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�is paper presents a new methodology for simulation of production processes in order to determine device parametric yield. �e
elaborated methodology is focused on capturing stochastic relations between every parameter of the subsequent processes that are
impossible to determine directly.�e current state-of-the-art together with the gaps in the knowledge regarding yield modelling is
presented. A novel approach to the important issue of e�ective yield modelling that allows the overcoming of current challenges is
presented. �e methodology’s usefulness is validated with the example of the fabrication process of AlGaN/GaN HEMT (high
electron mobility transistor) for application in high-frequency electronics. Fabrication of AlGaN/GaN HEMTs is a complex
process due to the large number of technological stages required, most of which are still the subject of ongoing research. Most
importantly, the approach presented in this paper could be easily applied to the modelling of any complex production process in
every case where it is necessary to examine relations between the �nal product parameters distribution and the values of the
involved process parameters.

1. Introduction

�e characteristic feature of the semiconductor devices
manufacturing industry is multistage, in�exible processes,
which demands sophisticated and high-cost equipment and
utilizes expensive materials. Although demanding, the in-
dustry is important economically.�e size of the globalmarket
for semiconductor devices in 2016 reached 339 billion USD
with further projected growth dynamics in 2017 of 11.5%. An
additional trend that impacts its operation is a constant de-
crease in capital margins. �us, every possible means of cost
reduction should be explored and applied for developing and
protecting the competitive advantage of a company. Essential
for reaching this goal is the incorporation into the design and
fabricationprocess of semiconductordevices aswell as analysis
of both parametric and functional yields. �is allows for de-
cisions optimization in numerous areas: device design, tech-
nology node selection, and the choice of fabrication process
parameters values, which should result in the increased eco-
nomic e�ectiveness of the developed solution both in terms of
production chain optimization and �nal product margin.

�e yield analysis has to be performed comprehensively
in every stage of device design and fabrication. Typical
methods of yield analysis impede introducing the necessary
optimizing changes, due to the large amount of data re-
quired, which can be collected only after �nishing the
fabrication process deployment.�emethods usually consist
of two stages. In the beginning, results of technological
processes are collected, and later, the various statistical
models are �tted to the data [1–3]. Unfortunately, the scope
of possible changes that can be implemented on the base of
the formulated conclusions is rather limited, because of the
aforementioned in�exibility of the manufacturing cycle. �e
visible need for faster knowledge implementation regarding
the predicted device yields in the design of the semicon-
ductor, and their fabrication process constitutes the main
researchmotivation of this paper. In the presented paper, the
elaborated model of the semiconductor device fabrication
process is presented elaborated on the experience of aca-
demic research, and development laboratory involved in the
design and fabrication of modern devices based on com-
pound semiconductors. �e model described below enables
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the simulation of the whole process starting from separated
procedures. It was applied to analyze the parametric yield of
AlGaN/GaN HEMTdedicated for high-power RF switching
at C (4–8GHz) and X (8–12GHz) bands. AlGaN and GaN
are nitride alloys of metals from the third group of the
periodic table (respectively, aluminium and gallium). *ey
are widely used in the semiconductor industry, due to their
unique combination of features: high-temperature con-
ductivity, wide and straight bandgap as well as the occur-
rence of piezoelectric effects.

*e main objective of the performed research was to
establish the statistical distribution of transistor drain cur-
rent in production batches. Particularly important was the
determination of the impact of an early stage technological
process–namely the selection of AlGaN/GaN HEMT-type
heterostructures grown by the MOCVD (metal-organic
chemical vapor deposition) technique on the sapphire
substrate. *e knowledge of the statistical distribution of
transistor drain current in production batches is essential for
cost reduction and yield increase.

It is obtained by eliminating wafers with deposited het-
erostructures whose parameters do not guarantee the fabri-
cation of devices with expected parameters. Moreover, the
developed approach enables the comprehensive description
of available knowledge, including all involved areas: applied
technology, device design, element design, characteristics of
specific equipment, process parameters, applied materials
and reagents, measurement methods, environmental influ-
ence, as well as the staff’s knowledge, experience, and their
individual learning curves. An additional advantage is the
possibility of incorporating this analysis early, during the
design phase or even during the selection of the technology.

