 7.

Figure 8 compares the proposed algorithm’s BER to that
of other currently available methods for an 80×120
(BUAR� 1.5) antenna arrangement utilizing 8QAM mod-
ulation and n� 2 iterations. At n� 2, the proposed algorithm
outperformed MMSE and GS, whereas other methods re-
quire more iterations. +e proposed algorithm achieved a
BER� 10− 4 at the signal-to-noise ratio (SNR)� 20 dB,
whereas the GS algorithm achieved a BER� 5.45 × 10− 2 at
the same SNR� 20 dB and BER� 5 × 10− 2 even when SNR
was increased to 30 dB. +e detectors based on MF, and
conjugate-gradient methods perform the worst. +e de-
tectors based on OCD and GS methods perform moderately
well with low computational complexity. +e detectors
based on MMSE and ZF algorithms have good performance

Table 1: Simulation parameters.

No. Simulation parameters Type and value Condition
1 Modulation schemes 8-QAM, 16-QAM, 32-QAM and 64-QAM
2 Channel AWGN
3 Noise AWGN
4 SNR range 0 dB to 30 dB
5 BER range 1 to 10− 4

6 SER range 1 to 10− 4

7 MSE range 1 to 10− 4

8 Number of users 80, 120, and 128 Based on 1<BUAR ≤ 2
9 Number of base station antenna 120, 180 and 256 Based on 1<BUAR ≤ 2
10 Number of iterations n� 2, 3, and 5

Inputs: y, H, w NO, n, and Es

Output: detected signal x

Initialization:
λ �0
β � No/Es

A � HHH + βIU

A � LL∗

D� daig (A), U� -triu (A), L� -tril (A)
yMF � HHy

Initial estimations:
z(0) � x(0) � D− 1yMF

x(1) � (L− 1)HL− 1(yMF + β (z(0) − λ))

z(1) � projCO(x(1) + λ, α)

λ � λ − c (z(1) − x(1))

z(1) � z(1)

Iteration:
for i� 2 :1 : n
x(n) � (D − L)− 1(yMF + Ux(n−1))

end
Return x.

ALGORITHM 1: proposed detection method based on hybrid MMSE with ADMM and GS methods.
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but the computational complexity is very high.�e proposed
algorithm outperformed as compared to other methods with
low computational complexity.

Table 4 shows that the performance comparison of
proposed detector and other methods for the number of
users� 80, number of base station antennas� 120, and
number of iterations� 2 over 8QAM at SNR� 11 dB to
20 dB. As it has been observed from the table, the perfor-
mance of the proposed detector is better than the other
methods.

Figure 9 depicts the BER performance of the proposed
method and other algorithms for a 120×180 antenna
con�guration, n� 3 iterations, and the same modulation
technique as in the previous �gure. �e proposed algorithm
reached a BER� 10− 4 at SNR� 20 dB, while the GS method
acquired a BER� 3.08 × 10− 2 at the same SNR� 20 dB and

BER� 2.5x10− 2 at SNR� 30 dB. �e proposed algorithm
requires only two iterations to achieve the desired perfor-
mance, whereas other algorithms require more iterations,
resulting in an increase in computational complexity.

Table 5 shows that the performance comparison of
proposed detector and other methods for the number of
users� 120, number of base station antennas� 180, and
number of iterations� 3 over 8QAM at SNR� 16 dB to
20 dB. As we observed from the table the BER performance
of proposed detector is better than that from other methods.

Figure 10 compares the performance of the proposed
algorithm to other algorithms for an 80×120 massive
MIMO system with n� 2 and 16QAM modulation. �e
proposed detector obtained a BER� 10− 4 at SNR� 21 dB,
whereas the GS algorithm reached a BER� 8.37 × 10− 2 at the
same SNR� 21 dB. As shown in the �gure, as the SNR
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Figure 6: Complexity comparison of a proposed detector with other methods at 80×120 and n� 2.

Table 2: Complexity of proposed algorithm, CG, GS, OCD, ZF, and MMSE.

Algorithm Computational complexity
CG [14] nU2 + 6nU
GS [16] 4nU2

OCD [11] 2nNU + nU
ZF [8] 1/2 (U3 +NU2 + 5U2 + 3NU)
MMSE [19, 20] 4U3 + 4N2U + 4NU
Proposed 4nU2 − 2U2 + 4U
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Figure 9: Performance of proposed algorithm and other methods at 120×180 mMIMO, 8QAM, and n� 3.

