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In this paper, we present a study of the in�uence of roughness on the bidirectional re�ectivity and on the emissivity of surfaces
using Maxwell’s electromagnetic theory. In this framework, we solve the Helmholtz equations by using the surface integral
method. We �rst proceed to a general description of this method, allowing to solve the propagation equations of the elec-
tromagnetic �eld. We then express the di�used directional �ux using the surface �eld and its normal derivative (source terms), in
the case of an incident plane wave in “p” polarization or in “s” polarization. �is �nally allows us to arrive at the desired radiative
properties. We have developed two numerical calculation codes whose use we limit to cases of surfaces presenting cavities in the
shape of a symmetrical or asymmetrical “V”. Particular interest was given to the in�uence of the geometric parameters of these
surfaces on the bidirectional re�ection function and on the emissivity of these surfaces. Finally, we present some very
conclusive results.

1. Introduction

�e theoretical or experimental determination of the radi-
ative properties of rough surfaces is the subject of several
research works.�ese parameters are involved in very varied
�elds of application ranging from the calculation of energy
exchanges by thermal radiation to the design of selective
rough surfaces, in addition to common applications in
concentrated solar power, agriculture, medicine, radar
waves, etc. A better understanding of the physical phe-
nomena related to the interaction of electromagnetic waves
with a surface is always necessary to master the problem.
Di�erent numerical simulation models to study these ra-
diative properties have been developed. When the surface is
made up of asperities with a characteristic dimension greater
than the wavelength, it is said to be macrorough. In this case,
among the study methods used, we cite the iterative method,
the variational method, the Monte-Carlo statistical method,
and the image method [1–4]. In the case of microrough
surface, methods based on notions of physical optics are
developed and applied [4]; a particular interest is then

focused on the energy re�ected in a coherent or incoherent
way.

More recently, models based essentially on Maxwell’s
equations and the integral surface method have made it
possible to study the di�usion of electromagnetic waves by
rough surfaces. In this context, we cite the work of Grefet [5],
Gre�et and Ladan [6], and Ladan and Buckius [7] as well as
the diversi�ed and highly enriching work of Buckius et al.
[8–11] and Charles et al. [12]. �e interest of these authors is
particularly focused on the study of the bidirectional
re�ectivity or the emissivity of random or regular rough
surfaces of a conductive or dielectric material. Most often,
these surfaces are illuminated by a plane wave [13] or by an
incident Gaussian beam [7]. �e results are analyzed in the
two cases of polarization “p” and “s,” that is, parallel and
perpendicular. It should also be noted that experimental
work is carried out in order to validate the various models
developed [14–16].

In the present work, we propose to contribute to the
study of the in�uence of a roughness in the shape of
symmetrical or asymmetrical “V,” on the bidirectional
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reflectivity and on the emissivity of these surfaces using
Maxwell’s electromagnetic theory. In this context, the
Helmholtz equations are solved by the application of the
surface integral method. We have limited the exploitation of
these numerical calculation codes to the cases of surfaces
presenting cavities in the shape of a symmetrical or asym-
metrical “V.” )e material constituting the studied surface
being BaSO4, with a complex refractive index nc � 1, 628 +

i0, 0003 corresponding to the wavelength λ � 0, 6328μm.
Particular interest was given to the influence of the

geometric parameters of these surfaces on the bidirectional
reflection function and on the emissivity of these surfaces.

2. Determination of Radiative Properties by
using the Surface Integral Method

2.1. Incident Field. We consider in our work a surface
presenting longitudinal cavities contiguous in the form of
symmetrical or asymmetrical “V.” In the section plane
(xOz), the profile of this surface is represented by a periodic
function ξ of the variable x; this is characterized by its
geometric period λ1, its height h, and a parameter f0, be-
tween 0 and 1, indicating the position of the peak of the
surface. )ese cavities are dug on the surface of a homo-
geneous, linear, and isotropic dielectric medium Ω2, with a
complex refractive index nc. We designate by Ω1 the half-
space defined byz> ξ(x) and assimilated to the void. We
work with an incident plane wave at the angle θ0 in both
cases of polarization. )e first concerns the “p” polarization,
for which the magnetic excitation field H

→
is perpendicular to

the plane of incidence (xOz), and it is expressed in vacuum at
a point M (x, 0, z) by:

H
→

(x, z) � Hy e
→

y � Hy(x, z) e
→

y, (1)

with:

Hy(x, z) � H0exp iK0 xsinθ0 − zcosθ0( 􏼁􏼈 􏼉, (2)

where H0 is the amplitude of the magnetic field and K0 �

ω/c is the wave number.
)e second case concerns the “s” polarization, for which

the incident electric E
→

field is perpendicular to this plane.
Case development will not be presented in this paper.