2. Yield Analysis Methods

In the literature concerning semiconductor manufacturing,
few kinds of yield are specified along with different phases
during production when being measured [4]. *e main
division lies between functional and parametric yield.
Former called catastrophic yield is considered fundamental
and most widely used, due to the advanced mathematic
theory of its description. In basic terms, the functional yield
for a given manufacturing process is defined as the ratio of
good elements at the output stage of the process to the
number of elements at the input. In the case of AlGaN/GaN
high-electron-mobility transistors (HEMTs) fabrication, a
list of main processes includes cleaning procedures, epitaxy,
lithography, etching, and metallization deposition, and their
electrolytic thickening, passivation, to the separation and
packaging of the whole chips. To conclude, the functional
yield is a scalar measure of process efficiency. From a single
yield of respective processes, denoted yn, one can determine
the yield, Y, of the whole process as

Y � 􏽙
N

n�1
yn. (1)

In general, the single functional yield, yn, is determined
by some function fn with parameters Ac, D0:

yn � fn Ac, Do( 􏼁, (2)

where Ac is the size of the chip critical area andD0 is the unit
defect density. *e range of fn functions family is wide and
includes different statistical approaches to the described
process. Model calibration is performed based on the pro-
duction data analyses and allows for accurate functional
yield prediction of the semiconductor devices and integrated
circuits (ICs). Recent research in this area is focused on
including mathematical models of learning curves and
predictors of stochastic variability in the function, fn [1, 4, 5].

Although it is commonly utilized in various analyses,
functional yield due to its specificity has limited applica-
bility. Functional yield is the scalar measure, describing only
the percentage of acceptable elements after the single pro-
cess, losing details of the technology complexity of semi-
conductor devices fabrication technology, thus providing no
information about distributions of the values of their op-
erating parameters. Such information is required to optimize
device design and fabrication process in regard to their
performance and manufacturing cost.

Measure describing device parameters distribution is the
parametric yield that is represented by the probability density
functions set of random variables {Xi}, where any Xi rep-
resents some output parameter measured either between
processes or of the finished device. In the case of AlGaN/GaN
HEMT, parameters yield analysis includes distributions of
maximal drain current (IDSS), pitch-of voltage Up, cut-off
frequency fT, MAG (maximal available gain), and other
parameters. Contemporary methods of semiconductor de-
vices and IC parametric yield analysis in most cases utilize
elements of big data methods combined with statistic re-
gression models [3, 5, 6]. Complex GLMMs (generalized
linearmixedmodels) are applied, allowing for the description
of the nonlinear dependencies between variables. Such an
approach, although effective in a production environment, is
hard to apply into research and development of device design
and technology, due to the limited volume of experimental
data available and the high cost of their acquisition. Ap-
proach taken in such cases is based on TCAD methods and
simulation of respective processes [7–9]. It enables to acquire
data regarding specific relations that influence device op-
eration and its parameters distribution without conducting
numerous experiments. *ough, the limitation of this
methodology is challenged by a precise description of rela-
tions between parameters in the scope of the whole devices
fabrication process. Consequently, due to the complex
characteristic of involved relations, there is impossible to
develop tools that use purely analytical formulas and capture
the stochastic characteristic of modeled fabrication process.

In the frame of the conducted research, the approach was
proposed that enables the unification of all aforementioned
methods: big data analysis, TCAD simulations, and heuristic
observations about respective processes that are based on the
experience of the research team, as well as available literature
data. *is approach fits into methodologies reported in
various publications applying big data methodologies in-
cluding machine learning methods [10, 11]. However, it
diverges from this method by focusing on including
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conclusions based on analysis of small scale targeted ex-
periments. �e approach is based on developing a frame-
work that will be capable of capturing all of the involved
relations together with correlations between them and ef-
�ciently generating possible realizations of such a stochastic
model. It �ts into the wide scope of Monte Carlo methods.
�e next performed step is to analyze acquired data with the
aim of statistical inference about the in�uence of respective
processes variables on operating parameters distributions in
HEMT, during its designing and manufacturing.