Table 4: Performance comparison of proposed and other methods at 80×120 mMIMO, 8QAM, and n� 2.

SNR in (dB)
BER of algorithms

Proposed MMSE ZF GS OCD CG MF
11 0.0466 0.0530 0.0618 0.0893 0.1019 0.1656 0.2214
12 0.0329 0.0373 0.0467 0.0812 0.0967 0.1616 0.2197
13 0.0234 0.0262 0.0326 0.0748 0.0917 0.1581 0.2179
14 0.0150 0.0178 0.0225 0.0694 0.0884 0.1560 0.2158
15 0.0097 0.0112 0.0146 0.0664 0.0862 0.1541 0.2146
16 0.0051 0.0073 0.0084 0.0633 0.0839 0.1530 0.2140
17 0.0027 0.0040 0.0044 0.0601 0.0814 0.1512 0.2135
18 0.0010 0.0014 0.0023 0.0579 0.0792 0.1501 0.2130
19 0.0003 0.0006 0.0007 0.0565 0.0775 0.1498 0.2129
20 0.0001 0.0002 0.0002 0.0545 0.0763 0.1493 0.2126

Table 3: Complexity comparison of the proposed detector and other methods at 80×120 mMIMO, n� 2.

Number of users
Number of multiplications in algorithms

Proposed MMSE ZF GS OCD CG
76 34,960 6169984 594168 46208 36632 12464
77 35,882 6298292 612689 47432 37114 12782
78 36,816 6428448 631566 48672 37596 13104
79 37,762 6560476 650802 49928 38078 13430
80 38,720 6694400 670400 51200 38560 13760
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increased, the proposed detector outperformed the MMSE
and ZF detectors.

Table 6 indicates the performance comparison of pro-
posed detector and other detectors for SNR� 17 dB to 21 dB,
at the number of users� 80, number of base station
antennas� 120 and n� 2 over 16QAM. As we observed from
the table the proposed detector achieved the best perfor-
mance. CG and MF methods are the poor performance
method as indicated in the table.

Figure 11 compares the performance of the proposed
algorithm with others recently used detectors for a massive
MIMO system with a 120×180 antenna con�guration and
n� 3 over 16QAMmodulation.�e proposed detector had a
BER� 10− 4 at SNR� 21 dB, while the GS detector had a
BER� 5.43 × 10− 2 at the same SNR� 21 dB and a
BER� 4.8 × 10− 2 at SNR� 30 dB.

Table 7 represents the BER comparison of proposed
detector and other detectors at SNR� 17 dB to 21 dB, the
number of users� 120, number of base station anten-
nas� 180, and n� 3 over 16QAM. As shown in the table, the
proposed detector outperformed over the MMSE and the ZF
detectors.

Figure 12 shows a performance comparison of the
proposed detector with other currently available massive
MIMO detectors for an 80×120 antenna con�guration,
n� 2, and 32QAM. �e proposed algorithm achieved a
BER� 10− 4 at SNR� 24 dB, but the GS method achieved a
BER� 2.29 × 10− 1 at SNR� 24 dB, indicating that the GS
method required additional iterations to achieve the target
performance.

Table 8 depicts the BER performance comparison of the
proposed detector and other detectors at SNR� 20 dB to
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Figure 10: Performance of proposed algorithm and other methods at 80×120 mMIMO, 16QAM, and n� 2.

Table 5: Performance comparison of proposed and other methods at 120×180 mMIMO, 8QAM, and n� 3.

SNR in (dB)
BER of algorithms

Proposed MMSE ZF GS OCD CG MF
16 0.0055 0.0072 0.0144 0.0453 0.0453 0.0935 0.2136
17 0.0031 0.0035 0.0046 0.0384 0.0384 0.0888 0.2127
18 0.0014 0.0019 0.0023 0.0355 0.0355 0.0867 0.2119
19 0.0005 0.0009 0.0009 0.0326 0.0326 0.0854 0.2116
20 0.0001 0.0002 0.0003 0.0308 0.0308 0.0839 0.2115
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24 dB, the number of users� 80, the number of base station
antennas� 120, n� 2 over 32QAM. As indicated in the table,
the proposed algorithm outperformed from the other
methods.

