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In the field of groundwater engineering, a convolutional neural network (CNN) has become a great role to assess the spatial
groundwater potentiality zones and land use/land cover changes based on remote sensing (RS) technology. CNN can be offering a
great potential to extract complex spatial features with multiple high levels of generalization. However, geometric distortion and
fuzzy entity boundaries as well as a huge data preparation severance may be the main constraint and affect the spatial potential of
CNN application for land cover classification.)is study aims to recognize the proficiency of deep learning algorithms, i.e., CNN,
for spatial assessment of groundwater potential zones and land cover. Among the groundwater influencing factors, classification
of land cover (agriculture, built-up, water bodies, forests, and bare land) has been reported by several researchers for different
purposes and they approved the CNN capability for the prediction of spatial groundwater potentiality zones like very high, high,
moderate, poor, and very poor areas. In this study, CNN is recommended as a very essential algorithm for the identification of
groundwater potential zones and classification of land use/land cover change. CNN gives a better option for scholars regarding
when the limited data sets are available for validation.

1. Introduction

Identification of spatial groundwater availability and its
zonation is very important for optimal utilization of
groundwater resources [1] and it exemplifies as the basic
reference for suitable strategies of groundwater resources
management [2]. However, the spatial distribution of
groundwater is dependent on the groundwater influencing
factors such as land cover, soil, lithology, slope, geomor-
phology, rainfall, recharge, etc. [3–5]. )erefore, to evaluate
groundwater potentiality, the most dominant spatial map/
dataset of groundwater influencing factors should be con-
sidered prudently on the analysis of groundwater distri-
bution and occurrence [6]. Among the influencing factors,
land cover is one of the most common input parameters for
the spatial assessment of groundwater potential at a given
catchment. As reported by [7, 8], the land cover has an
impact on the occurrence, recharge, and development of
groundwater resources in an area. For example, built-up

lands can reduce the infiltration rate (has low permeable
surfaces). But, forests lands facilitate infiltration rate.
)erefore, the most advanced and accurate techniques are
required to map groundwater potentiality zones and land
cover classification. With the rise of deep learning algo-
rithms, convolutional neural network (CNN) has emerged as
a powerful and effective method [9–12] for the identification
of groundwater potentiality zones and classification of land
use/land cover. However, there is a major pressing problem
in the field of water resources, for example, to predict the
exact availability of groundwater potentiality zones as well as
to classify land cover. Because of its hiddenness natural
resource and with trouble detection, it is a challenging task
to identify the exact water-wells location and gather geo-
logical information like aquifer thickness, as higher cost and
a long time are required [13] for accuracy assessments; for
example, to validate the classification of land cover and
groundwater potentiality zones maps, ground truth datasets
and yields of existing wells are needed, respectively. )e
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classification of groundwater potentiality zones and land
cover output/map needed accuracy assessment, because
“without accuracy assessment, the quality of output/map
produced would be of lesser value to the end-user” [14].
Generally, the main problems of image classification and
prediction are the lack of large datasets to validate the map of
the area and the low resolution of remote sensing data to
detect small coverage areas [15]. An optimal technique
among deep learning algorithms (DLAs), CNN, is required
to reduce some uncertainty of image recognition. Hence,
convolutional neural networks (CNNs) have proven to be an
efficient method for generating accurate data representa-
tions [10, 11, 16].

Recently, many researchers have used the CNN ap-
proach for the evaluation of groundwater influencing factors
[16] such as land use/land cover change classification
[17–22] and prediction groundwater potentiality [16, 23].
Typically, frameworks of CNN are two principal approaches,
i.e., patch-based and end-to-end (pixel-to-pixel), for the
classification of semantic pixel-based techniques. In the
pixel-based methods, the fully convolutional network (FCN)
or encoder-decoder frameworks are employed to identify
acceptable facts of the input datasets. )e patch-based
techniques also usually utilize small images to train the
process of CNN classifier and use a sliding window approach
to forecast every pixel classification. )is technique is
commonly used for detecting a huge coverage area [24].

In addition, CNN has a great role for soil classification
[25–27], hydrogeological classification [19], lithology [28],
soil permeability [29], land temperature forecasting [30],
flood susceptibility map [10, 21], predicting groundwater
level and flow [31–33], and prediction of rainfall [34]. CNN
can be applied in the recognition of waste type [11] and
groundwater quality prediction.