3. The Developed Model Overview

In order to analyze the parametric yield of AlGaN/GaN
HEMTs, a novel approach was applied. It is based on created
from scratch universal simulation software framework that
operates on the textual representation of the manufacturing
process. �e representation includes all important techno-
logical processes parameters, results of interprocess mea-
surements as well as ultimate device operation parameters.
During the development, a number of assumptions were
made, in order to maximize the �exibility of generated
predictions. It was necessary, considering the iterative na-
ture of conducted research. �ey result in an incremental
increase of available knowledge regarding AlGaN/GaN
HEMTs manufacturing and design. �e aforementioned
reasons force the initial requirement that in the model all
involved parameters can be random variables with arbitrary
continuous or discrete distribution, and for a given random
variable, it should be su¦cient to state solely the arbitrary
cumulative distribution function. Furthermore, every input
variable can be freely cross-correlated with each other.
Regarding the dependent variables derived from model
parameters described previously, it will be possible to in-
clude them in the model as arbitrary nonlinear explicit
functions, whose coe¦cient can be also stochastic variables.
�e dependent variables in the model usually are inter-
process measurements results or ultimate device parameters.
Introduced above described requirement of the possibility to
utilize an arbitrary distribution creates challenges regarding
the computing complexity of random samples generated by
the Monte Carlo method. �ough simpli�cation was
implemented, every continuous distribution that is non-
normal will be discretized. Possible errors and inaccuracies
created by this approach can be neglected, because of the
possibility of freely increasing discretization density. It is
possible, due to applied search algorithms of the compu-
tation complexity of the class O (log n). In Figure 1, the
scheme of the proposed model of variables representation
illustrating the correlations between them is presented.

�e entire novel part of the created methodology is the
development of a method to textually represent model
parameters. A special XML structure was developed to
satisfy this need. Due to this, the main risk for the imple-
mentation of the modern design support and knowledge
management tools was mitigated, which is extensive IT
knowledge required in order to e�ectively use them. In the
developed form, the model can be used and modi�ed by the
person without special training.

Additionally, feedback coupling was predicted between
the software part, responsible for samples generation, and
the model that can be used for self-calibration as well as for
performing statistical Bayesian analysis [12]. �e prototype
of the software framework was developed using Python
language and is fully functional allowing for model de-
scription loading and transformation into memory objects,
generating a stochastic realization of the process, as well as
saving and data acquisition. Applied mathematical functions
are from the commonly acclaimed scienti�c computing li-
brary SciPi (0.18.1). Essential, for themodel application, is an
e¦cient algorithm for model realization generation. It re-
quires using a method capable of generating samples from
arbitrary cross-correlated distributions both continuous and
discrete.

4. Model Structure

�e model is the description of subsequent manufacturing
process steps by a number of representative variables, Xn,m
whose values are realizations of certain stochastic processes.
For example, the expected epitaxy temperature is 800°C;
however, the actual temperature of the process is subjected
to variability due to mechanical and electrical factors. �e
distribution of obtained temperatures among the number of
processes can be described with Gaussian distribution. �e
same regards for all of the other parameters. After every step,
a number of resultant output parameters, Xn+1,k are gen-
erated using arbitrary nonlinear functions of Xn,m. For ex-
ample, in the case of the epitaxy process, the resulting sheet
resistance is calculated from the process temperature de-
scribed above, together with �ows, and composition of
reagents. �e function relating all involved parameters is
nonlinear, and not all input parameters have Gaussian
distributions; as a result, obtaining analytical distribution is
impossible, although by applying Monte Carlo simulation
one can obtain stochastic dependence between variables.
Consequently, obtained resultant parameters can become
input parameters for the next process steps.�anks to this, it
is possible to analyze a complex multistage production
process with a number of branches.