2.2. Helmholtz Equations in “p” Polarization. We denote by
H>y (x, z) the field evaluated at an observation point of
coordinates x and z> ξ(x), located in a vacuum. )is field
obeys the Helmholtz equation:

ΔH>y (x, z) + K
2
0H
>
y (x, z) � 0, pour z> ξ(x), (3)

and checks an outgoing wave condition at infinity.
)e field H<y (x, z) in the medium Ω2 evaluated at a

point of coordinates x and z< ξ(x) obeys the equation:

ΔH<y (x, z) + εr(ω)K
2
0H
<
y (x, z) � 0 pour z< ξ(x), (4)

or εr � n2
c . )is field decreases exponentially when z tends to

− ∞.

)e surface passage conditions ξ(x) are as follows:

H
>
y (x, z)|z�ξ+

(x) � H
<
y (x, z)|z�ξ−

(x). (5)

zH>y (x, z)

zn
|z�ξ+

(x) �
1
εr

zH<y (x, z)

zn
|z�ξ−

(x), (6)

where ξ+
(x) is the ordinate of the abscissa point x, which

tends towards the surface while remaining in the middleΩ1.
Whereas, ξ−

(x) is the ordinate of the abscissa point x which
tends towards the surface while remaining in the middleΩ2.
z/zn designates the partial derivative along the normal, to
the surface at the point (x, z� ξ(x)). )e normal unit vector
at the interface, oriented from Ω2 towards Ω1, is defined as
follows:

n
→

�
1
c

􏼠 􏼡 −
d[ξ(x)]

dx
, 0, 1􏼠 􏼡, (7)

with:

c � 1 +
d[ξ(x)]

dx
􏼨 􏼩

2
⎡⎣ ⎤⎦

1/2

, (8)

the expression of the derivative following the normal is
written as follows:

z

zn
� 1 + ξ©(x)􏽨 􏽩

2
􏼔 􏼕

− (1/2)

− ξ′(x)
z

zx
+

z

zz
􏼠 􏼡. (9)

For an oriented normal ofΩ1 toΩ2, the expression of the
derivative is written as follows:

z

zn′
� −

z

zn
. (10)

2.3. Integral Surface Equations in “p” Polarization

2.3.1. Integral Equations of the Field above the Interface.
Having introduced Green’s functions [1,2], we now apply
Helmholtz’s theorem to the differential equation (3). For
this, we choose the volume 􏽥V limited by the closed surface
z 􏽥V and located above the interface (z> ξ(x)). We can write
for the field H>y the following equations:

H
>
y (r) �

1
4π

􏽚
z􏽥v

G0∇r′H
>
y − H

>
y ∇r′G0􏽨 􏽩dS si M ∈ 􏽥v. (11)

1
4π

􏽚
z􏽥v

G0∇r′H
>
y − H

>
y ∇r′G0􏽨 􏽩dS � 0 si M ∉ 􏽥v, (12)

where (􏽥V) is the volume bounded by the closed surface (z􏽥V)

and z/zn denotes the derivative along the outgoing normal.
Subdivide the surface z 􏽥V into two parts, one 􏽐

+
1 located just

above the interface (z � ξ(x) + α, avec α⟶ 0+) and the
other 􏽐

+
2 closing on 􏽥V. )e surface integral in (7) is then

written as the sum of the integrals over the surfaces 􏽐
+
1 et􏽐

+
2 :

􏽒
z􏽥VdS � 􏽒

􏽐 +
1
dS + 􏽒

􏽐 +
2
dS. By tending 􏽐

+
2 to

a hemispherical surface 􏽐 (+∞)° of infinite radius located
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in Ω1, and taking into account the Sommerfeld condition

[3], we get the following:

􏽚
􏽘

(+∞) G0
zH
>
y

zn′
− H
>
y

zG0

zn′
⎡⎣ ⎤⎦dS � 4πH

>
yinc. (13)

Using Cartesian coordinates, the expression for the
integral (7) becomes:

H
>
y (x, z) � H

>
yinc(x, z)

+
1
4π

􏽚
􏽘

+
1

G0
zH
>
y

zn′
− H
>
y

zG0

zn′
⎡⎣ ⎤⎦dS.

(14)

Let us express the surface element dS. For this, we denote
by s the curvilinear abscissa on the profile, and the ele-
mentary displacement on the latter is written as
d S

→
� [− ξ′(x) e

→
x + e

→
z]dx. )e relations (7) and (8)

expressing lead to:

dS � ‖d S
→

‖ � cdx. (15)

Given (10), equation (14) can then be written in the
following form:

H
>
y (x, z) � H

>
yinc(x, z) +

1
4π

􏽚
+∞

− ∞
− ξ′ x′( 􏼁

z

zx′
+

z

zz′
􏼠 􏼡G0 x, z; x′, z′( 􏼁􏼢 􏼣

H
>
y x′, z′( 􏼁

z′ � ξ x′( 􏼁
− G0 x, z; x′, z′( 􏼁

z

zn′
H
>
y x′, z′( 􏼁

z′ � ξ x′( 􏼁

⎧⎨

⎩

⎫⎬

⎭dx′. (16)

We introduce at this level the source terms H and L
defined by:

H(x) � H
>
y (x, z)|z�ξ(x), (17)