Figure 13 demonstrates a BER performance comparison
of a proposed detector with other detectors for a massive
MIMO system with a 120×180 antenna con�guration, n� 5,
and 32QAM. �e proposed detector obtained a BER� 10− 4
at SNR� 25 dB, while the GS method achieved a
BER� 9.27 × 10− 2 at the same SNR� 25 dB and a
BER� 7.57 × 10− 2 at SNR� 30 dB.

Table 9 shows the performance comparison of the
proposed algorithm and other algorithms at SNR� 21 dB to
25 dB, the number of users� 120, the number of base station

antennas� 180, and n� 5 over 32QAM. As shown from the
table, even though the number of iterations is increased from
2 to 5, the performance of OCD and CG is poor, which
means they require an additional number of iterations.

Figure 14 depicts a BER performance comparison of a
proposed detector with other detectors for a massive MIMO
system with an 80×120 antenna con�guration, n� 2, and
64QAM. �e proposed detector achieved a BER� 10− 4 at
SNR� 27 dB, whereas the GS detector achieved a
BER� 1.805 × 10− 1 at SNR� 27 dB.

Table 10 demonstrates the BER performance comparison
of the proposed algorithm and other currently available
methods at SNR� 23 dB to 27 dB, the number of users� 80,
the number of base station antennas� 120, and n� 2 over
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Figure 11: Performance of proposed algorithm and other methods at 120×180 mMIMO, 16QAM, and n� 3.

Table 6: Performance comparison of proposed and other methods at 80×120 mMIMO, 16QAM, and n� 2.

SNR in (dB)
BER of algorithms

Proposed MMSE ZF GS OCD CG MF
17 0.0075 0.0093 0.0108 0.0919 0.1162 0.1816 0.2493
18 0.0033 0.0049 0.0056 0.0889 0.1146 0.1808 0.2481
19 0.0017 0.0023 0.0023 0.0865 0.1128 0.1805 0.2479
20 0.0004 0.0007 0.0008 0.0845 0.1121 0.1800 0.2479
21 0.0001 0.0002 0.0003 0.0837 0.1115 0.1800 0.2473
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64QAM modulation. �e proposed algorithm achieved a
target performance with a small number of iterations� 2.

Figure 15 shows a BER performance comparison of a
proposed detector with other detectors for massive MIMO
system with an 80×120 antenna con�guration, n� 3, and
64QAM. �e proposed detector achieved a BER� 10− 4 at
SNR� 28 dB, while the GS detector achieved a
BER� 1.348 × 10− 1 at SNR� 28 dB, even though the itera-
tion number increased from 2 to 3 the GS method shows
only a small improvement in a BER performance.

Table 11 compares the performance of the proposed
algorithm with other existing algorithms at SNR� 24 dB to

28 dB, the number of users� 80, the number of base stations
antenna� 120, and n� 3 over 64QAM. �e proposed al-
gorithm outperformed from the other methods. �e per-
formance of CG and MF detectors is very poor.

Figure 16 compares the BER performance of a proposed
detector to that of other detectors for a massive MIMO
system with a 120×180 antenna con�guration, n� 5, and
64QAM. �e proposed detector achieved a BER� 10− 4 at
SNR� 27 dB, whereas the GS detector reached a
BER� 8.24 × 10− 2 at the same SNR� 27 dB.

Table 12 shows the performance comparison of the
proposed detector to that of other detectors at the number of

10–1

100

Bi
t E

rr
or

 R
at

e (
BE

R)

10–2

10–3

10–4

0 5 10 15
SNR [dB]

20 25 30

MF
CG, n = 2
OCD, n = 2
GS, n = 2

ZF
MMSE
proposed, n = 2

Figure 12: Performance of proposed algorithm and other methods at 80×120 mMIMO, 32QAM, and n� 2.

Table 7: Performance comparison of proposed and other methods at 120×180 mMIMO, 16QAM, and n� 3.

SNR in (dB)
BER of algorithms

Proposed MMSE ZF GS OCD CG MF
17 0.0073 0.0099 0.0108 0.0666 0.0666 0.1306 0.2517
18 0.0037 0.0054 0.0054 0.0626 0.0626 0.1293 0.2513
19 0.0016 0.0022 0.0024 0.0595 0.0619 0.1276 0.2512
20 0.0004 0.0008 0.0008 0.0565 0.0594 0.1262 0.2508
21 0.0001 0.0003 0.0003 0.0543 0.0574 0.1248 0.2503
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users� 120, the number of base station antennas� 180, n� 5
for SNR� 23 dB to 27 dB. �e GS and the OCD methods’
performance are similar in this case. CG and MF methods
perform poorly.