�e number of simulation steps is unbounded and allows
for the description of the complete manufacturing process.
Ultimate results of interest are distributions of dependent
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Figure 1: Proposed scheme of variables representation and cor-
relations between them.
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variables in the last process step, which represent device
operation parameters. �eir distribution together with the
possibility to calculate correlation with input parameters
represents a directly parametric yield of fabrication process
and dependence of yield on certain process variable values.
Information is presented in the form of a vectors table with
exact values obtained in every subsequent Monte Carlo it-
eration. Such table number representation allows for the
description of stochastic relations of every parameter of the
subsequent processes that are beyond the analytical com-
position of normal and discrete distributions.�e �ow of the
algorithm is present in Figure 2.

�e proposed methodology allows for observing the
dependence between parameters in every moment of the
production process. It is a useful tool for parametric yield
analysis of devices or integrated circuits. Especially, it en-
ables us to understand the impact of given input process
parameters on the distribution of ultimate product
parameters.

5. Random Samples Generation from
Arbitrary Distribution

An essential aspect that needs to be addressed before the
hands-on application of described above model is the e¦-
cient generation of random samples from arbitrary both
continuous and discrete distributions.�erefore, to generate
random variables vector, F realizations with covariance
matrix ΣX, the NorTA method was applied. Expansion of
this name is “Normal to Anything” which illustrates the
principle of its operation.�e advantage of the method is the
ability to generate samples from arbitrary distributions
combined both continuous and discrete while preserving the
computation e¦ciency. �e only requirement, in order to
e�ectively apply the method, is the existence of an inverse
cumulative distribution function [13].

�e NorTA method consists of a few steps. In the be-
ginning, a vector of random variables realization is drawn
from multivariate normal distribution N(0, ΣZ) with a
certain matrix covariance ΣZ that needs to be previously
determined. Furthermore, every generated sample is
transformed by the normal cumulative distribution function
Φ(0,1). After this operation, the variables vector of uniform
distribution U(0, 1) is obtained. �e received relation
Φ0,1(N(0,ΣZ)) is a Gaussian copula and preserves initial co-
variance relations within the input vector. �e last step is the
transformation of the samples vector by the vector of inverse
distributions of desired random variables F− 1. Samples
obtained in that way are the realization of that random
variables vector with cumulative distribution functions, F,
and cross-correlation matrix ΣX.

�e essential question in e�ective NorTA algorithm
application is the determination of the covariance matrix ΣZ
elements that will result in the generation of the samples
vectors with desired correlations. It is a computationally
intensive task. Di�erent approaches are applied from the
analytical solutions that unfortunately narrow possible
combinations of input parameters distribution to the pair of
continuous-continues, continuous-discrete, or discrete-

discrete to the methods based on the optimization of the
nonlinear stochastic functions. In the developed framework,
the former was applied, even though more computationally
complex, enabling the uni�ed approach to the issue of
determining covariance’s matrix ΣZ. Moreover, for a given
set of model random variables, the covariance matrix is
determined only once for any pair of variables, which does
not in�uence considerably total computation time [14, 15].

6. Model Application and Results

�e described model was applied to modelling of the
AlGaN/GaN HEMT fabrication process. �e developed
model enables the investigation of arbitrary relations be-
tween various parameters of the fabrication process and was
aimed at the optimization of the research plan of AlGaN/
GaN HEMT dedicated to microwave applications.