L(x) �
z

zn
H
>
y (x, z)|z�ξ(x). (18)

Physically, H (x) is the magnetic field at the coordinate
point (x, ξ(x)>) and L (x) represents, up to a constant, the
tangential component to the surface of the electric field at
this point. We finally arrive at the following equations:

H
>
y (x, z) � H

>
yinc(x, z) +

1
4π

􏽚
+∞

− ∞
− ξ′ x′( 􏼁

z

zx′
+

z

zz′
􏼠 􏼡G0 x, z; x′, z′( 􏼁􏼢 􏼣 × H x′( 􏼁|z′�ξ x′( ) − G0 x, z; x′, z′( 􏼁 × L x′( 􏼁|z′�ξ x′( )􏼨 􏼩dx′M ∈ 􏽥V,

0 � H
>
yinc(x, z) +

1
4π

􏽚
+∞

− ∞
− ξ′ x′( 􏼁

z

zx′
+

z

zz′
􏼠 􏼡G0 x, z; x′, z′( 􏼁􏼢 􏼣 × H x′( 􏼁|z′�ξ x′( ) − G0 x, z; x′, z′( 􏼁 × L x′( 􏼁|z′�ξ x′( )􏼨 􏼩dx′M ∉ 􏽥V.

(19)

translating the integral expressions of surface of the field
H>y (x, z) in the vacuum.

2.3.2. Integral Equations of the Field below the Interface.
A reasoning analogous to that used in the previous par-
agraph, applied to Gε andH<y the volume V(z< ξ(x))

limited by the surface zV located just below the interface
ξ(x) and closing in Ω2, provides us with the two other
equations which translate the field transmitted into the
dielectric. To transform relation (4) into areal integral
equations, we apply Helmholtz’s theorem, which allows us
to write the following equations:

H
<
y ( r

→
) �

1
4π

􏽚
zV

Gε
zH
<
y

zn
− H
<
y

zGε

zn
⎡⎣ ⎤⎦dS M ∈ V. (20)

0 �
1
4π

􏽚
zV

Gε
zH
<
y

zn
− H
<
y

zGε

zn
⎡⎣ ⎤⎦dS M ∉ V. (21)

)e surface zV is the meeting of two parts, one 􏽐 −
1

located just below the profile (z � ξ(x) + α, and α⟶ 0− )

and the other 􏽐 −
2 closing on V. We tend 􏽐 −

2 towards a
surface 􏽐 (− ∞) of infinite radius and located in the middle
Ω2.

We will take into account that there is no incident field
for z< ξ(x) and that the field transmitted in the dielectric
[H<y (x, z)] verifies the Sommerfeld condition; so it comes:

􏽚
􏽘

(− ∞) Gε
zH
<
y

zn
− H
<
y

zGε

zn
⎡⎣ ⎤⎦dS � 0. (22)

It follows that the integral (20) can be written in the
following form:

H
<
y (x, z) �

1
4π

􏽚
􏽘

−
1

Gε
zH
<
y

zn′
− H
<
y

zGε

zn′
⎡⎣ ⎤⎦dS, (23)

or:
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H
<
y (x, z) � −

1
4π

􏽚
􏽘

−
1

H
<
y

zGε

zn′
− Gε

zH
<
y

zn′
⎡⎣ ⎤⎦dS. (24)

Using the continuity relations at the interface (5) and (6),
this last equation is then written as follows:

H
<
y (x, z) � −

1
4π

􏽚
􏽘
2

zGε/zn( 􏼁H
>
y − εrGε zH

>
y /zn􏼐 􏼑􏽨 􏽩

z � ξ(x)
dS.

(25)

By introducing the source terms given by relations (17)
and (18), we end up with the following expressions:

H
<
y (x, z) � −

1
4π

􏽚
+∞

− ∞
− ξ′ x′( 􏼁

z

zx′
+

z

zz′
􏼠 􏼡Gε x, z; x′, z′( 􏼁􏼢 􏼣

z′�ξ x′( )
× H x′( 􏼁 − εr(ω)Gε x, z; x′, z′( 􏼁 × L x′( 􏼁􏼂 􏼃z′� x′( )

⎧⎨

⎩

⎫⎬

⎭dx′ forM ∉ V,

(26)

0 � −
1
4π

􏽚
+∞

− ∞
− ξ′ x′( 􏼁

z

zx′
+

z

zz′
􏼠 􏼡Gε x, z; x′, z′( 􏼁􏼢 􏼣

z′�ξ x′( )
× H x′( 􏼁 − εr(ω)Gε x, z; x′, z′( 􏼁 × L x′( 􏼁􏼂 􏼃z′� x′( )

⎧⎨

⎩

⎫⎬

⎭dx′

forM ∉ V,

(27)

translating the surface integral equations of the field
H<y (x, z) in the medium Ω2.