)e present work was aimed at reviewing an application
of a convolutional neural network and its capability for
identification of groundwater potentiality zones and clas-
sification of land use/land cover change. It is also estab-
lishing the model precision and uncertainty for the
application of groundwater resources. )erefore, this paper
will provide a concrete nobility about the application of
CNN to identify groundwater potential and classification of
land cover. To end, it gives a direction for future researchers.
)is paper is also structured in the following way: a brief
overview of literature review, working principles, types of
the convolutional neural network, land use/land cover
change, groundwater potential zones, advantages, and
limitation of CNN in Section 1. In Section 2, the reviewed
discussion was presented, and in Section 3, a general con-
clusion is presented.

1.1. Literature Review

1.1.1. Convolutional Neural Network. )e CNN was initially
projected and improved by Lecun et al. [35]. Spatial in-
formation from satellite images was used by layered con-
volution kernels to extract high-level intellectual
characteristics. Several research papers have been published

on deep learning algorithms (i.e., CNN) for forecasting
rainfall and classification of land use/land cover, geology,
soil, groundwater level [34, 36, 37], and also groundwater
potentiality [16, 23, 38]. More than 146 research articles on
the application of CNN and related techniques have been
downloaded to perform this paper. After the inclusive and
exclusive selection criteria, about 61 articles have been cited
and referenced as shown in Figure 1.

Note: Springer, Elsevier, and Hindawi journal houses
were themain information sources of this paper. In addition,
the reviewed articles of publication dates are described as
follows: 19 articles in 2021, 25 articles in 2020, 8 articles in
2019, 3 articles in 2018, 3 articles in 2016, 1 article in 2014, 1
article in 2009, and 1 article in 1998.

1.1.2. Image Segmentation. Mean-shift segmentation was
utilized to split the image into the items with uniform
spectral and spatial information as a nonparametric clus-
tering strategy. As several input dataset sources for the image
segmentation, major multispectral bands (green, blue, red,
and near-infrared) were combined with DSM (digital surface
model). A minor oversegmentation rather than under-
segmentation was used to highlight the significance of
spectral similarity, and all image classifications were turned
into GIS (Geographic Information Systems) polygons with
distinct geometric shapefiles [39, 40].

1.1.3. Image Classification. It is one of the most important
tasks with advancement of CNN to predict the represen-
tative image, which helps to produce high classification
performance [41].

1.1.4. Image Translation. CNN is not intrinsically transla-
tion-invariant. Nevertheless, if the trained have an adequate
dataset, CNN can learn translation-invariant representa-
tions. Training on the dataset with considerable quantities of
variation owing to translation is the single most essential
aspect in obtaining translation-invariant networks [42].

1.2. Working Principles. Different layers existed in CNN to
recognize the features images that used small squares input
data:

(1) )e first layer is used to extract feature maps from
the input image (retaining relations between pixels)
denoted as the convolution layer (CL). )is layer is a
mathematical setup that needs two input data
functions: an image of a matrix and a kernel (filter).

(2) )e second layer is an activation layer, which comes
after the CL if it is nonlinear. In this layer, rectified
linear unit (ReLU) function is the most common and
efficient activation function. ReLU is always leveled
as zeros (0) and ones (1).

(3) )e third layer is the pooling layer, which keeps the
most important information while reducing the
number of parameters. In particular, this layer works
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with large images effectively. Spatial pooling can be
done in a variety of max, average, and sum.

(4) )e final layer of a deep neural network, which
performs a discriminative learning algorithm, is an
actual component. )is layer is a multilayer with the
ability to learn weights and classify images and the
general working principle has been shown in
Figure 2.

Note: thematic map preparation, clipping map for the
dataset, and GIS overlay techniques are the supporting tools
for the successful achievement of CNN (Figure 2).

Scientists have proposed various frameworks for their
research based on the type of data, images, and goals in-
cluding ZFNet, Unet, SegnetLite VGGNet, VGG16, Goo-
gleNet, ResNet, LeNet-5, and AlexNet [10].

After the overlay process, the convolutional neural
network will be applied for the classification of groundwater
distribution. )e most common architectural approach of
CNN is convolutional layers (learning convolutions and
delivering the best presentation for data classification),
pooling layers (it governs overfitting and underfitting, tol-
erates stable conversion, and improves computational per-
formance by reducing the number of structures from
convolutions), and the rectified linear unit.