AlGaN/GaN HEMTs are essential for both civilian and
military markets since they constitute an important part of
radars, telecommunication power ampli�ers as well as
power transforming devices (inverters and converters) [16].
However, the fabrication of such devices is highly de-
manding in terms of process complexity in comparison with
silicon technology. Usually, the process involves several
dozen of steps. In general, the �rst group of processes
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Figure 2: Flow chart presenting the steps used in modelling
process.
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constitutes an epitaxial deposition of AlGaN/GaN HEMT
type heterostructures by theMOVPE technique. Any epitaxy
process parameters modifications, such as temperatures,
pressures, and reagents content and composition, result in a
variation of electric heterostructure parameters and as a
result strongly influence the main electrical parameters of
these structures, namely two-dimensional electron gas
(2DEG) concentration, pitch-off voltage, and surface re-
sistivity. All of the aforementioned heterostructures’ elec-
trical parameters could bemeasured before the fabrication of
devices by nondestructive methods and enabled to select the
substrates with required parameters. Subsequently, after the
growth of the heterostructure, the fabrication processes of
the devices start from theMeza structures of the definition of
the device performed by lithography and reactive ion etching
(RIE), using Cl2/BL3-based plasma. Subsequently, process
quality control is performed via a range of microscopic
measurements, using scanning microscopy (SEM) and
atomic force microscopy (AFM). Furthermore, ohmic
contacts are fabricated. *ey are formed by multilayer (Ti/
Au/Mo/Au) metallization and must be annealed at a high
temperature. *en, in order to control the drain current in
the transistor channel, Schottky contact has to be fabricated
and placed in the area between the drain and the source
contacts. *ere are two possibilities for its fabrication. *e
selection of the appropriate method depends on desired gate
length. For gates longer than 1 μm, the photolithography
technique (PhL) could be used, whereas, for gates of the
length between 100÷ 500 nm, the electron beam lithography
(EBL) technique has to be applied. At our laboratory, two
different metallizations were used for Schottky contact: Ru/
Au or Ni/Au fabricated by lift-off process of metallization
applying PhL or EBL techniques, respectively. At the next
stage, the passivation process, using polyimide materials, is
conducted, and the transistor is ready. However,
manufacturing of consumer available product requires a few
more processes, such as the thickening of all metallization,
cutting substrate for chips, bonding, packaging, and
encapsulation.

At this stage, the range of electric DC and microwave
measurements are conducted on the wafer using the spe-
cialized probes as, at this stage, it is possible to measure final
device parameters. One of the most important is the saturate
drain current, Idss, that determines, among others, the
suitability of the transistor to switch high RF powers. In
Figure 3, the transistor structure operating at X-band
(8–12GHz) is shown.

They were designed and are applied under the frame of
the project to develop novel military radar systems, with
solid-state devices that could replace the traveling wave tubes
(TWT).*e C band transistors have the gate length, Lg, equal
to 1000 nm, with the width of Wg � 10×125 µm� 250 µm
fabricated by photolithography, whereas the X-band tran-
sistors have the gate length of the range from 100 nm to
500 nm with Wg � 2×125 µm� 250mm fabricated by elec-
tron beam lithography.

*e developed model was applied to combine results of
the number of discrete research on subsequent technological
steps in a coherent way that allow the prediction of operating

parameters of obtained transistors and validate the influence
of all involved technological processes on the transistor
parameters.

Listed previously parameters were included in the
comprehensive fabrication model of AlGaN/GaN HEMT.
*e model was applied to the prediction of the parametric
yield of saturate drain current Idss. *is parameter is one of
the most important enabling the determination of transistor
applicability into the power circuits for microwave band,
specifying the maximum power that can be obtained using a
single device. It is affected by a number of factors, related to
AlGaN heterostructure, HEMT design, and fabrication
processes parameters. *e elaborated model was written in
the form proposed above. *e input parameters distribution
was chosen on the basis of the previously analyzed results of
the research on respective technological processes within the
research group. In Table 1, the list of model parameters with
their distributions is presented.

*ese parameters consist of complete input into the
framework. In Figure 4, a simulation of saturate drain
current, Idss, and distribution for the batch of one thousand
HEMTs are presented.

*e figure illustrates important results for production
planning regarding the values of saturate drain currents.*e
distribution differs from usually expected in such case-
s—Gaussian distribution. *e simulation allows for sizes
allocation of accurate quality bins.