2.4. Bidirectional Reflection Function. We show using
equation (7), and the Fourier representation of G0 [2] and
taking z> ξmax, that the scatteredmagnetic field can be put in
the following form:

H
>
y diff(x, z) � 􏽚

+∞

− ∞

dk

2π
Rp(kω)exp ikx + iα0(kω)z( 􏼁,

Rp(kω) �
i

2α0(kω)
􏽚

+∞

− ∞
exp − ikx − iα0(kω)ξ(x)( 􏼁 × i kξ′(x) − α0(kω)􏼂 􏼃H(x) − L(x)􏼈 􏼉dx.􏼈

(28)

By introducing the Poynting vector [4], and using re-
lation (11), we express the diffused flux around θr (reflection
angle) in the elementary angle dθr:

pdiff θr( 􏼁 �
dPdiff θr( 􏼁

dθr

� ly
1

2ωε0

1
8π

rp θr( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (29)

where ly is the width of the surface along the axis (oy) and
rp(θr) is expressed by the following relation:

rp θr( 􏼁 � 􏽚
+∞

− ∞
exp − iK0 x( )sinθr + ξ(x)cosθr( 􏼁􏼈 􏼁 × iK0 ξ′(x)sinθr − cosθr􏼂 􏼃H(x) − L(x)􏼈 􏼉dx. (30)

We deduce the two-way reflection function [5]:

ρλp
″ θ0, θr( 􏼁 �

1
8

c

ω
1

lxcosθrcosθ0
rp θr( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (31)

A calculation analogous to that of the case of the “p”
polarization allows us to write the bidirectional reflection
function in “s” polarization:

ρλs
″ θ0, θr( 􏼁 �

1
8

1
K0

1
lxcosθrcosθ0

rs θr( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
, (32)

Table 1: )e validity of the model in terms of power in the two
cases of polarization.

Polarization Rmodel Fresnel
Polarization (P) 0,04848535 0,04820009
Polarization (S) 0,06633675 0,0686283
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or:

rs θr( 􏼁 � 􏽚
+∞

− ∞
exp − iK0 xsinθr + ξ(x)cosθr( 􏼁( 􏼁 × iK0 ξ′(x)sinθr − cosθr􏼂 􏼃E(x) − F(x)􏼈 􏼉dx.􏼈 (33)

Note that in this case of polarization, the source func-
tions are defined by the following equation:

E(x) � E
>
y (x, z)|z�ξ(x);

F(x) � − ξ(x)
z

zx
+

z

zz
􏼠 􏼡E

>
y (x, z)|z�ξ(x).

(34)

2.5. DirectionalMonochromatic Emissivity. In the case of an
opaque surface, knowledge of the hemispherical directional
monochromatic reflectivity ρλ′ leads to that of the directional
monochromatic emissivity from the relationship:

ελ′(Δ) � 1 − ρλ′(Δ). (35)

3. Description of the Numerical
Resolution Method

In order to calculate these source terms, we consider
equations (26) and (27) by taking the observation point of

coordinates (x, z) on the upper surface, that is, z � ξ(x) + α
with α an infinitely small real. )e two integral equations
(26) and (27) are then written, respectively, in the following
forms:

H(x) � Hinc(x)

+ 􏽚
+∞

− ∞
H0 x, x′( 􏼁H x′( 􏼁 − L0 x, x′( 􏼁L x′( 􏼁􏼂 􏼃dx′,

(36)

0 � − 􏽚
+∞

− ∞
Hε x′( 􏼁H x′( 􏼁 − εr(ω)Lε x, x′( 􏼁L x′( 􏼁􏼂 􏼃dx′,

(37)

where:

H(x) � H
>
y (x, ξ(x)),

Hinc(x) � H
>
yinc(x, ξ(x)),

(38)

and where:

Hε x, x′( 􏼁 � lim
1
4π

− ξ′ x′( 􏼁
z

zx′
+

z

zz′
􏼠 􏼡 × Gε x, z; x′, z′( 􏼁|z′�ξ x′( );z�ξ(x)+α􏼢 􏼣α⟶ 0+

� lim −
i

4
􏼒 􏼓n

2
c

ω2

c
2 ×

H
(1)
1 nc(ω)(ω/c)( 􏼁 x − x′( 􏼁

2
+ ξ(x) − ξ x′( 􏼁 + α( 􏼁

2
􏽨 􏽩

1/2

nc(ω/c) x − x′( 􏼁
2

+ ξ(x) − ξ x′( 􏼁 + α( 􏼁
2

􏽨 􏽩
1/2 × x − x′( 􏼁ξ′ x′( 􏼁 − ξ(x) − ξ x′( 􏼁 + α( 􏼁􏼂 􏼃

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦α⟶ 0+

,

Lε x, x′( 􏼁 � lim
1
4π

Gε x, ξ(x) + α, x′, ξ x′( 􏼁( 􏼁α⟶ 0+

� lim
i

4
H

(1)
0 nc

ω
c

x − x′( 􏼁
2

+ ξ(x) − ξ x′( 􏼁 + α( 􏼁
2

􏽨 􏽩
1/2

􏼔 􏼕α⟶ 0+
.