Figure 17 depicts a BER performance comparison of a
proposed detector with other detectors for a massive MIMO
system with an antenna con�guration of 128× 256
(BUAR� 2), n� 5, and 32QAM. �e proposed detector
achieved a BER� 10− 4 at SNR� 21 dB, while the GS detector
achieved a BER� 6.7 × 10− 3 at SNR� 21 dB.

Table 13 compares the performance of the proposed
detector and the other existing detectors at the number of

users� 128, the number of base station antennas� 256, n� 5
and 32QAM for SNR� 17 dB to 21 dB. �e proposed al-
gorithm achieved the target performance.

Figure 18 compares the BER performance of proposed
detectors to that of other detectors for a massive MIMO
system with a 128× 256 (BUAR� (2) antenna con�guration,
n� 5, and 64QAM. �e proposed algorithm achieved a
BER� 10− 4 at SNR� 24 dB, whereas the GS algorithm ob-
tained a BER� 1.14 × 10− 2 at the same SNR� 24 dB.

Table 14 shows the performance comparison of the
proposed detector with the other detectors at SNR� 20 dB to
24 dB, the number of users� 128, the number of base station
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Figure 13: Performance of proposed algorithm and other methods at 120×180 mMIMO, 32QAM, and n� 5.

Table 8: Performance comparison of proposed and other methods at 80×120 mMIMO, 32QAM, and n� 2.

SNR in (dB)
BER of algorithms

Proposed MMSE ZF GS OCD CG MF
20 0.0156 0.0173 0.0186 0.2357 0.2884 0.3516 0.3667
21 0.0085 0.0092 0.0920 0.2333 0.2869 0.3506 0.3666
22 0.0035 0.0039 0.0039 0.2314 0.2868 0.3498 0.3665
23 0.0007 0.0013 0.0014 0.2305 0.2855 0.3493 0.3664
24 0.0001 0.0003 0.0004 0.2293 0.2852 0.3491 0.3662
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antennas� 256, n� 5, and 64QAM. Generally, from all
numerical results depicted in various �gures and tables, the
proposed detector achieved the target performance with the
small number of iterations and outperformed from the other
detectors.

As shown in the above all-performance simulation re-
sults, the proposed detector has achieved the best BER, MSE,
and SER performance as compared to, GS, OCD, and CG
and achieved comparable performance with MMSE and
Zero forcing detectors.

�e proposed detector achieved the optimal
BER � 10− 4 at the SNR� 20 dB, whereas GS detector
achievedBER � 5.45 × 10− 2 for 8-QAM, 80×120 antenna
con�guration, and n� 2. At this condition, the percentage
performance improvement of the proposed detector from
the GS detector is given (5.45 × 10− 2 − 10− 4)/
5.45 × 10−2 × 100 � 99.82%.�e proposed detector achieved
the optimal BER � 10− 4 at the SNR� 25 dB, whereas GS
detector achieved BER � 9.27 × 10− 2 for 32-QAM,
120×180 antenna con�guration, and n� 5. At this
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Figure 14: Performance of proposed algorithm and other methods at 80×120 mMIMO, 64QAM, and n� 2.

Table 9: Performance comparison of proposed and other methods at 120×180 mMIMO, 32QAM, and n� 5.

SNR in (dB)
BER of algorithms

Proposed MMSE ZF GS OCD CG MF
21 0.0072 0.0085 0.0085 0.1110 0.1047 0.1686 0.3674
22 0.0029 0.0035 0.0038 0.1049 0.0989 0.1636 0.3666
23 0.0013 0.0018 0.0018 0.0996 0.0941 0.1599 0.3666
24 0.0003 0.0004 0.0005 0.0965 0.0903 0.1573 0.3665
25 0.0001 0.0001 0.0001 0.0927 0.0877 0.1545 0.3663
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condition, the percentage performance improvement of the
proposed detector from the GS detector is 99.89%. �e
proposed detector achieved the optimal BER � 10− 4 at the
SNR� 28 dB, whereas GS detector ach-
ievedBER � 1.348 × 10− 1 for 64-QAM, 80×120 antenna
con�guration, and n� 3. At this condition, the percentage
performance improvement of the proposed detector from
the GS detector is 99.93%.