Parameters of the convolutional neural network: Dahou
et al. [43] optimized the following CNN parameters using a
differential algorithm: kernel size, number of kernels,

number of neurons in the fully connected layer, and dropout
rate. )e CNN model can be achieved within CNN pa-
rameters at higher accuracy and required less time than
machine learning models, according to the findings of Pan
et al. [20]. In terms of overall accuracy, deep learning
techniques usually outclass other machine learning (shal-
low) techniques. On the other hand, the understanding of
deep learning (i.e., convolutional neural networks) tech-
niques is limited and more difficult for data interpretation
due to the huge amount of datasets of training [44].

CNN is mainly made up of convolutional layers, which
scan the input image and conduct local convolutional op-
erations using many filters or kernels. Several filters are
employed to capture the input image with spatial properties.
Typically, each convolutional layer is followed by an acti-
vation function that operates on the results and outputs a
value indicating whether the node is active for the given
input. )e rectified linear unit (ReLU) is used as the acti-
vation function in this review. )e activation layer is fol-
lowed by a pooling or downsampling layer, which is
responsible for aggregating the output data from each layer
before sending it on to the next [45].

1.2.1. Convolutional Layer. )e convolutional layer is the
heart of a CNN model, which employs convolution kernels
to extract features from input images. )is operation can
transform the pixels of the next layer into a local receptive
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Figure 1: Flow diagram of the studies screening selection based on inclusive and exclusive criteria.
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field (the connected region of any convolution kernel on the
input image) [46].

)e convolutional kernel is multiplied by each position
of the source pixel. It has multiple convolution kernels,
invariant convolution, multichannel convolution, and so on.
)e formula for calculating the convolution layer is as
follows [46]:

xLj � xL − ljKij + bLj􏼐 􏼑, (1)

where xLj is the layer output, f is the activation function, K is
the convolution kernel, l is the number of convolution layers,
MJ is the sensory field of the input layer, and b is the bias
value of each input graph.

1.2.2. Pooling Layer. )is layer performs downsampling to
reduce the dimension of feature maps and improve feature
extraction images. )e pooling layer integrates a local re-
ceptive field into a single neuron to minimize the dimension.
Pooling has three common types (maximum pooling, mean
pooling, and random pooling) for the application of
groundwater and land cover. When the size of the feature
graphs becomes smaller the effect of computational com-
plexity always reduces. )e calculation formula of the
pooling layer is [46]

xL � f βLjdown xL − lj􏼐 􏼑 + bLj􏼐 􏼑, (2)

where xL is the layer output, down (xL−lj) is the sub-
sampling function, β is the subsampling coefficient, b is the
bias, and f is the excitatory function which is used to reduce
the input by subsampling the input.

1.2.3. Fully Connected Layer. )is layer mainly serves as an
integrator (means that the fully connected layer integrates
the image features in the feature maps through multiple
convolutional layers and pooling layers), which is to obtain a
high-level sense of the attributes. )e classifier implies that
the convolutional layers’ feature image is mapped to a fixed-
length feature vector, which is used to measure the score of
the class to which it belongs and the error between the
output and actual values. )e data from the convolutional

layer and pooling layer finally enter the fully connected layer.
In this layer, each neuron is connected with all the neurons
in the previous layer, but there is no connection between
neurons in the same layer. )e function of the fully con-
nected layer can enhance the ability of nonlinear mapping
[46].

1.2.4. Batch Normalization Layer. )e batch normalization
normalizes previous layer activations in each batch to
maintain the mean activation value close to 0 and the
standard deviation activation value close to 1. It can greatly
improve convergence speed, reduce overfitting, reduce
initial weight insensitivity, and enable us to use a higher
learning rate.

1.2.5. Flatten Layer. )e flattening layer is typically used to
convert from a convolutional layer to a fully connected layer
by converting the input from multidimensional space to
one-dimensional space.

1.2.6. Dropout Layer. In each training batch, the dropout
operation sets the neuron value to 0 at random with a
probability of 50%. )e CNN becomes less responsive to
particular sets of neurons as a result of this process, which
helps to minimize the interaction between hidden layer
neurons, prevents the overfitting phenomenon, and im-
proves the model’s generalization ability [20].

1.3. Types of Convolutional Neural Network

1.3.1. 1D Convolutional Neural Network. A one-dimen-
sional input grid cell containing different attribute features
must be transformed into a two-dimensional matrix to
initialize the map.)e photos generated are very broad since
none of the data is labeled and is constant [10].