(39)

3.1. Transformation of Integral Equations into Linear Systems.
We propose to transform the two integral equations of the
source terms into a linear system of equations where the
unknowns are H and L. For this, we replace the infinite
integrals by integrals limited to the interval [− (lx/2), (lx/2)].

We divide the latter in N intervals of the same extent and
whose centers have for abscissas given by:

xn � −
lx
2

+ n −
1
2

􏼒 􏼓Δx n � 1, 2, . . . N, (40)

where: Δx � lx/N
It follows that equation (36) takes the following form:

H(x) � Hinc(x) + 􏽘
n�N

n�1
􏽚

xn+(1/2)Δx

xn− (1/2)Δx
H0 x, x′( 􏼁H x′( 􏼁 − L0 x, x′( 􏼁L x′( 􏼁􏼂 􏼃dx′. (41)
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By adopting the hypothesis of a very small variation of H
(x) and L (x) on each of the intervals [xn − (1/2)Δx, xn +

(1/2)Δx], we can approximate equation (41) by:

H(x) � Hinc(x) + 􏽘
n�N

n�1
H xn( 􏼁 􏽚

xn+(1/2)Δx

xn− (1/2)Δx
H0 x, x′( 􏼁dx′ − L xn( 􏼁 􏽚

xn+(1/2)Δx

xn− (1/2)Δx
L0 x, x′( 􏼁dx′􏼨 􏼩. (42)

So taking x � xm we get:

H xm( 􏼁 � Hinc xm( 􏼁 + 􏽘
n�N

n�1
H xn( 􏼁 􏽚

xn+(1/2)Δx

xn− (1/2)Δx
H0 xm, x′( 􏼁dx′ − L xn( 􏼁 􏽚

xn+(1/2)Δx

xn− (1/2)Δx
L0 xm, x′( 􏼁dx′􏼨 􏼩, (43)

where:

H
(0)
mn � 􏽚

xn+(1/2)Δx

xn− (1/2)Δx
H0 xm, x′( 􏼁dx′, (44)

and:

L
(0)
mn � 􏽚

xn+(1/2)Δx

xn− (1/2)Δx
L0 xm, x′( 􏼁dx′. (45)

We obtain:

H xm( 􏼁 � Hinc xm( 􏼁 + 􏽘
n�N

n�1
H

(0)
mnH xn( 􏼁 − L

(0)
mnL xn( 􏼁􏽨 􏽩. (46)

Similarly, equation (37) takes the following form:

􏽘

n�N

n�1
H

(ε)
mnH xn( 􏼁 − ε(ω)L

(ε)
mnL xn( 􏼁􏽨 􏽩 � 0, (47)

with:

H
(ε)
mn � 􏽚

xn+(1/2)Δx

xn− (1/2)Δx
Hε xm, x′( 􏼁dx′, (48)

and:

L
(ε)
mn � 􏽚

xn+(1/2)Δx

xn− (1/2)Δx
Lε xm, x′( 􏼁dx′. (49)

Equations (44) and (45) constitute a system with 2N
equations and 2N unknowns H(xn) etL(xn) with n ranging
from 1 to N. )e calculation of the coefficients
L(0)

mn, H(0)
mn, L(ε)

mn, H(ε)
mn of this system is presented in the ap-

pendix. It appears that:

H
(ε)
mn �

1
2
δmn +

1
2
h

(ε)
mn,

L
(ε)
mn �

1
2
l
(ε)
mn,

(50)

where δmn denotes the Kronecker symbol, and with:

h
(ε)
mn �

Δx −
i

2
􏼒 􏼓n

2
c

ω2

c
2 ×

H
(1)
1 nc(ω/c) xm − xn( 􏼁

2
+ ξ xm( 􏼁 − ξ xn( 􏼁( 􏼁

2
􏽨 􏽩

1/2
􏼚 􏼛

nc(ω/c) xm − xn( 􏼁
2

+ ξ xm( 􏼁 − ξ xn( 􏼁( 􏼁
2

􏽨 􏽩
1/2

× xm − xn( 􏼁ξ′ xn( 􏼁 − ξ xm( 􏼁 − ξ xn( 􏼁( 􏼁􏼂 􏼃; m≠ n

Δx
ξ″ xm( 􏼁

2πc
2
m

; m � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

and:
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l
(ε)
mn �

Δx
i

2
􏼒 􏼓H

(1)
0 nc

ω
c

xm − xn( 􏼁
2

+ ξ xm( 􏼁 − ξ xn( 􏼁( 􏼁
2

􏽨 􏽩
1/2

􏼚 􏼛; m≠ n,

Δx
i

2
􏼒 􏼓H

(1)
0 nc

ω
c

cmΔx
2e

􏼚 􏼛; m � n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(52)

where: cm � [1 + (ξ′(xm)2)]1/2 et nc �
��εr

√ ,
)e system of equations (46) and (47) therefore becomes:

H xm( 􏼁 − 􏽘
n�N

n�1
h

(0)
mnH xn( 􏼁 − l

(0)
mnL xn( 􏼁􏽨 􏽩 � 2Hinc xm( 􏼁,

H xm( 􏼁 + 􏽘
n�N

n�1
h

(ε)
mnH xn( 􏼁 − εr(ω)l

(ε)
mnL xn( 􏼁􏽨 􏽩 � 0.