Unlike the GS method, the proposed algorithm achieved
the target performance with a small number of iterations, as

shown in all of the �gures. For example, at n� 2, the pro-
posed detector achieved a BER� 10− 4. According to the
�gures, the MMSE and ZF algorithms also perform well, but
they have high computational complexity. With a low
computational complexity, the proposed algorithm out-
performed the MMSE and ZF methods. For instance, the
proposed algorithm required 38,720 multiplications at n� 2,
U� 80, and N� 120, whereas the MMSE algorithm required
6,694,400 multiplications, and the ZF algorithm required
670,400 multiplications.
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Figure 15: Performance of proposed algorithm and other methods at 80×120 mMIMO, 64QAM, and n� 3.

Table 10: Performance comparison of proposed and other methods at 80×120 mMIMO, 64QAM, and n� 2.

SNR in (dB)
BER of algorithms

Proposed MMSE ZF GS OCD CG MF
23 0.0076 0.0086 0.0091 0.1825 0.2152 0.2783 0.3389
24 0.0040 0.0047 0.0050 0.1818 0.2148 0.2781 0.3387
25 0.0016 0.0021 0.0022 0.1815 0.2143 0.2778 0.3387
26 0.0005 0.0006 0.0007 0.1810 0.2139 0.2775 0.3387
27 0.0001 0.0002 0.0002 0.1805 0.2134 0.2773 0.3387
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4. Conclusion

A low complexity, e�cient hybrid MMSE with ADMM
technique and GS-based signal detection algorithm for
massive MIMO uplink systems was proposed in this paper.
Initialization using the MMSE with ADMM technique and
estimation using the GS algorithm were the two stages of the

proposed hybrid detector. In addition, a diagonal matrix was
also used to initialize the proposed detector. �e proposed
detector had improved performance with a small number of
iterations and low computational complexity. �e proposed
algorithm complexity was reduced from Ο(U3) to Ο(U2).
�e proposed algorithm achieved the target BER perfor-
mance with only two iterations, as demonstrated by the
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Figure 16: Performance of proposed algorithm and other methods at 120×180 mMIMO, 64QAM, and n� 5.

Table 11: Performance comparison of proposed and other methods at 80×120 mMIMO, 64QAM, and n� 3.

SNR in (dB)
BER of algorithms

Proposed MMSE ZF GS OCD CG MF
24 0.0037 0.0045 0.0047 0.1384 0.1524 0.2077 0.3338
25 0.0016 0.0023 0.0023 0.1373 0.1515 0.2077 0.3337
26 0.0006 0.0009 0.0010 0.1359 0.1509 0.2071 0.3329
27 0.0002 0.0003 0.0004 0.1353 0.1503 0.2067 0.3327
28 0.0001 0.0002 0.0002 0.1348 0.1502 0.2066 0.3326
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numerical results. In this paper, the proposed detector
performance was only evaluated at the simulation level. In
the future scope of this paper, the practical performance of
the proposed detector can also be investigated by designing a

very large-scale integration (VLSI) architecture and
implementing it on a Xilinx Virtex-7 �eld-programmable
gate array (FPGA). �e channel used in this paper was the
AWGN channel. In future work, fading channels such as
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Figure 17: Performance of proposed algorithm and other methods at 128× 256 mMIMO, 32QAM, and n� 5.

Table 12: Performance comparison of proposed and other methods at 120×180 mMIMO, 64QAM, and n� 5.

SNR in (dB)
BER of algorithms

Proposed MMSE ZF GS OCD CG MF
23 0.0075 0.0085 0.0087 0.0895 0.0895 0.1289 0.3377
24 0.0039 0.0046 0.0047 0.0873 0.0873 0.1274 0.3374
25 0.0019 0.0023 0.0022 0.0849 0.0849 0.1262 0.3372
26 0.0006 0.0007 0.0008 0.0836 0.0836 0.1253 0.3372
27 0.0001 0.0002 0.0002 0.0824 0.0824 0.1244 0.3372
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Nakagami fading, Rayleigh fading, and Rician fading will be
used.

Data Availability

�e data used to support this study are included within the
article.
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