Validation of obtained results is performed using two
approaches. First, obtained results of operation parameter
distributions should be consistent with measurements re-
sults that allow for analysis of prediction accuracy, as well as,
further model calibration.*e obtained simulation results of
the distribution of saturate drain current are in accordance
with measurement data from a small batch of devices fab-
ricated during the preproduction phase at WUST. *e
second way to validate the model of obtained results was to
perform analysis without stochastic variability. It was
achieved by the reduction of involved random variables to
their expected values. *ey are equal to the exact sizes and
compositions of respective HEMT elements determined
during transistor design. *e distribution of three param-
eters that are strongly coupled with Idss, 2DEG electron
mobility, µs, AlGaN layer thickness, and 2 DEG sheet
electron concentration, ns, is presented assuming first that
Idss has no stochastic variability and can be determined
directly. *e value of Idss in the form of a binary measure is

Figure 3: Construction of X-band AlGaN/GaN HEMT.
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calculated. �e threshold of Idss that quali�es the HEMT as
approved was set arbitrarily to 375mA. Obtained results are
presented (Figure 5).

�ere can be an unambiguously determined area, where
approved devices can be found. In that case, for speci�c
values of ns, dAlGaN and μ saturate drain current can be
exactly calculated. Obtained values correspond to the values
calculated using classical device models of HEMTs. Al-
though measurement results clearly show that such de-
scription is incomplete and that is required to examine real
statistical distributions of respective parameters. In Figure 6,
the true dependence is presented in the real conditions,
assuming parameters stochastic variation.

Distributions obtained with that approach correspond to
the measurement results in which the range of acceptable ns,
dAlGaN, and μ parameters is fuzzy. �e �gure clearly shows

the need for application of the elaborated methodology,
because it allows for optimization of selected parameters
with concern to the variation of the others as well as allows
for the proper estimation of the parametric yield of fabri-
cated devices.

7. Conclusions

�e production process of advanced devices is of high
complexity. During such process, virtually each individual
technological step is under constant research and devel-
opment and, as a result, requires a nonconventional ap-
proach to the question of the expected yield modelling.
Described complexity results from a signi�cant number of
independent variables, available interoperation measure-
ments, and the indeterminable in�uence of external factors.
Dependence between the aforementioned elements is often
nonlinear. �e additional challenge of the conducted re-
search is the environment of the R&D laboratory, which
character limits the availability of a su¦cient number of
production data from various technological cycles. For the
need of yield analysis, there are only available separate el-
ements of knowledge that usually focus solely on a single
technological process and relations between its input and
outputs. �e full picture is further shadowed by a relatively
small number of experiments that hinder the statistical
inference and work on the cutting-edge of the current
technological capability. Despite the listed challenges, thanks
to the �exibility of the developed model, there was possible
to include the knowledge and experience of the research

Table 1: �e applied model parameters and their distributions are presented.

Parameter Distribution type
Heterostructure sheet resistance Rs [Ω/□] Normal (400, 10)
Heterostructure 2DEG electron concentration ns (m−3) Normal (1.15e13, 0.05e13)
AlGaN layer thickness dAl (nm) Normal (19, 1)
Ohmic contact resistance Rc (Ω ) Normal (1e-3, 2e-4)
Gate length Lg (μm) Normal (1, 0.2)
Max carrier velocity Vs (cms−1) Normal (0.75, 0.05e7)
Electron mobility μ [cm2V−1s1] Nonlinear function of Rs and ns 1/(Rsns(1.6e-19))
Pinch-o� voltage Vp (V) Nonlinear function of dAl, ns
Gate source distance (μm) Discrete (based on measurements)
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team as well as to formulate conclusions regarding the di-
rections of optimizations to be performed. *e modular
structure of the simulator enables acceleration of compu-
tation by splitting them into many processing units, war-
ranting the usability of the framework as the number of
modeled relations is going to increase in the future. *ere is
also possible to apply developed methodology into the de-
sign process of other semiconductor devices. Considering
the literature reports [17–20], the application of modern
methods of manufacturing processes modelling that was
presented in this work can be considered as the way to drive
cost reduction in the semiconductor industry as well as to
create novel innovative products.
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