(53)

It can be put in the following matrix form:

Id − h
(0) l(0)

Id + h(ε)
− ε(ω)l

(ε)
⎛⎝ ⎞⎠ ×

H

L
􏼠 􏼡 � 2

Hinc

0
􏼠 􏼡. (54)

Or Id − h(0), Id + h(ε), l(0), l(ε) denote square blocks
consisting of the respective matrix elements δmn − h(0)

mn, δmn −

h(ε)
mn, l(0)

mn et l(ε)mn [2], and H, L, and Hinc, respectively, represent
the N components H(xk), L(xk), Hinc(xk).

A similar reasoning allows us to arrive at a linear system
with 2N equations and 2N unknowns E(xn) andF(xn),
components of the source terms in “s” polarization. )e
numerical resolution of the two linear systems makes it
possible to arrive at the source terms in the two cases of
polarization. )ese terms are necessary for the calculations
of rp and rs expressed by the relations (13) and (15). We
replace these with the following expressions:

rp θr( 􏼁 � 􏽘
n�N

n�1
Δx × exp − iK0 xnsinθr + ξ xn( 􏼁cosθr( 􏼁􏼂 􏼃 × iK0 ξ′ xn( 􏼁sinθr − cosθr( 􏼁H xn( 􏼁 − L xn( 􏼁􏼈 􏼉,

rs θr( 􏼁 � 􏽘
n�N

n�1
Δx exp − iK0 xnsinθr + ξ xn( 􏼁cosθr( 􏼁􏼂 􏼃 × iK0 ξ′ xn( 􏼁sinθr − cosθr( 􏼁E xn( 􏼁 − F xn( 􏼁􏼈 􏼉.

(55)
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Figure 1: Directional emissivity monochromatic polarization s
(λ � 0.6328μm, Sillicon(nc � 2.0 + 4.0i), h � λ, λ1 � λ, f0 � 0.5).
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Figure 2: Directional emissivity monochromatic polarization s
(λ � 0.6328μm,Alluminum(nc � 1.5 + 10.0i), h � λ, λ1 � λ, f0 �

0.5).
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3.2. Model Validation

3.2.1. Validation in terms of Power. We carried out a vali-
dation of the developed model, based on a comparison
between the ratio of the reflected power to the incident
power, calculated using our model with that provided by the
Fresnel formulas. As part of this validation, we consider the
case of a plane wave and a plane surface for the two kinds of
polarization. We note there that the average value along the
surface of each of these polarizations is identical to that
provided by the formulas of Fresnel (see Table 1).

3.2.2. Validation in terms of Emissivity. We also find the
curves provided by Dieenna and Buckius [16] in the case of
both silicon and aluminum surfaces for various surface
parameters (Figures 1 and 2).

)e surfaces are constructed using a Fourier series
representation from the surface. )e number of terms in the
series must be large enough for numerical convergence.
However, the number of terms must be small enough to
provide continuous derivatives numerically. Up to 75 terms
have been included in the results presented. For the

triangular surfaces shown, a 25-term Fourier series is used to
generate the surface profiles. Typical surface lengths are
divided into 2400 increments. )ese lengths require the
memory limit of each machine. Surfaces that have a large h/λ
require more increments than surfaces with small λ1/λ. All
results presented conserve energy within 1 percent as
evaluated by examining the conservation of energy for a
dielectric surface (i.e., K� 0.0).

4. Numerical Results and
Interpretations Concerning a Rough Surface-
Case of a “V” Surface Illuminated by a
Plane Wave

We applied our model to the case of a surface presenting a
“V” roughness and illuminated by a monochromatic plane
wave of wavelength λ � 0.6328μm, under the angle of in-
cidence θ0, for the two polarizations “p” and “s”.)is surface
is made of barium sulphate (BaSO4), with a complex re-
fractive index of nC � 1,628 + 0, 0003i, and it has cavities in
the shape of a symmetrical or asymmetrical “V”. Recall that
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Figure 3: Bidirectional reflection function of polarization p. Influence of the geometric period (λ � 0.6328μm, nc � 1.628 + 0.0003i, θ0 �

200, h � λ, f0 � 0.5).
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the profile of such a surface is characterized by its height h,
its geometric period λ1, and its peak position parameter f0.
We are primarily interested in the behavior of the bidi-
rectional reflection function ρ‘‘

λ(θ0, θr) with respect to the
geometric parameters of the profile. Second, we examine the
influence of the geometric period on the monochromatic
directional emissivity of such a surface.

4.1. Influence of Geometric Parameters on ρ‘‘
λ(θ0, θr). For a

height h equal to the wavelength of the incident radiation,
and a value fixed at 0.5 of f0 (“V” symmetrical), we represent
the variations of the bidirectional reflection function for
values of the geometric period λ1, respectively, equal to λ, 2
λ, 3 λ, and 4 λ, in each case of polarization. )e repre-
sentative curves show peaks of variations of different
magnitudes, with, in each case, a predominant peak.