1.3.2. 2D Convolutional Neural Network. CNN-2D has been
used by geoscience researchers to obtain and publish
noteworthy results, so it was used in this analysis. Fur-
thermore, since CNN input data must be in the form of
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Figure 2: )e general working principles of CNN [10, 23, 43].
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photographs, and since the input data is one-dimensional,
the primary data must be converted into images [10].

1.3.3. 3D Convolutional Neural Network. CNN-3D applies
filters that are smaller than the input raster images, which
extracted and expressed information in the domain almost
proficiently. By loading fully connected convolutional layers,
the CNN extracts feature maps at different levels. )e
convolutional layers are fair to conversion, whichmeans that
output will be shifted by an unchanged amount if the input
feature is shifted [31]. Currently, CNN has attained re-
markable achievements in the 2D raster image recognition
task, it has been prolonged into 3D remote sensing image
analyzing training [29].

1.4. Land Use/Land Cover. Commonly, there are two types
of remote sensing data classification: unsupervised and
supervised approaches. )e unsupervised technique in-
cludes the assembling method for classification (e.g., kernel
fuzzy C-mean clustering). Also, supervised classification
groups include the neural network, the Random Forest [47],
the support vector machine [48], and the sparsely repre-
sented classifier [49]. As suggested by Rai et al. [22] su-
pervised classifier approach is more appropriate for land
cover image recognition when the ground truth dataset is
available for accuracy assessments. Hasmadi et al. [14] also
showed that the overall efficiency of supervised classification
was better than unsupervised classification. Recently, the
land use/land cover change has been classified using deep
learning algorithms (convolutional neural networks, CNN).
As improved by several researchers [17–22, 50] the result is
also impressive for input parameters for groundwater po-
tentiality prediction. As reported by Calderon-Loor et al.
[51] land cover can be classified as follows: cropland (rainfed
and irrigated cropping area (permanent and annual)), forest
(includes open, closed, scattered, and sparse trees), grassland
(rainfed and irrigated managed and native pastures, tussock,
chenopods, and hummock grasses), built-up (human-made
surfaces areas inside urban centers and buffer zones), water
(permanent water bodies), and other areas (includes mines,
wetlands, bare lands, and salt lakes).

1.5. Groundwater Potential Zones. Lately, some scholars
have studied the efficiency of convolutional neural networks
under DLAs in spatial groundwater resource mapping [28]
and they figure out its performance capacity over the other
approaches. Panahi et al. [21] used convolutional neural
networks effectively in subsurface water potentiality map-
ping in South Korea. So this scholar proofed its prediction
performance, which was 84.4% (for example, as it was
compared, the detection capability of CNN is better than
support vector machine). Xu et al. [46] also used con-
volutional neural networks and effectively investigated
subsurface water potentiality mapping in China with a
prediction performance of 85.4%. To review, several sci-
entists are striving to simplify problems based on different
modeling approaches. For the matter, the application of a

convolutional neural network for groundwater has got great
credit among the family of deep learning algorithms since
2020. Pradhan et al. (2020) also verified the capability of
CNN to capture groundwater potentiality zones in the Nepal
Himalaya mountainous terrain areas and the spring in-
ventory map of 145 groundwater potential locations was
arranged in the field survey technique. )e efficiency of the
technique was about 82%.)erefore, the prediction ability of
the CNN is very good and it has a great contribution to
minimizing some ambiguity of results.

1.6. Related Works

1.6.1. Soil Mapping. As reported by Li et al. [38] different soil
types have been classified successfully by deep learning, i.e.,
convolutional neural network, and its performance was
better than that of machine learning, i.e., support vector
machine. In addition, as suggested by Wadoux et al. [52]
CNN has the benefit of utilizing the spatial information
contained in the vicinity of a sampling location by relying on
the local 30 representations of variables.

1.6.2. Lithological Mapping. )e arithmetical results have
verified the effectiveness of the classification of CNNs, which
showed that the deep learning algorithm can obtain ac-
ceptable results. CNN demonstrated that the 3D CNN and
2D CNN systems improve the classification of lithological
type remote sensing images [53].