4.1.1. Case of “p” Polarization. In the context of the “p”
polarization, it appears from Figures 3(a)–3(d) that the
representative curves of ρ‘‘

λ(θ0 � 200, θr) present a dominant
peak of reflection corresponding to the angle of reflection
θr � − 420. )e amplitude of this peak goes from the value

0.12 to 0.55 when λ1 varies from λ to 3λ; while it takes the
value 0.34, or 2.8 times that of the dominant peak relative to
λ1 � λ, for λ1 � 4λ.

)e number of peaks increases when the geometric
period increases, and it passes from two to seven peaks when
λ1 passes from λ to 4λ. )is result is consistent with that
provided by the diffraction theory of gratings with the same
geometric shape as our surface.

4.1.2. Case of “s” Polarization. In the case of “s” polarization,
Figures 4(a)–4(d) show that the geometric period λ1 also varies
with the number of reflection peaks, their positions, and the
amplitude of the dominant peak. )e same variation in the
number of peaks, as previously, is observed. )e dominant
reflection angle corresponds to the maximum amplitude peak,
and it is − 42° for values of λ1 equal to λ, 2λ, and 3 λ, while it is
around 58° for λ1 � 4λ. )e value of ρ‘‘

λ(θ0 � − 200, θr � − 420)
is multiplied by 2.7 when λ1 going from λ to 2λ and by 5 when
λ1 going to λ to 3λ; while it is equal to 0.75, 7 times that of the
dominant peak relative to λ1 � λ. )e amplitude of the
dominant peak is higher in the case of the “s” polarization than
that corresponding to the “p” polarization.
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Figure 4: Bidirectional reflection function of polarization s. Influence of the geometric period (λ � 0.6328μm, nc � 1.628 + 0.0003i, θ0 �

200, h � λ, f0 � 0.5).
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4.2.Height Influence: h. We study the influence of the height
h on the behavior of ρ‘‘

λ(θ0 � 300, θr) by considering the
cases corresponding to the values of h equal to λ, 1.25λ, 1.5 λ,
1.75λ, and a geometric period λ1 equal to λ, in the two cases
of polarization.

4.2.1. Case of “p” Polarization. Figures 5(a)–5(d), in the case
of the “p” polarization, essentially highlight the existence of
two dominant reflection peaks, one located around the
direction and the other located around of direction θr �

− 300, symmetrical to the first with respect to the normal.)e
amplitude of these peaks increases with h. We report that the
flow diffused in an incoherent way and grows when h in-
creases. In addition, note that the amplitude of the dominant
antispecular peak, that is, corresponding to the direction
θr � − 300, takes precedence in all these cases over the
specular peak defined by θr � 300. Note that these obser-
vations remain practically valid when we consider a ratio
h/λ1 less than unity, as shown in Figures 5(a)–5(d).

4.2.2. Case of “s” Polarization. In the case of the “s” po-
larization, the influence of the height h on ρ‘‘

λ(θ0 � 300, θr) is
illustrated using Figures 6(a)–6(d). We note that there, as in
the previous case, exist two reflection peaks, one following
the specular direction θr � 300 and the other following the
antispecular direction θr � − 300 and there is an increase in
incoherent diffused flux as h increases. However, for h equal
to 1.25λwhere 1.75λ, the amplitude of the specular reflection
peak is greater than that of the antispecular peak.

4.3. Influence of theAsymmetry of theCavity. To illustrate the
influence of the asymmetry of the cavities on the bidirec-
tional reflection function, we have varied the height h and
the geometric period λ for values of f0 equal to 0.5, 0.7, and
0.9, in both cases of polarization. For the geometric period λ1
equal to λ and the height h equal to 1.25λ, we note that the
positions of the peaks, located at 30° (specular) and at − 30°
(antispecular), remain unchanged when f0 varies. )e am-
plitude of the antispecular peak increases remarkably when
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Figure 5: Bidirectional reflection function of polarization p. Influence of height h (λ � 0.6328μm, nc � 1.628 + 0.0003i, θ0 � 300, λ1 �

λ, f0 � 0.5).
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Figure 6: Continued.
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Figure 7: Bidirectional reflection function of polarization S. Influence of dissymmetry of the cavity
(λ � 0.6328μm, nc � 1.628 + 0.0003i, θ0 � 300, λ1 � λ, h � 1, 25λ).
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Figure 6: Bidirectional reflection function of polarization s. Influence of height h (λ � 0.6328μm, nc � 1.628 + 0.0003i, θ0 � 300, λ1 �

λ, f0 � 0.5).
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f0 goes from 0.5 (symmetrical “V”) to 0.9; whereas that of the
specular peak starts increasing when f0 goes from 0.5 to 0.7,
then decreases when f0 reaches 0.9. )e flux reflected in an
antispecular way becomes more and more important than
that reflected in the specular direction when the asymmetry
increases.