1.6.3. Vegetation Mapping. Mapping and classification of
vegetation types are the most crucial tasks in ecological
resources management. However, it is not an easy task to
apply conventional methods because of field surveys (highly
labor-intensive). Recently, deep learning and convolutional
neural networks CNNs can be applied for the classification
and mapping of soil to reduce the costs and labor for
vegetation mapping [54]. Crop types have been classified by
applying convolutional neural networks (VGG16 and
GoogLeNet, which are pretrained) [55].

1.7. Advantages of Convolutional Neural Network

(i) CNN appears to be a good fit for multidimensional
imagery processing for classification and
regression.

(ii) can have rough arbitrary functions with a spatial
context [56].

(iii) It is particularly good at learning spatial rela-
tionships from image data, allowing the model to
learn positions and scales in a variety of structures
[57].

(iv) can be fed high-dimensional pattern images as
inputs and extract sophisticated features from the
imagery data, improving the neural network’s
explanatory and predictive power.
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(v) When images are available at a high temporal
frequency, CNN’s applicability to prediction tasks
can be extended [58].

(vi) CNN differs from traditional multilayer vision
neural networks in its ability to learn multiscale
spatial patterns from multisource gridded data.
CNN searches the input image in each dimension
using a convolution operation as a kernel [59].

(vii) )e rectified linear unit (ReLU) function is a
popular activation function for hidden CNN layers
because it is less expensive than other nonlinear
functions and has previously been shown to sig-
nificantly increase CNN training speed [59].

(viii) Local pattern sin images are used to create sparse
connections.

(ix) Weights are shared across an entire input image by
using the same filter (resulting in translation of
equivariant).

(x) Pooling operation leads to local shift invariance
[45].

1.8. Limitation of Convolutional Neural Network. )e limi-
tation of CNN has been underlined, due to the prerequisite
of the high amount of data [46]. It may be a waste of time to
interpret the data processing in a given large watershed area.

2. Discussion

As shown by many researchers, several approaches have
been established to avoid overfitting. )e first approach is to
verify the accuracy of the methods after training by using a
collection of data validation (10% of train data), which not
only adjusts network parameters but also helps to prevent
overfitting by comparing network accuracy of data and
training data. )e second method involves using a dropout
layer after each convolutional layer, which removes half of
the input layers after each iteration, allowing the network to
train all aspects of the dataset while avoiding overfitting.
Another option is to use a small network, which would
protect the network from being overfitted [10].

Convolution neural network (CNN) is a deep learning
network structure that has a good effect on picture cate-
gorization, making the CNN approach widely employed in
many fields. CNN is a new, nondestructive approach for
monitoring the quality of agricultural products, which in-
volves the detection and grading of fruits, vegetables, and
other produce, and has shown promising results. For clas-
sification modeling with a large sample size, CNN is com-
monly utilized [38].

On the basis of geological, geophysical, geochemical, and
remote sensing data, various approaches to geological
mapping have been used to aid in the detection of
groundwater resources. )rough multilayer network
learning, deep learning algorithms are dominating in dealing
with high-dimensional datasets for classification and pre-
diction. A convolutional neural network (CNN) is a sort of
feedforward neural network with convolution processing

and a depth structure, for example [60]. Generally, as re-
ported by many scholars the performance CNN was more
than 80% for classification of soil, lithology, groundwater,
and land cover.

3. Conclusions

)is study presents the application convolutional neural
network for the classification of land cover and spatial
groundwater potentiality zones. As reviewed in this paper,
the following three conclusions were drawn: (i) Deep
learning (i.e., CNN) techniques have a better performance
than machine learning algorithms for image pattern rec-
ognition. CNN provides high-level prediction performance
and is multidisciplinary in the areas of limited recorded data
availability. (ii) In the working principles, one (1) was
considered as groundwater potential areas and zero (0) was
considered as nongroundwater potential for assessment of
accuracy and the precision level, and (iii) image classification
with accurate overlay techniques is vital in the field of water
resources.

)e map of spatial groundwater potential can be zoned
into four main groups with relative distribution of
groundwater such as very high (excellent), high (very good),
moderate (good), low (poor), and very low (very poor). Land
cover also can be classified into five/six major categories:
cropland, forest, grassland, built-up, water, and other areas
[61].

In future research directions, scholars include applying
hybrid deep learning techniques with the CNN model for
groundwater predictions. )e author will study the appli-
cation of CNN in the field of groundwater engineering (i.e.,
geology, groundwater depth forecasting, aquifer thickness or
lithological layers, soil, land cover, and groundwater
potentiality).
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