)ese results are illustrated in Figures 7(a)–7(c) and
8(a)–8(c). Note also that the same results are valid for a
height h and a geometric period λ1 of the order of magnitude
of the wavelength, in both cases of polarization. In
Figures 9(a)–9(c) and 10(a)–10(c), we have represented the
bidirectional reflection function for surfaces characterized

-90
0.0

0.1

0.2

0.3

-30-60 0
Angle of reflection (θr)

Bi
di

re
ct

io
na

l r
ef

le
ct

io
n 

fu
nc

tio
n 

(ρ
” λ)

30 60 90

f0 = 0.5

(a)

-90
0

20

10

30

-60 -30 0
Angle of reflection (θr)

Bi
di

re
ct

io
na

l r
ef

le
ct

io
n 

fu
nc

tio
n 

(ρ
” λ)

30 60 90

f0 = 0.7

(b)

-90
0

10

30

20

40

-60 -30 0
Angle of reflection (θr)

Bi
di

re
ct

io
na

l r
ef

le
ct

io
n 

fu
nc

tio
n 

(ρ
” λ)

30 60 90

f0 = 0.9

(c)

Figure 8: Bidirectional reflection function of polarization ``P``: influence of dissymmetry of the cavity (λ � 0.6328μm, nc � 1.628 +

0.0003i, θ0 � 300, λ1 � λ, h � 1, 25λ).
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by the parameters h equal to λ and λ1 equal to 4λ, in the same
cases of asymmetry as previously described, in “p” and “s”
polarization. We note that the reflected flux following a

certain number of peaks in the case of symmetrical cavity
concentrates along the normal when the asymmetry reaches
the value 0.9.
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Figure 9: Bidirectional reflection function of polarization ``S``: influence of dissymmetry of the cavity (λ � 0.6328μm, nc � 1.628 +

0.0003i, θ0 � 300, λ1 � λ, h � 1λ).
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4.4. Emissivity

4.4.1. Influence of the Geometric Period. In Figures 11(a)–
11(d), we represent the directional surface emissivity
presenting cavities in the shape of a symmetrical “V”
(f0 � 0, 5), of the same height h equal to λ and of

respective geometric periods 4λ, 3λ, 2λ, and λ, in both
cases of polarization. Note that for a smooth flat surface of
the same material (BaSO4), the emissivity is close to unity
along directions up to 60° around the normal, and it then
decreases for grazing directions. As we might expect, we
see a slight increase in emissivity for directions up to
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Figure 10: Bidirectional reflection function of polarization ``P``: influence of dissymmetry of the cavity (λ � 0.6328μm, nc � 1.628 +

0.0003i, θ0 � 300, λ1 � λ, h � 1λ).
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grazing directions as the geometric period decreases.
Indeed, this is consistent with the effect of the same
roughness on the emissivity for a surface made of a
material of the same nature [16].

5. Conclusion

)is work allowed us to determine the radiative properties of
rough surfaces from the electromagnetic theory by the
surface integral method.)e exploitation of computer codes,
in the case of a triangular-shaped surface, led to the study of
the influence of geometric parameters on the bidirectional
reflectivity as well as on the emissivity of these surfaces. )e
results obtained are in an agreement with those provided by
the theory of diffraction or by other research works in the
treated case. Furthermore, we point out that the surface

integral method becomes very expensive numerically as
soon as the modulus of the complex refractive index of the
medium increases.

Nomenclature

Pinc: Incident flow
rp(θr)

:
Polarization reflection function “p”

rs(θr)

:
Reflection function in polarization “s”

􏽥V: Volume located in Ω1
V: Volume located in Ω2
λ1: Geometric period
Ω2: Dielectric medium
ω: Incident wave pulsation
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Figure 11: Directional emissivity monochromatic polarization p and s: influence of the geometric period (λ � 0.6328μm, nc � 1.628 +

0.0003i, h � λ, f0 � 0.5).
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Ω1: )e void
ξ: Surface profile
ε(ω): Dielectric function
λ: Wave length
θ: Angle of incidence or reflection
δ: Dirac
c: Normalization constant
ρs
″: Bidirectional reflection function in “s” polarization
μ: Magnetic permeability of the medium
μ0: Vacuum permeability
ε0: Vacuum permittivity
E
→
: Electric field

H
→
: Magnetic excitation field

f0: Peak position of the “V” surface profile
G: Green’s function
H

(1)
0 : Zero-order Hankel function of the first kind

H
→∗

: Conjugate of the magnetic field
h: Height of the “V” surface profile
K
→
: Wave vector

nC: Complex index
p;
TM:

Magnetic transverse polarization

s, TE: Electrical transverse polarization
Pdiff : )e stream diffused through the plane z� constant

located above the profile
z􏽥V: Closed surface that limits the volume 􏽥V

zV: Firm surface which limits the volume V
〈 S

→
〉: Mean value of the Poynting vector

ρp
″: Bidirectional reflection function in polarization “p”.
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